CS162 - POINTERS

» Lecture: Pointers and Dynamic Memory
— What are pointers
— Why dynamically allocate memory
— How to dynamically allocate memory
— What about deallocation?
— Walk thru pointer exercises

L I e

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Pointers

CS162 - Pointers

* |In C++, a pointer Is just a different kind of
variable.

 This type of variable points to another variable or
object

— (I.e., 1t is used to store the memory address of another
variable nor an object).

— Such pointers must first be defined and then
Initialized.
— Then, they can be manipulated.

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Pointers

A pointer variable is simply a new type of
variable.

— Instead of holding an int, float, char, or some
object's data....it holds an address.

— A pointer variable is assigned memory.

— the contents of the memory location is some
address of another “variable”.

— Therefore, the value of a pointer is a memory
location.

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Pointers

» We can have pointers to (one or more)
— Integers
— floating point types
— characters
— structures
— objects of a class

» Each represents a different type of pointer

L I e

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Pointers

CS162 - Pointers

» We define a pointer to an integer by:
Int * ptr; //same as int *ptr;

 Read this variable definition from right to
left:

— ptr is a pointer (that is what the * means) to an
Integer.

— this means ptr can contain the address of some
other integer

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Pointers

« At this point, you may be wondering why
pointers are necessary.

» They are essential for allowing us to use
data structures that grow and shrink as the
program IS running.

— after midterm time we will learn how to do
this...with linked lists

» We are no longer stuck with a fixed size array
throughout the lifetime of our program.

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Pointers

e But first,

— we will learn that pointers can be used to
allow us to set the size of an array at run-time
versus fixing it at compilation time;

— If an object is a list of names...then the size of
that list can be determined dynamically while
the program is running.

— This cannot be accomplished in a user friendly
way with simple arrays!

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Defining Pointers

« S0, what are the data types for the
following variables?
Int *ptrl, obj1; //watch out!
char *ptr2, *ptr3;
float obj2, *ptr4;
« \What are their initial values (if local
Variables)? -- yes, garbage --

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Defining Pointers

* The best initial value for a pointer is
— zero (address zero),

— also known as NULL (this Is a #define
constant in the iostream library for the value
zero!)

— The following accomplish the same thing:
Int *ptrl = NULL,;
Int *ptr2 = O;
Int *ptr3 (0);

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Defining Pointers

 You can also initialize or assign the
address of some other variable to a pointer,

— using the address-of operator
Int variable;
Int *ptrl = &variable; //C and C++

L I e

CS162 Pointers

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 - Allocating Memory

* Now the interesting stuff!

 You can allocate memory dynamically (as
our programs are running)

— and assign the address of this memory to a
pointer variable.

Int *ptrl = new Int;

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

l1I

\

C8162 = Int *ptrl = new int;

» The diagram used is called a
pointer diagram

It helps to visualize what memory we have allocated
and what our pointers are referencing

notice that the dynamic memory allocated is of size int
In this case

and, I1ts contents Is uninitialized

new Is an operator and supplies back an address of the
memory set allocated

AU

\

L

—
===
—
—
—
=
—
—
o

e
-
-
-
-
-
-~
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Dereferencing

» Ok, so we have learned how to set up a
pointer variable to point to another variable
or to point to memory dynamically
allocated.

 But, how do we access that memory to set
or use Its value?

» By dereferencing our pointer variable:
*ptrl = 10;

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Dereferencing

 Now a complete seguence.
Int *ptrl;
ptrl = new int;
*ptrl = 10;

NN RT

\

cout <<*ptrl; //displays 10

CS162 Pointers

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
S
-
-
. -
-
e
-

CS162 - Deallocating

» Once done with dynamic memory,
— we must deallocate it

— C++ does not require systems to do “garbage
collection” at the end of a program’s
execution!

« We can do this using the delete operator:
delete ptrl;
this does not delete the pointer variable!

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Deallocating

« Agalin:
this does not delete the pointer variable!

» |Instead, it deallocates the memory
referenced by this pointer variable
— It Is a no-op if the pointer variable is NULL
— It does not reset the pointer variable
— It does not change the contents of memory
— Let’s talk about the ramifications of this...

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Allocating Arrays

 But, you may be wondering:

— Why allocate an integer at run time
(dynamically) rather than at compile time

(statically)?
The answer is that we have now learned
the mechanics of how to allocate memory
for a single integer.

I A I L o

Now, let’s apply this to arrays!

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Allocating Arrays

By allocating arrays dynamically,

— we can wait until run time to determine what
size the array should be

— the array 1s still “fixed size”...but at least we
can wait until run time to fix that size

— this means the size of a dynamically allocated
array can be a variable!!

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Allocating Arrays

First, let’s remember what an array is:

— the name of an array Is a constant address to
the first element in the array

— S0, saying char name[21];

means that name 1s a constant pointer who’s
value Is the address of the first character in a
sequence of 21 characters

CS162 Pointers

l1I

\

\

—
===
)
—
—
=
—
-
o

e
-
-
-
-
-
-~
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

L

CS162 - Allocating Arrays

To dynamically allocate an array

— we must define a pointer variable to contain an
address of the element type

For an array of characters we need a pointer to a
char:

char *char_ptr,
For an array of integers we need a pointer to an
Int:

Int *Int_ptr;

CS162 Pointers

CS162 - Allocating Arrays

Next, we can allocate memory and
examine the pointer diagram:

Int size = 21, //[for example
char *char_ptr;
char_ptr = new char [size],

) S

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Pointers

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Allocating Arrays

« Some Interest thoughts:

— 1

— 1

ne pointer diagram is identical to the pointer

diagram for the statically allocated array
discussed earlier!

nerefore, we can access the elements In the

exact same way we do for any array:

char_ptr[index] =‘a’; //or
cin.get(char_ptr,21,\n’);

CS162 Pointers

CS162 - Allocating Arrays

» The only difference is when we are finally
done with the array,

— we must deallocate the memory:

delete [] char_ptr;

L I e

-
-
-
-
-
-

- -
e
-

_—
g
-
>

-
S
-
-

e

-
-
e
-
E [

-

End

-

CS162 Pointers

CS162 - Allocating Arrays

* One of the common errors we get

— once allocating memory dynamically
— IS a segmentation fault

— It means you have accessed memory that is not
YOUrsS,
« you have dereferenced the null pointer,
* you have stepped outside the array bounds,

 Or you are accessing memory that has already been
deallocated

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - In Review

* On the board, let’s walk through examples
of the following:
— allocating an array of integers dynamically
— deallocating that array
— writing a loop to set the values

— now, allocate an array of video-structures
dynamically

I A I L o

— Show how you’d access the 3rd title

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - Pointer Arithmetic

» \WWhen we use the subscript operator,
— pointer arithmetic is really happening

— this means the following are equivalent:
ptri[3] == *(ptrl+3)

— This means the subscript operator adds the
value of the index to the starting address and
then dereferences the quantity!!!

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Pointers

CS162 - For Next Time

* Next time we will discuss:
— more about pointers
— Integrating pointers and classes

LR nn

\

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
S
-
-
. -
-
e
-

CS162 Pointers

