
CS162 - POINTERS

• Lecture: Pointers and Dynamic Memory

– What are pointers

– Why dynamically allocate memory

– How to dynamically allocate memory

– What about deallocation?

– Walk thru pointer exercises

1CS162 Pointers

CS162 - Pointers

• In C++, a pointer is just a different kind of

variable.

• This type of variable points to another variable or

object

– (i.e., it is used to store the memory address of another

variable nor an object).

– Such pointers must first be defined and then

initialized.

– Then, they can be manipulated.

2CS162 Pointers

CS162 - Pointers

• A pointer variable is simply a new type of
variable.

– Instead of holding an int, float, char, or some
object's data....it holds an address.

– A pointer variable is assigned memory.

– the contents of the memory location is some
address of another “variable”.

– Therefore, the value of a pointer is a memory
location.

3CS162 Pointers

CS162 - Pointers

• We can have pointers to (one or more)

– integers

– floating point types

– characters

– structures

– objects of a class

• Each represents a different type of pointer

4CS162 Pointers

CS162 - Pointers

• We define a pointer to an integer by:

int * ptr; //same as int *ptr;

• Read this variable definition from right to

left:

– ptr is a pointer (that is what the * means) to an

integer.

– this means ptr can contain the address of some

other integer

5CS162 Pointers

CS162 - Pointers

• At this point, you may be wondering why
pointers are necessary.

• They are essential for allowing us to use
data structures that grow and shrink as the
program is running.

– after midterm time we will learn how to do
this...with linked lists

• We are no longer stuck with a fixed size array
throughout the lifetime of our program.

6CS162 Pointers

CS162 - Pointers

• But first,

– we will learn that pointers can be used to
allow us to set the size of an array at run-time
versus fixing it at compilation time;

– if an object is a list of names...then the size of
that list can be determined dynamically while
the program is running.

– This cannot be accomplished in a user friendly
way with simple arrays!

7CS162 Pointers

CS162 - Defining Pointers

• So, what are the data types for the

following variables?

int *ptr1, obj1; //watch out!

char *ptr2, *ptr3;

float obj2, *ptr4;

• What are their initial values (if local

variables)? -- yes, garbage --

8CS162 Pointers

CS162 - Defining Pointers

• The best initial value for a pointer is

– zero (address zero),

– also known as NULL (this is a #define
constant in the iostream library for the value
zero!)

– The following accomplish the same thing:

int *ptr1 = NULL;

int *ptr2 = 0;

int *ptr3 (0);

9CS162 Pointers

CS162 - Defining Pointers

• You can also initialize or assign the

address of some other variable to a pointer,

– using the address-of operator

int variable;

int *ptr1 = &variable; //C and C++

10CS162 Pointers

CS162 - Allocating Memory

• Now the interesting stuff!

• You can allocate memory dynamically (as

our programs are running)

– and assign the address of this memory to a

pointer variable.

int *ptr1 = new int;

ptr1
dynamic variable

?

11CS162 Pointers

CS162 - int *ptr1 = new int;

• The diagram used is called a

– pointer diagram

– it helps to visualize what memory we have allocated
and what our pointers are referencing

– notice that the dynamic memory allocated is of size int
in this case

– and, its contents is uninitialized

– new is an operator and supplies back an address of the
memory set allocated

12CS162 Pointers

CS162 - Dereferencing

• Ok, so we have learned how to set up a
pointer variable to point to another variable
or to point to memory dynamically
allocated.

• But, how do we access that memory to set
or use its value?

• By dereferencing our pointer variable:

*ptr1 = 10;

13CS162 Pointers

CS162 - Dereferencing

• Now a complete sequence:

int *ptr1;

ptr1 = new int;

*ptr1 = 10;

•••

cout <<*ptr1; //displays 10

ptr1
dynamic variable

10

14CS162 Pointers

CS162 - Deallocating

• Once done with dynamic memory,

– we must deallocate it

– C++ does not require systems to do “garbage

collection” at the end of a program’s

execution!

• We can do this using the delete operator:

delete ptr1;

this does not delete the pointer variable!

15CS162 Pointers

CS162 - Deallocating

• Again:

this does not delete the pointer variable!

• Instead, it deallocates the memory
referenced by this pointer variable

– It is a no-op if the pointer variable is NULL

– It does not reset the pointer variable

– It does not change the contents of memory

– Let’s talk about the ramifications of this...

16CS162 Pointers

CS162 - Allocating Arrays

• But, you may be wondering:

– Why allocate an integer at run time

(dynamically) rather than at compile time

(statically)?

• The answer is that we have now learned

the mechanics of how to allocate memory

for a single integer.

• Now, let’s apply this to arrays!

17CS162 Pointers

CS162 - Allocating Arrays

• By allocating arrays dynamically,

– we can wait until run time to determine what

size the array should be

– the array is still “fixed size”...but at least we

can wait until run time to fix that size

– this means the size of a dynamically allocated

array can be a variable!!

18CS162 Pointers

CS162 - Allocating Arrays

• First, let’s remember what an array is:

– the name of an array is a constant address to

the first element in the array

– So, saying char name[21];

means that name is a constant pointer who’s

value is the address of the first character in a

sequence of 21 characters

19CS162 Pointers

CS162 - Allocating Arrays

• To dynamically allocate an array

– we must define a pointer variable to contain an
address of the element type

• For an array of characters we need a pointer to a
char:

char *char_ptr;

• For an array of integers we need a pointer to an
int:

int *int_ptr;

20CS162 Pointers

CS162 - Allocating Arrays

• Next, we can allocate memory and

examine the pointer diagram:

int size = 21; //for example

char *char_ptr;

char_ptr = new char [size];

21 characters
(elements 0-20)

char_ptr

21CS162 Pointers

CS162 - Allocating Arrays

• Some interest thoughts:

– the pointer diagram is identical to the pointer

diagram for the statically allocated array

discussed earlier!

– therefore, we can access the elements in the

exact same way we do for any array:

char_ptr[index] = ‘a’; //or

cin.get(char_ptr,21,’\n’);

22CS162 Pointers

CS162 - Allocating Arrays

• The only difference is when we are finally

done with the array,

– we must deallocate the memory:

delete [] char_ptr;

not-your-memory
char_ptr

It is best, after doing this to say: char_ptr = NULL;

23CS162 Pointers

CS162 - Allocating Arrays

• One of the common errors we get

– once allocating memory dynamically

– is a segmentation fault

– it means you have accessed memory that is not
yours,

• you have dereferenced the null pointer,

• you have stepped outside the array bounds,

• or you are accessing memory that has already been
deallocated

24CS162 Pointers

CS162 - In Review

• On the board, let’s walk through examples

of the following:

– allocating an array of integers dynamically

– deallocating that array

– writing a loop to set the values

– now, allocate an array of video-structures

dynamically

– Show how you’d access the 3rd title

25CS162 Pointers

CS162 - Pointer Arithmetic

• When we use the subscript operator,

– pointer arithmetic is really happening

– this means the following are equivalent:

ptr1[3] == *(ptr1+3)

– This means the subscript operator adds the

value of the index to the starting address and

then dereferences the quantity!!!

26CS162 Pointers

CS162 - For Next Time

• Next time we will discuss:

– more about pointers

– integrating pointers and classes

27CS162 Pointers

