
1

CS162

Introduction to

Computer Science II

Welcome!

CS162 Topic #1

CS162 Topic #1 2

Today in CS162

• Introduction...what to expect!?!

• Talk about the Syllabus

• Discuss what Assignments will be like

• Go over our Objectives

The Science of Computing!

CS162 Topic #1 3

Office Hours...

• Are posted on my web site:

www.cs.pdx.edu/~karlaf

• Also, check this web site for any current

announcements!

http://www.cs.pdx.edu/~karlaf

CS162 Topic #1 4

Programming

• First, get an ODIN account

• Next, learn how to login

• Try sending email!

• Learn how to exit the ODIN menu and

enter the UNIX shell

• Sign up for a UNIX tutorial session

CS162 Topic #1 5

Programming

• Login to Odin using ssh or putty

(odin.pdx.edu). If you don't have an odin

account or password you will need to get

one.

• If you don't have one go to:

www.account.pdx.edu and for help go to:

www.oit.pdx.edu

http://www.oit.pdx.edu/

CS162 Topic #1 6

Programming

• Start up the program called ssh – you

should be able to find a free site from

which to download it. It is a secure shell

program and allows your computer to

act as a ‘dumb terminal’ for logging in

remotely. You start up ssh by double

clicking on it.

– Then, connect to: odin.pdx.edu

– Use your odin login name and password

CS162 Topic #1 7

Programming

• When you login into Odin, Hit return.

Then hit 4 <enter> to exit the menu.

• From there, you need to make a new

directory, so type: mkdir cs162 <enter>

• Now, to enter that directory to start to work

type: cd cs162 <enter>

CS162 Topic #1 8

Programming

• One approach: Use pico to type in a

program. So, type at the unix prompt:

pico prog1.cpp <enter>

• Enter in a Program. Start with something

simple just to make sure it all works right!

CS162 Topic #1 9

Programming

• When done hit control o at the same

time to write it out and then control x to

exit.

• Compile your C++ source code file. The

command to do this is:

g++ prog1.cpp

CS162 Topic #1 10

Programming

• If your program successfully compiles, it

will produce a file named 'a.out' in your

directory. Otherwise, you will need to

correct syntax errors before continuing - by

using pico again: pico prog1.cpp

• One common mistake is to make typos!

• Run your program by typing:

./a.out

11

CS162

Introduction to

Computer Science II

C++

CS162 Topic #1

Introduction to C++

• C++ is based on the C language

– it started as a superset of C

– to retain the power and flexibility of C

– to deal effectively with hardware/software

interfaces and low level programming

• Developed in early 1980‟s

– by Bjarne Stroustrup to simplify complex

event driven simulations

12CS162 Topic #1

Introduction to C++

• While a major design goal for C++ was to

keep it upward compatible with C

– C programs need to “unlearn” some of the

techniques used in programming

– Improvements were made which keep C++

from being 100% compatible

– C++ inherits the basic language mechanisms

of C (operations, statements, loops, pointers,

arrays) but then adds features to overcome the

problems in C 13CS162 Topic #1

Introduction to C++

• The most significant impact of C++

– is that it is flexible in adapting to many

different programming styles:

• procedural abstraction

• modular abstraction

• data abstraction (defining new data types)

• object-oriented programming

• Realize that when we use C++ we may (or

may not) be performing OOP

• it is not a “pure” OOP language (hybrid) 14CS162 Topic #1

Introduction to C++

• As we think about solving problems with

abstractions

– using data abstraction or OOP

– we must develop standard reusable objects

– which requires thinking about problems from a

broader perspective

– but first, this requires building a solid

foundation in the language fundamentals...

15CS162 Topic #1

Getting Started

• All C++ programs have the following “form”

#include <iostream.h>

//header comments...

int main()

{

//program body goes here...

return 0;

}

16CS162 Topic #1

Sample Program

#include <iostream.h>

// ***********************************

// Karla S. Fant

// Purpose of this program is to convert

// inches entered in by the user into

// millimeters and display the results

// ************************************

int main() {

float inches, mm; //variable definitions

cout <<“Welcome! We will be converting”

<<“ inches to mm today” <<endl;

//Get the input (prompt, read)

cout <<“please enter the number of inches”

<<“ that you wish to convert: “;

cin >> inches; //read the # inches

17CS162 Topic #1

Sample Program

//Echo what was entered

cout <<“You entered: “ <<inches <<“in”

<<endl;

//Convert inches to millimeters

mm = 25.4 * inches;

//Display the results

cout <<inches <<“in converts to “ <<mm

<<mm <<“mm” <<endl;

return 0;

}

18CS162 Topic #1

Preprocessor Directives

#include <iostream.h>

• This is a preprocessor directive

• #include allows our programs to copy the contents of some

other file (iostream.h, for example) and have it behave as if

that file was typed at the beginning of our programs!

• iostream.h allows our programs to perform input from the

keyboard (standard in) and output to the screen (standard

out)

19CS162 Topic #1

Header Comments...

// ***********************************

// Karla S. Fant

• These are in line comments and provide for documentation

in our programs

• Once encountered, the rest of the line is taken as

documentation.

• If you want to surround them by asterisks -- MAKE SURE

to place at least one space between the // and the asterisks....

otherwise, your entire program will be mistaken as a

comment!?!?!
20CS162 Topic #1

(Different Kind of Comment...)

/* ***********************************

Karla S. Fant

********************************* */

• This type of comment is best used when writing a large

block of comments. They begin with a /* and end when you

type a */

• If you forget the ending */ your entire program is taken as a

comment!!!

• I recommend placing a space between the /* and any other

asterisks....

21CS162 Topic #1

Variable Definitions

//Define variables

float inches; //to save # inches

float mm; //to save the result

• What are variables?

• How are they defined?

data_type variable_name

• What is a data type and why is it important?

• What kind of variable names can we use?

22CS162 Topic #1

Variable Definitions

• What are variables?

– Allocate Memory to store data

• How are they defined?

data_type variable_name

• What is a data type and why is it important?

– float, int, char

– double, short, long

• What kind of variable names can we use?

– must start with a letter, be any combination of letters,

digits, or underscores.

23CS162 Topic #1

Displaying Output

cout << “message” <<endl;

• Pronounced see out

• << is the insertion operator

• Think of << as an arrow. The message you want to

display is being sent to the OUTPUT device in the

direction of the arrow:

output_device message in double quotes

24CS162 Topic #1

Receiving Input

cin >> inches;

• Pronounced see in

• >> is the extraction operator

• Think of >> as an arrow. The data you want to receive is

coming from the input device in the direction of the arrow

and being saved in memory:

input_device variable_name

25CS162 Topic #1

Assignment Operation

//Step #3 Convert inches to millimeters

mm = 25.4 * inches;

• Multiplication requires the asterisk

– can‟t leave it out like we do in math

– 3x would be written 3 * x in C++

• = is the assignment operation

– takes the value on the right and saves it in the

memory for the variable on the left

26CS162 Topic #1

To Raise to Power of...

• In C++ there is no operator that will raise

some number by another

• For example, for x3 you can‟t type:
– x**3 ILLEGAL!

• Instead, you must use the pow function
float answer;

answer = pow(x, 3);

• To use the power function, we must
– include the math library:

#include <math.h>
27CS162 Topic #1

Arithmetic Expressions

• Let's take a look on operations that can be performed on

real data:

result = +realvariable <== No change

result = -realvariable <== Takes the negative

result = a+b <== Takes the sum

result = a-b <== Takes the difference

result = a*b <== Takes the product

result = a/b <== Performs division

28CS162 Topic #1

Arithmetic Expressions

• Other Interesting Operators for...

– Compound Assignment

*= /= += -=

result += 10 result = result+10

result *= x+y result = result *(x+y)

result /= x+y (x+y) result

result = result/(x+y)

29CS162 Topic #1

Arithmetic Expressions

• One more operator...

– Integer division

/ % (remainder)

int number;

number = 10/3; //answer is 3

number = 10%3; //answer is 1

103

3

1 30CS162 Topic #1

Operator Precedence

• One operator cannot follow another

• (2.5 + -3.6 is illegal)....you can do this by using

parentheses: (2.5 + (-3.6)

• With parentheses, the operations within parens is

performed first. When parens are nested...the innermost

set of parens is performed first:

2.0+(3.0*(4.0-1.0))

is the same as

2.0+(3.0*3.0)

which is 11.0

31CS162 Topic #1

Operator Precedence

• Watch out for ambiguous expressions when parens are

not used:

– What does 3.0+1.0*4.0 mean?

7.0? Or, 16.0?

• Since no parens are given, we go by the order of

precedence of operators. *, /, % have a higher

precedence....than + and -.

• So, the answer to above is 7.0!

32CS162 Topic #1

Operator Precedence

• What about, 3.0*2.0-7.0/2.0?

1. First take the highest priority (* and /)...and go left to

right.

2. So, first multiply 3.0*2.0 ==>> 6.0

3. Then divide 7.0/2.0 ===>>>3.5

4. So, we have so far 6.0 - 3.5

5. Which is 2.5

33CS162 Topic #1

Increment/Decrement Ops

• There are two more operators that add or subtract 1

++i means i = i + 1

--i means i = i - 1

• These are used in their prefix form

• They can also be used in a postfix form:

i++ i--

34CS162 Topic #1

Postfix Increment/Decrement

i++ means:

1) Residual value is the current value of the

variable

2) Then, increment the variable by 1

3) For example: int i = 100;

cout << i++;

Displays 100 not 101!

35CS162 Topic #1

Increment/Decrement

• More examples:

int i;

cin >> i;

i++;

++i;

cout <<i;

input output

50 52

100 102

36CS162 Topic #1

Increment/Decrement

• More examples:

int i, j;

cin >> i;

j = i++;

j = ++i;

cout <<j;

input output

50 51

100 101

37CS162 Topic #1

I/O Formatting

Introduction to C++

38CS162 Topic #1

Next, to Format our Output

• We must learn about precision

• By default, real numbers are displayed

with no more than 6 digits, plus the

decimal point

• This means that 6 significant digits are

displayed in addition to the decimal point

and a sign if the number is negative

39CS162 Topic #1

Default Precision -- Examples

float test;

cout << “Please enter a real number”;

cin >> test;

cout << test;

Input Resulting Output

1.23456789 1.23457

10.23456789 10.2346

100.23456789 100.235

1000.23456789 1000.23

100000.23456789 100000

40CS162 Topic #1

To Change Precision

float test;

cout << “Please enter a real number”;

cout.precision(3); //3 instead of 6!!

cin >> test; cout << test;

Input Resulting Output

1.23456789 1.23

10.23456789 10.2

100.23456789 100

10000.23456789 1e+04

(Exponential notation)

41CS162 Topic #1

Another way to do this...

#include <iomanip.h>

float test;

cout << “Please enter a real number”;

cin >> test;

cout <<setprecision(3) << test;

• setprecision is a manipulator
•To use it, we must include the iomanip.h header file

•There is no difference between

cout.precision(3) and cout <<setprecision(3)

42CS162 Topic #1

What is “width”?

• The width of a field can be set with:

cout.width(size);

• If what you are displaying cannot fit, a

larger width is used

– to prevent the loss of information

• Important

– Width is only in effect for the next output

43CS162 Topic #1

How does width work...

float test;

cout.precision(4); cout.width(10);

cin >>test; cout << test;

cout <<endl <<test;

Input Resulting Output

1.23456789 1.235

1.235

44CS162 Topic #1

Another way to do this...

#include <iomanip.h>

float test;

cout.precision(4);

cin >>test;

cout <<setw(10) << test;

cout <<endl <<test;

Input Resulting Output

1.23456789 1.235

1.235

45CS162 Topic #1

Trailing Zeros

• For real numbers, trailing zeros are

discarded when displayed

• To display trailing zeros we use:

cout.setf(ios::showpoint);

Input Resulting Output

1.2300 1.23

(for an precision of 3 or greater)

46CS162 Topic #1

Displaying Trailing Zeros

float test;

cout.precision(4);

cout.setf(ios::showpoint);

cin >>test; cout << test <<endl;

cout.unsetf(ios::showpos); //reset...

cout <<test;

Input Resulting Output

1.2300 1.230

1.23

47CS162 Topic #1

Displaying Dollars and Cents!

• There is another meaning to precision...

– if we put in our programs:

cout.setf(ios::fixed,ios::floatfield);

– then, subsequent precision applies to the

number of digits after the decimal point!

cout.precision(2); cout <<test;

1.2300 1.23

1.20 1.2

Input Resulting Output

48CS162 Topic #1

Displaying Dollars and Cents!

• Since we ALSO want trailing zero

displayed...do all three:
cout.setf(ios::fixed,ios::floatfield);

cout.precision(2);

cout.setf(ios::showpoint);

cout <<test;

1.2300 1.23

1.20 1.20

Input Resulting Output

49CS162 Topic #1

Selective

Execution

Introduction to C++

50CS162 Topic #1

Selective Execution

• Most programs are not as simple as

converting inches to mm!

• We need to select from alternatives...

– think of an ATM machine...

– this can be done using an if statement

– an if allows us to select between 2 choices

– for example, we can select one thing or

another, depending on what the user

51CS162 Topic #1

if Statements

• For example, we can change our inches to

mm conversion program, allowing the user

to select whether they want to convert from

– inches to mm, or mm to inches!

• We will give the user a choice...

– type „m‟ to convert to mm

– type „i‟ to convert to inches

52CS162 Topic #1

if Statements have the form...

1) One alternative:

if (conditional expression)

single C++ statement;

char selection;

cout <<“Enter a selection (m or i): “;

cin >> selection;

if (selection == „q‟)

cout <<“Your selection was incorrect”

<<endl;

53CS162 Topic #1

if Statements have the form...

2) Two alternatives:

if (conditional expression)

single C++ statement;

else

single C++ statement;

if (selection == „m‟)

cout <<“Converting inches -> mm”;

else

cout <<“Converting mm -> inches”;

54CS162 Topic #1

if Statements have the form...

• This means that either the first statement is executed

when running your program OR the second statement is

executed. BOTH sets of statements are NEVER used.

– ONE OR THE OTHER!

• If the comparison is true - the first set is used;

• If the comparison is false - the second set is used;

55CS162 Topic #1

if Statements have the form...

• When an if is encountered, the conditional expression is

TRUE if it is non zero. In this case, the statement

following the expression is executed.

• Otherwise, if the conditional expression evaluates to zero

it means it is FALSE. In this case, if there is an else the

statement following the else is executed.

• If there is no else then nothing is done if the conditional

expression evaluates to zero (FALSE).

56CS162 Topic #1

if Statements have the form...

3) Two or more alternatives:

if (conditional expression)

single C++ statement;

else if (conditional expression)

single C++ statement;

if (selection == „m‟)

cout <<“Converting inches -> mm”;

else if (selection == ‘i’)

cout <<“Converting mm -> inches”;

57CS162 Topic #1

Compound if statements...

4) You might want more than a single statement to be

executed given an alternative...so instead of a single

statement, you can use a compound statement

if (conditional expression)

{

Many C++ statements;

}

else //optional

58CS162 Topic #1

Example of if Statements

if (selection == „m‟)

{

cout <<“Enter the # inches: “;

cin >>inches;

mm = 25.4*inches;

cout <<inches <<“in converts to ”

<<mm <<“ millimeters” <<endl;

}

else //selection is not an „m‟

{

cout <<“Enter the # millimeters: “;

cin >>mm;

inches = mm/25.4;

cout <<mm <<“mm converts to ”

<<mm <<“ inches” <<endl;

}

59CS162 Topic #1

Conditional Expressions

• The comparison operators may be:

– Relational Operators:

> for greater than

< for less than

>= for greater than or equal

<= for less than or equal

– Equality Operators:

== for equal to

!= for not equal to

60CS162 Topic #1

Logical Operators

• There are 3 logical (boolean) operators:

&& And (operates on two operands)

|| Or (operates on two operands)

! Not (operates on a single operand)

• && evaluates to true if both of its operands are true;

– otherwise it is false.

61CS162 Topic #1

Logical Operators

• || evaluates to true if one or the other of its operands are

true;

– it evaluates to false only if both of its operands

are false.

• ! gives the boolean complement of the operand.

– If the operand was true, it results in false.

62CS162 Topic #1

AND Truth Table

• op1 && op2 results in:

op1 op2 residual value

true true true 1

true false false 0

false true false 0

false false false 0

63CS162 Topic #1

OR Truth Table

• op1 || op2 results in:

op1 op2 residual value

true true true 1

true false true 1

false true true 1

false false false 0

64CS162 Topic #1

NOT Truth Table

• !op1 results in:

op1 residual value

true false 0

false true 1

65CS162 Topic #1

Logicals in if Statements

• Now let‟s apply this to the if statements.

• For example, to check if our input is only an „m‟

or an „i‟

char selection;

cin >>selection

if (selection != „m‟ &&

selection != „i‟)

cout <<“Error! Try again”;

66CS162 Topic #1

Logicals in if Statements

• Why would the following be incorrect?

if (selection != „m‟ ||

selection != „i‟)

cout <<“Error! Try again”;

n Because no mater what you type in (m, i, p, q)

it will never be both an m and an i!

n If an m is entered, it won‟t be an i!!!!!
67CS162 Topic #1

Logicals in if Statements

• Let‟s change this to check if they entered in either

an m or an i: (this is correct)

if (selection ==„m‟ ||

selection ==„i‟)

cout <<“Correct!”;

else

cout <<“Error. Try Again!”;

68CS162 Topic #1

Logicals in if Statements

• Now, let‟s slightly change this....

if (!(selection ==„m‟ ||

selection ==„i‟))

cout <<“Error. Try Again!”;

n Notice the parens...you must have a set of

parens around the conditional expression

69CS162 Topic #1

Switch Statements

• Another C++ control statement is called the

switch statement

• It allows you to pick the statements you want to

execute from a list of possible statements, instead

of just two different alternatives (as is available

with an if/else) or a set of nested if/elses!

• It allows for multi-way decisions.

70CS162 Topic #1

Switch Statements
char grade;

cout <<"Enter the grade..." <<endl;

cin >>grade;

switch (grade) {

case 'A': cout <<"Excellent" <<endl;

cout <<“Keep up the good work!”;

break;

case 'B': cout <<"Very Good"; break;

case 'C': cout <<"Passing"; break;

case 'D': case 'F': cout <<"Too Bad";

break;

default :

cout <<"No match was found...try again";

break;

} 71CS162 Topic #1

Switch Statements

• C++ provides a "default" clause so that if there

isn't a match something is done. If the default is

left off...and there is no match...no action takes

place at all.

• When a case statement is executed, the value of

Grade is checked and then depending on which of

the cases it matches -- the statement following the

colon for that case will be executed.

72CS162 Topic #1

Switch Statements

• To exit from a switch statement...use break.

• Unlike Pascal, with C++ once you have a match...

• It will fall thru (ignoring any additional case or

default labels that are encountered and continue

executing code until a break is encountered.

73CS162 Topic #1

Switch Statements

• The rule of thumb is that you can use these to

switch on integers and characters.

• It is not permitted to use the switch with floating

point types or a string of characters.

• The type of the expression following a switch

keyword must be the same as the expressions

following each case keyword....and no two

expressions following the case keywords can be

the same.

74CS162 Topic #1

What Fall Thru means...

int count;

cout <<"Please enter the number of asterisks:";

cin >>count;

switch (count) { //these { } are mandatory!

case 1: cout <<"*";

case 2: cout <<"**";

case 3: cout <<"***";

case 4: cout <<"****";

default: cout <<"!";

}

cout <<endl;

75CS162 Topic #1

The CORRECT version....

int count;

cout <<"Please enter the number of asterisks:";

cin >>count;

switch (count) { //these { } are mandatory!

case 1: cout <<"*"; break;

case 2: cout <<"**";break;

case 3: cout <<"***"; break;

case 4: cout <<"****"; break;

default: cout <<"!";break;

}

cout <<endl;

76CS162 Topic #1

Repetition

Introduction to C++

77CS162 Topic #1

Three types of Loops

• There are three ways to repeat a set of code using

loops:

– while loop

– do while loop

– for loop

• Each of these can perform the same

operations...

– it is all in how you think about it!

....let’s see....
78CS162 Topic #1

Using a While Loop

• Let‟s give the user a 2nd (and 3rd, 4th, 5th...)

chance to enter their data using a while loop.

• While loops have the form: (notice semicolons!)

while (conditional expression)

single statement;

while (conditional expression)

{

many statements;

}
79CS162 Topic #1

Using a While Loop

• The while statement means that while an

expression is true, the body of the while loop will

be executed.

• Once it is no longer true, the body will be

bypassed.

• The first thing that happens is that the expression

is checked, before the while loop is executed.

THIS ORDER IS IMPORTANT TO REMEMBER!

80CS162 Topic #1

Using a While Loop

• The Syntax of the While Loop is:

while (loop repetition condition)

<body>

• Where, the <body> is either one statement

followed by a semicolon or a compound statement

surrounded by {}.

• Remember the body is only executed when the

condition is true.

• Then, after the body is executed, the condition is

tested again...
81CS162 Topic #1

Using a While Loop

• Notice, you must remember to initialize the loop

control variable before you enter the while loop.

• Then, you must have some way of updating that

variable inside of the body of the loop so that it

can change the condition from true to false at

some desired time.

• If this last step is missing, the loop will execute

"forever" ... this is called an infinite loop.

82CS162 Topic #1

Using a While Loop

• We will need a control variable to be used to
determine when the loop is done...

char response = „n‟;

while (response == „n‟) {

cout <<“Please enter ... “;

cin >> data;

cout <<“We received: “ <<data

<<“\nIs this correct? (y/n)”;

cin >>response;

}

83CS162 Topic #1

Using a While Loop

• What is a drawback of the previous loop?

– The user may have entered a lower or upper

case response!

• One way to fix this:

– Change the conditional expression to list all of

the legal responses

while (response == ‘n’ || response == ‘N’) {

...

}
84CS162 Topic #1

Using a While Loop

• Yet another way to fix this:

– To loop, assuming that they want to continually

try again until they enter a Y or a y!

– Notice the use of AND versus OR!

while (response != ‘y’ && response != ‘Y’) {

...

}

85CS162 Topic #1

Using a While Loop

• Another way to fix this:

– Use the tolower function in the ctype.h library:

#include <ctype.h>

while (tolower(response) != „y‟) {

...

}

86CS162 Topic #1

Using a While Loop

• Another way to fix this:

– Use the toupper function in the ctype.h library:

#include <ctype.h>

while (toupper(response) != „Y‟) {

...

}

87CS162 Topic #1

Using a do while Loop

• This same loop could have been rewritten using a

do while loop instead

• do while loops have the form: (notice semicolons!)

do

single statement;

while (conditional expression);

do

{

many statements;

} while (conditional expression);
88CS162 Topic #1

Using a do while Loop

• Things to notice about a do while statement:

(1) The body of a do while statement can be one

statement or a compound statement surrounded by

{}

(2) Each statement in the do while loop is

separated by a semicolon

(3) Notice the body is always executed once! Even

if the conditional expression is false the first time!

89CS162 Topic #1

Using a do while Loop

• Don't use a do while unless you are sure that the

body of the loop should be executed at least once!

char response;

do {

cout <<“Please enter ... “;

cin >> data;

cout <<“We received: “ <<data

<<“\nIs this correct? (y/n)”;

cin >>response;

} while (response != „y‟ && response != „Y‟);

90CS162 Topic #1

Using a for loop

• The for loop is commonly used to loop a certain

number of times. For example, you can use it to

print out the integers 1 thru 9:

int i;

for (i=1; i <= 9; ++i)

cout <<i <<endl;

91CS162 Topic #1

Using a for loop

• i is called the loop control variable.

• It is most common to use variables i, j, and k for

control variables.

• But, mnemonic names are better!

for (initialize; conditional exp; increment)

<body>

• The body of the for loop is either one statement followed

by a semicolon or a compound statement surrounded by

{}.

92CS162 Topic #1

Using a for loop

• The for statement will first

(1) INITIALIZE VARIABLE i to 1;

(2) Check the conditional expression to see if it is

True or False;

(3) if it is True the body of the loop is executed

and it INCREMENTs VARIABLE i by 1;

or, if it is False the loop is terminated and the

statement following the body of the loop is

executed.

93CS162 Topic #1

Using a for Loop

• In C++

for (i=0; i < 10; ++i)

j+=i ;//remember this is j = j+1;

• is the same as:

i = 0;

while (i < 10) {

j += i;

++i;

}

94CS162 Topic #1

Using a for Loop

• We can also use a for loop to do the same loop

that we have been talking about today:

for (char response = „n‟;

response != „y‟ && response != „Y‟;

cin >>response)

{

cout <<“Please enter ... “;

cin >> data;

cout <<“We received: “ <<data

<<“\nIs this correct? (y/n)”;

} 95CS162 Topic #1

Using a for Loop

• Remember to use semicolons after each statement;

however, a semicolon right after the parentheses

will cause there to be a null body (i.e., nothing

will be executed as long as you are inside the

loop!):

for (i=1; i <= 10; i++) ;//null body

cout <<"hello"; //this happens ONLY

//after i is > 10.

96CS162 Topic #1

Using a do while Loop

• When using loops, desk check for the following

conditions:

(1) Has the loop iterated one too many times? Or,

one two few times?

(2) Have you properly initialized the variables

used in your while or do-while conditional

expressions?

(3) Are you decrementing or incrementing those

variables within the loop?

(4) Is there an infinite loop?
97CS162 Topic #1

Arrays

Introduction to C++

98CS162 Topic #1

Introduction to Arrays

• Strings are represented in C++ by arrays of

characters

• Or, they are represented as a User Defined Type

(called a Class) … but first let‟s learn about arrays

• We all know what a character is (a single byte), so

what‟s an array of characters?

– a sequence of character stored sequentially in

memory

99CS162 Topic #1

How do I define an Array of Characters?

• We know how to define a single character:

char ch=„a‟;

• But what about an array of characters?

char str[5];

• Since these are

just characters stored sequentially in memory, we

use a special character to indicate the end of a
string: „\0‟

„a‟

100CS162 Topic #1

How do I read in a string?

• There are two ways to read in strings

• If the string is a sequence of characters without

any whitespace (like your first name), then you

can say:

cin >>str;

• If I enter “hi”, this is what is stored:

„h‟ „i‟„\0‟

101CS162 Topic #1

What does cin >> array_of_characters do?

char str[5];

cin >>str;

• When reading in an array of characters, cin and

the extraction operator (>>) skip leading

whitespace and read characters until a whitespace

character is encountered.

• Then, it automatically stores a „\0‟ after the last

character read in.

102CS162 Topic #1

What do we need to be careful about?

• We need to be careful when working with arrays

of characters...

• If we have an array of size 5

– that means there are 5 bytes of memory

allocated for our variable sequentially in

memory

• This means that we can store four characters at

most, since one spot needs to be reserved for the

terminating nul

103CS162 Topic #1

So, What could happen???

• Using cin >>str;

• If I enter “hello”, this is what is stored:

• Notice we ended up storing the „\0‟ in memory

that is not allocated for our variable

– this is extremely dangerous and can cause our

programs to bomb! (segmentation fault or core

dump when running...)

„h‟ „e‟ „l‟„l‟„o‟ „\0‟

104CS162 Topic #1

What do we need to be careful about?

• What this means is that C++ does not check to

make sure we stay within the bounds of our arrays

• C++ assumes that we know what we are doing!

• It is a powerful language...one that can even be

used to design operating systems

• Therefore, if there is a chance that the user may

type in too many characters, we need to read in

our strings using a different approach

105CS162 Topic #1

How do I read in a string safely?

• There is a cin.get function that is useful

• There are three ways to use this function:

– it can be used to read a single character

char ch; ch = cin.get();

cin.get(ch);

this reads in the next character from the input

buffer, even if that next character is

whitespace!

106CS162 Topic #1

How do I read in a string safely?

• Or, we can use this function to read in a string

using 2 or 3 arguments:

char str[5];

cin.get(str, 5, „\n‟);

// same as: cin.get(str, 5);

• this reads in the next sequence of characters up

until (size-1) characters are read or the delimiting

character is encountered („\n‟ by default)

107CS162 Topic #1

How do I read in a string safely?

• The three argument version of cin.get has the

following form:

cin.get(array_name, max_size,

delimiting_character);

• A side benefit of this function is that it will allow

us to read in lines, sentences, our entire first/last

name, a paragraph, etc. This is because the

delimiting character need not be white space!

108CS162 Topic #1

How do I read in a string safely?

• There is one “gotcha” with this function.

• While the three argument version of cin.get won‟t

read in too many character (so it will never store

characters outside your array bounds),

– it will not read in the delimiting character!

• Therefore, we must always “eat” the delimiting

character, using either:

cin.get(); or while(cin.get() != „\n‟);

• this must be done after all input preceding a 2 or 3

argument cin.get use
109CS162 Topic #1

Let’s read another string, using cin.get:

• Using cin.get(str, 5);

• If I enter “hi !”, this is what is stored:

• Notice that room is left to store the „\0‟ at the end

of the array, and there is no danger of writing

outside of our array bounds.

• But, what is left in the input buffer? „\n‟

• How do we “flush” this? cin.get();

„h‟ „i‟ „ ‟„!‟„\0‟

110CS162 Topic #1

Let’s read another string, using cin.get:

• Using cin.get(str, 5);

• If I enter “hello”, this is what is stored:

• Notice that room is left to store the „\0‟ at the end

of the array, and there is no danger of writing

outside of our array bounds.

• But, what is left in the input buffer? „o\n‟

• How do we “flush” this? while(cin.get() !=‘\n’);

„h‟ „e‟ „l‟„l‟„\0‟

111CS162 Topic #1

How do I display a string?

• Luckily, displaying strings isn‟t as complicated.
cout <<str;

• Simply by using cout followed by the insertion

operator (<<), we can display as many characters

as have been stored in the array until the

terminating nul („\0‟) in encountered.

• Notice, the „\0‟ is important so that we don‟t

display “garbage” characters (i.e., memory that

has not been set or used yet!)

112CS162 Topic #1

Operations on Strings

• There are very few operations that can be

performed on array of characters (i.e., strings)

• For example, we cannot compare two strings by

saying:

char str1[10], str2[10];

if (str1 == str2)

• This is because an array is really the address of
the first element in a sequentially allocated set of
memory.

• So, the == or != operators would simply be
comparing the memory locations! Oops!

113CS162 Topic #1

Comparing Strings:

• Instead, to compare two strings we can include

another library: string.h

• And, call the string compare function:

strcmp(first_array, second_array);

• The strcmp function returns:

0 if first_array is equal to second_array

<0 if first_array is less than second_array

>0 if first_array is greater than second_array

114CS162 Topic #1

Copying Strings

• We also cannot copy strings using the assignment

operator:

char str1[10], str2[10];

str1 = str2;

• This is illegal because an array is really the

address of the first element in a sequentially

allocated set of memory.

• Instead, we call strcpy from string.h

strcpy(str1, str2); //str1=str2;

115CS162 Topic #1

For example:

• Let‟s now put this to use by writing a function to

read in two strings and displaying them in

alphabetical order

• First, write the algorithm:

– Get two strings (prompt, input, echo)

– If the first string is less than the second

• display the first string followed by the second

– If the first string is greater or equal to the

second

• display the second string followed by the first
116CS162 Topic #1

Working with arrays, character at a time:

• We can also work with strings an element at a time,

– by indexing through the array

– we begin by using subscripts that start at zero

and then progress until the array size-1

• For example, we can read in a string by:

– Read a character

– If that character is not a carriage return

• save the character in the array

117CS162 Topic #1

Reading a Character at a time:

char str[20]; char ch;

int index = 0;

ch = cin.get();

while (ch != „\n‟) {

str[index] = ch; //str[index] is a char

++index;

ch = cin.get();

}

str[index] = „\0‟; //why is this important?

• But, what if they type in too many characters?
118CS162 Topic #1

A Better Approach?

const int MAX = 20;

char str[MAX]; char ch;

int index = 0;

ch = cin.get();

while (index < MAX-1 && ch != „\n‟) {

str[index] = ch; //str[index] is a char

++index;

ch = cin.get();

}

str[index] = „\0‟; //why is this important?

119CS162 Topic #1

The Same Thing...Just Condensed:

const int MAX = 20;

char str[MAX];

int index = 0;

while (index < MAX-1 && (ch= cin.get()) != „\n‟))

str[index++] = ch; //Remember postfix????

str[index] = „\0‟; //Still important

120CS162 Topic #1

Or, going to an extreme!

const int MAX = 20;

char str[MAX];

int index = 0;

while (index < MAX-1 &&

(str[index++]= cin.get()) != „\n‟));

str[index] = „\0‟;

121CS162 Topic #1

Introduction to C++

Questions?

122CS162 Topic #1

