
Introduction to C++

Functions

Topic #2

1CS162 Topic #2

Today’s Agenda

• Topic #2: Functions
– Prototypes vs. Function Definitions

– Pass by Value, by Reference, by Constant
Reference, by Pointer

– Function Overloading
– Default Arguments

• Structures and Dynamic Memory

– Structures
– Pointers

– Dynamic Memory Allocation/Deallocation

2CS162 Topic #2

Functions: What are they?

• We can write our own functions in C++

• These functions can be called from your main

program or from other functions

• A C++ function consists of a grouping of

statements to perform a certain task

• This means that all of the code necessary to get a

task done doesn't have to be in your main program

• You can begin execution of a function by calling

the function

3CS162 Topic #2

Functions: What are they?

• A function has a name assigned to it and contains

a sequence of statements that you want executed

every time you invoke the function from your

main program!

• Data is passed from one function to another by

using arguments (in parens after the function

name).

• When no arguments are used, the function names

are followed by: "()".

4CS162 Topic #2

Functions: Defining Them...

• The syntax of a function is very much like that of

a main program.

• We start with a function header:

data_type function_name()

{

<variable definitions>

<executable statements>

}

5CS162 Topic #2

Functions: Defining Them...

• A function must always be declared before it can

be used

• This means that we must put a one-line function

declaration at the beginning of our programs

which allow all other functions and the main

program to access it.

• This is called a function prototype (or function

declaration)

• The function itself can be defined anywhere

within the program.
6CS162 Topic #2

Functions: Using Them...

• When you want to use a function, it needs to be

CALLED or INVOKED from your main program

or from another function.

• If you never call a function, it will never be used.

• To call a function we must use the function call

operator ()

some_variable = pow (x, 3);

7CS162 Topic #2

Functions: Calling pow...

• When we call a function, we are temporarily

suspending execution of our main program (or

calling routine) and executing the function.

• pow takes two values as arguments (x and 3),

called actual arguments and returns to the calling

routine the result (a floating point value)

8CS162 Topic #2

Order of Execution...

• The main program runs first, executing its

statements, one after another.

• Even though the functions are declared before the

main program (and may also be defined before the

main program), they are not executed until they

are called.

• They can be called as many times as you wish

9CS162 Topic #2

Why write functions?

• By having a function perform the task, we can

perform the task many times in the same program

by simply invoking the function repeatedly.

• The code for the task need not be reproduced

every time we need it.

• A function can be saved in a library of useful

routines and plugged into any program that needs

it. (like we have seen with the pow function)

10CS162 Topic #2

Why write functions?

• Once a function is written and properly tested, we

can use the function without any further concern

for its validity.

• We can therefore stop thinking about how the

function does something and start thinking of

what it does.

• It becomes an abstract object in itself - to be used

and referred to.

11CS162 Topic #2

Some details about functions:

• Each function can contain definitions for its own

constants and variables (or objects).

• These are considered to be LOCAL to the function

and can be referenced only within the function in

which they are defined

data_type some_function() {

data_type variable; //local variable

}

12CS162 Topic #2

Some details about functions:

#include <iostream.h>

int print_asterisk(void);

int main(){

int number; //local variable

number = print_asterisk();

...

}

int print_asterisk () {

int num_asterisk; //local variable

cout <<"How many asterisks would you like?\n";

cin >>num_asterisk;

return(num_asterisk);

}
13CS162 Topic #2

Some details about functions:

• To have a function return a value - you simply say
"return expression".

• The expression may or may not be in parens.

• Or, if you just want to return without actually
returning a value, just say return; (note:

return(); is illegal).

• If you normally reach the end of a function (the

function's closing "}"), its just like saying
return; and no value is returned.

14CS162 Topic #2

Some details about functions:

• For functions that don't return anything, you

should preface the declaration with the word

"void".

• When using void, it is illegal to have your return

statement(s) try to return a value

• Also notice, that the type of a function must be

specified in both the function declaration and in

the function definition.
15CS162 Topic #2

Functions: What are arguments?

• If we want to send information to a function when

we call it, we can use arguments

• For example, when we supplied two items within

the parentheses for the pow function -- these were

arguments that were being passed to the function

pow!

• We can define functions with no arguments, or

with many arguments
16CS162 Topic #2

Functions: What are arguments?

• If we go back to our example of converting

inches to millimeters...

– if we write a function to perform the

calculations, we would need to somehow send

to the function the number of inches to convert

– this can be done by passing in the number of

inches as an argument

– and receiving the number of millimeters back

as the returned value

17CS162 Topic #2

Functions: What are arguments?

• For example, from our main program we could

say:
float convert (float inches); //prototype

void main() {

float in; //local variable to hold # inches

float mm; //local variable for the result

cout <<“Enter the number of inches: “;

cin >>in;

mm = convert (in); //function call

cout <<in <<“ inches converts to “ <<mm <<“mm”;

}

18CS162 Topic #2

Functions: What are arguments?

• Then, to implement the function we might say:

float convert (float inches) {

float mils; //local variable

mils = 25.4 * inches;

return mils; //return (mils);

}

19CS162 Topic #2

Functions: What are arguments?

• Notice that we can have arguments to functions!

• These must be in the function header for both the

function declaration (prototype) and function

definition.

• In this example, inches is a variable...which is a

argument because it is defined in the function

header.

20CS162 Topic #2

Functions: What are arguments?

• When you call convert,

– you are establishing an association between the
main program's in variable

– and the function's inches variable;

– this function does some calculations,

– and returns a real number which is stored in the
calling routines mm variable.

21CS162 Topic #2

Functions: What are arguments?

• Notice that variables are declared in a function

heading;

– these are FORMAL ARGUMENTS

– they look very much like regular variable

declarations, except that they receive an initial

value from the function call

• The arguments in the function call (invocation) are

called ACTUAL ARGUMENTS.

22CS162 Topic #2

Functions: What are arguments?

• When the function call is executed,

– the actual arguments are conceptually copied

into a storage area local to the called function.

– If you then alter the value of a formal

argument, only the local copy of the argument

is altered.

– The actual argument never gets changed in the

calling routine.

23CS162 Topic #2

Functions: What are arguments?

• C++ checks to make sure that the number and type

of actual arguments sent into a function when it is

invoked match the number and type of the formal

arguments defined for the function.

• The return type for the function is checked to

ensure that the value returned by the function is

correctly used in an expression or assignment to a

variable.

24CS162 Topic #2

Functions: What are arguments?

• When we deal with FORMAL VALUE

ARGUMENTS...

– the calling actual argument values cannot be

modified by the function.

– This allows us to use these functions, giving

literals and constants as arguments without

having conflicts.

– This is the default way of doing things in C++.

25CS162 Topic #2

Let's write a function to sum two numbers:

int sumup(int first, int second); //function prototype

void main() {

int total, number, count;

total = 0;

for (count = 1; count <= 5; count++) {

cout <<" Enter a number to add: ";

cin >>number;

total = sumup(total, number); //function call

}

cout <<" The result is: " <<total <<endl;

}

int sumup(int first, int second) { //definition

return first + second;

}
26CS162 Topic #2

Functions: Value vs. Reference

• Call by value brings values into a function (as the

initial value of formal arguments)

– that the function can access but not permanently

change the original actual args

• Call by reference can bring information into

the function or pass information to the rest of

the program;

– the function can access the values and can

permanently change the actual arguments!

27CS162 Topic #2

Functions: Value vs. Reference

• Call by value is useful for:

- passing information to a function

- allows us to use expressions instead of variables in

a function call

- value arguments are restrained to be modified only

within the called function; they do not affect the

calling function.

- can't be used to pass information back, except

through a returned value

28CS162 Topic #2

Functions: Value vs. Reference

• Call by reference is useful for:

- allowing functions to modify the value of an

argument, permanently

- requires that you use variables as your actual

arguments since their value may be altered by the

called function;

- you can't use constants or literals in the function

call!

29CS162 Topic #2

Example of call by reference:

void convert (float inches, float & mils);

int main() {

float in; //local variable to hold # inches

float mm; //local variable for the result

cout <<“Enter the number of inches: “;

cin >>in;

convert (in, mm); //function call

cout <<in <<“ inches converts to “ <<mm <<“mm”;

return 0;

}

void convert (float inches, float & mils) {

mils = 25.4 * inches;

}

30CS162 Topic #2

Example of call by reference:

void swap (int & a, int & b);

int main() {

int i=7, j = -3;

cout <<"i and j start off being equal to :" <<i

<<" & " <<j <<'\n';

swap(i,j);

cout <<"i and j end up being equal to :" <<i

<<" & " <<j <<'\n';

return 0;

}

void swap(int &c,int&d) {

int temp = d;

d = c;

c = temp;

}
31CS162 Topic #2

What kind of args to use?

• Use a call by reference if:

1) The function is supposed to provide

information to some other part of the program.

Like returning a result and returning it to the main.

2) They are OUT or both IN and OUT arguments.

3) In reality, use them WHENEVER you don’t

want a duplicate copy of the arg...

32CS162 Topic #2

What kind of args to use?

• Use a call by value:

1) The argument is only to give information to the

function - not get it back

2) They are considered to only be IN parameters.

And can't get information back OUT!

3) You want to use an expression or a constant in

function call.

4) In reality, use them only if you need a complete

and duplicate copy of the data

33CS162 Topic #2

Writing a function to work with strings:

#include <cstring>

void sort_two() {

char first[20], second[20];

cout <<“Please enter two words: “;

cin.get(first,20, „ „);

cin.get(); //don‟t forget this part!

cin.get(second,20, „\n‟);

cin.get(); //eat the carriage return;

if (strcmp(first, second) < 0)

cout <<first <<„ „ <<second <<endl;

else

cout <<second <<„ „ <<first <<endl;

} 34CS162 Topic #2

Change the function to have args:

#include <cstring>

void sort_two(char first[], char second[]) {

cout <<“Please enter two words: “;

cin.get(first,20, „ „); cin.get();

cin.get(second,20, „\n‟);

cin.get(); //eat the carriage return;

if (strcmp(first, second) > 0) {

char temp[20];

strcpy(temp,first);

strcpy(first, second);

strcpy(second,temp);

}

} 35CS162 Topic #2

We’d call the function by saying:

#include <string.h>

void sort_two(char first[], char second[]);

void main() {

char str1[20], str2[20];

sort_two(str1, str2);

cout <<str1 <<„ „ <<str2 <<endl;

//what would happen if we then said:

sort_two(str2, str1);

cout <<str1 <<„ „ <<str2 <<endl;

}

36CS162 Topic #2

Structures

Introduction to C++

37CS162 Topic #2

What is a Structure

• A structure is a way for us to group different types

of data together under a common name

• With an array, we are limited to having only a single

type of data for each element...

– think of how limiting this would be if we wanted

to maintain an inventory

– we’d need a separate array for each product’s

name, another for each product’s price, and yet

another for each barcode!

38CS162 Topic #2

What is a Structure

• With a structure, on the other hand, we can group

each of these under a common heading

– So, if each product can have a description, a

price, a cost, and a barcode....a single structure

entity can consist of an array of characters for the

description, two floats for the price and cost, and

an int for the barcode

– Now, to represent the entire inventory we can

have an array of these “products”

39CS162 Topic #2

Why would we use a Structure

• Some people argue that with C++ we no longer need

to use the concept of structures

• And, yes, you can do everything that we will be

doing with structures, with a “class” (which we learn

about next week!)

• My suggestion is to use structures whenever

you want to group different types of data

together, to help organize your data

40CS162 Topic #2

How do you define a Structure?

• We typically define structures “globally”

– this means they are placed outside of the main

• We do this because structures are like a

“specification” or a new “data type”

– which means that we would want all of our

functions to have access to this way to group data,

and not just limit it to some function by defining

it to be local

41CS162 Topic #2

How do you define a Structure?

• Each component of a structure is called a

member and is referenced by a member name

(identifier).

• Structures differ from arrays in that members

of a structure do not have to be of the same

type. And, structure members are not

referenced using an index.

42CS162 Topic #2

How do you define a Structure?

• A structure might look like:
struct storeitem {

char item[20];

float cost;

float price;

int barcode;

};

• In this example, item, price, cost and barcode are

member names. storeitem is the name of a new derived

data type consisting of a character array, two real numbers,

and an integer.
43CS162 Topic #2

How do you define variables of a Structure?

• Once your have declared this new derived

data type, you can create variables (or

“object”) which are of this type (just like we

are used to):

storeitem one_item;

• If this is done in a function, then one_item is
a local variable...

44CS162 Topic #2

How do you define variables of a Structure?

• By saying:

storeitem one_item;

– From this statement, one_item is the variable (or

object)

– We know that we can define a product which will

have the components of the item name, the cost,

the price, and the bar code.

– Just think of storeitem as being a type of data

which consists of an array of characters, two real

numbers, and an integer.
45CS162 Topic #2

How do you define variables of a Structure?

• By saying:

storeitem one_item;

– To access a structure variable's components, we

use dots between each field identifiers:

one_item.item //an array of chars

one_item.item[0] //1st character...

one_item.price //a float

one_item.barcode //an int
46CS162 Topic #2

How do you define variables of a Structure?

• We can work with these variables in just the

same way that we work with variables of a

fundamental type:

• To read in a price, we can say:

cin >>one_item.price;

• To display the description, we say:

cout <<one_item.item;

47CS162 Topic #2

What operations can be performed?

• Just like with arrays, there are very few

operations that can be performed on a complete

structure

• We can’t read in an entire structure at one time,

or write an entire structure, or use any of the

arithmetic operations...

• We can use assignment, to do a “memberwise

copy” copying each member from one struct

variable to another
48CS162 Topic #2

How do you define arrays of Structures?

• But, for structures to be meaningful when

representing an inventory

– we may want to use an array of structures

– where every element represents a different

product in the inventory

• For a store of 100 items, we can then define

an array of 100 structures:

storeitem inventory[100];

49CS162 Topic #2

How do you define arrays of Structures?

• Notice, when we work with arrays of any

time OTHER than an array of characters,

– we don’t need to reserve one extra location

– because the terminating nul doesn’t apply to

arrays of structures, (or an array of ints, or floats,

...)

– so, we need to keep track of how many items are

actually stored in this array (10, 50, 100?)

50CS162 Topic #2

How do you define arrays of Structures?

• So, once an array of structures is defined, we

can access each element via indices:
storeitem inventory[100];

int inv_count=0;

//get the first product‟s info

cin.get(inventory[inv_count].item, 21);

cin >>inventory[inv_count].price

>>inventory[inv_count].cost

>>inventory[inv_count].barcode;

++inv_count;

51CS162 Topic #2

How do you pass Structures to functions?

• To pass a structure to a function, we must

decide whether we want call by reference or

call by value

• By reference, we can pass 1 store item:
return_type function(storeitem & arg);

//or an array of store items:

return_type function(storeitem arg[]);

• By value, we can pass 1 store item:
storeitem function(storeitem arg);

52CS162 Topic #2

Dynamic

Memory

Introduction to C++

53CS162 Topic #2

Pointers

• In C++, a pointer is just a different kind of

variable.

• This type of variable points to another

variable or object

– (i.e., it is used to store the memory address of

another variable nor an object).

– Such pointers must first be defined and then

initialized.

– Then, they can be manipulated.
54CS162 Topic #2

Pointers

• A pointer variable is simply a new type of

variable.

– Instead of holding an int, float, char, or some

object's data....it holds an address.

– A pointer variable is assigned memory.

– the contents of the memory location is some

address of another “variable”.

– Therefore, the value of a pointer is a memory

location.
55CS162 Topic #2

Pointers

• We can have pointers to (one or more)

– integers

– floating point types

– characters

– structures

– objects of a class

• Each represents a different type of pointer

56CS162 Topic #2

Pointers

• We define a pointer to an integer by:

int * ptr; //same as int *ptr;

• Read this variable definition from right to

left:

– ptr is a pointer (that is what the * means) to an

integer.

– this means ptr can contain the address of some

other integer

57CS162 Topic #2

Pointers

• At this point, you may be wondering why

pointers are necessary.

• They are essential for allowing us to use

data structures that grow and shrink as the

program is running.

– linked lists, trees, or graphs

• We are no longer stuck with a fixed size array

throughout the lifetime of our program.

58CS162 Topic #2

Pointers

• But first,

– we will learn that pointers can be used to

allow us to set the size of an array at run-time

versus fixing it at compilation time;

– if an object is a list of names...then the size of

that list can be determined dynamically while

the program is running.

– This cannot be accomplished in a user friendly

way with simple arrays!

59CS162 Topic #2

Defining Pointers

• So, what are the data types for the

following variables?

int *ptr1, obj1; //watch out!

char *ptr2, *ptr3;

float obj2, *ptr4;

• What are their initial values (if local

variables)? -- yes, garbage --

60CS162 Topic #2

Defining Pointers

• The best initial value for a pointer is

– zero (address zero),

– also known as NULL (this is a #define

constant in the iostream library for the value

zero!)

– The following accomplish the same thing:

int *ptr1 = NULL;

int *ptr2 = 0;

int *ptr3 (0);

61CS162 Topic #2

Defining Pointers

• You can also initialize or assign the

address of some other variable to a pointer,

– using the address-of operator

int variable;

int *ptr1 = &variable;

62CS162 Topic #2

Allocating Memory

• Now the interesting stuff!

• You can allocate memory dynamically (as

our programs are running)

– and assign the address of this memory to a

pointer variable.

int *ptr1 = new int;

ptr1
dynamic variable

?

63CS162 Topic #2

int *ptr1 = new int;

• The diagram used is called a

– pointer diagram

– it helps to visualize what memory we have

allocated and what our pointers are referencing

– notice that the dynamic memory allocated is of

size int in this case

– and, its contents is uninitialized

– new is an operator and supplies back an

address of the memory set allocated
64CS162 Topic #2

Dereferencing

• Ok, so we have learned how to set up a

pointer variable to point to another variable

or to point to memory dynamically

allocated.

• But, how do we access that memory to set

or use its value?

• By dereferencing our pointer variable:

*ptr1 = 10;

65CS162 Topic #2

Dereferencing

• Now a complete sequence:
int *ptr1;

ptr1 = new int;

*ptr1 = 10;

•••

cout <<*ptr1; //displays 10

ptr1
dynamic variable

10

66CS162 Topic #2

Deallocating

• Once done with dynamic memory,

– we must deallocate it

– C++ does not require systems to do “garbage

collection” at the end of a program’s

execution!

• We can do this using the delete operator:

delete ptr1;

this does not delete the pointer variable!

67CS162 Topic #2

Deallocating

• Again:

this does not delete the pointer variable!

• Instead, it deallocates the memory

referenced by this pointer variable

– It is a no-op if the pointer variable is NULL

– It does not reset the pointer variable

– It does not change the contents of memory

– Let’s talk about the ramifications of this...

68CS162 Topic #2

Allocating Arrays

• But, you may be wondering:

– Why allocate an integer at run time

(dynamically) rather than at compile time

(statically)?

• The answer is that we have now learned

the mechanics of how to allocate memory

for a single integer.

• Now, let’s apply this to arrays!

69CS162 Topic #2

Allocating Arrays

• By allocating arrays dynamically,

– we can wait until run time to determine what

size the array should be

– the array is still “fixed size”...but at least we

can wait until run time to fix that size

– this means the size of a dynamically allocated

array can be a variable!!

70CS162 Topic #2

Allocating Arrays

• First, let’s remember what an array is:

– the name of an array is a constant address to

the first element in the array

– So, saying char name[21];

means that name is a constant pointer who’s

value is the address of the first character in a

sequence of 21 characters

71CS162 Topic #2

Allocating Arrays

• To dynamically allocate an array

– we must define a pointer variable to contain an

address of the element type

• For an array of characters we need a

pointer to a char:

char *char_ptr;

• For an array of integers we need a pointer

to an int:

int *int_ptr; 72CS162 Topic #2

Allocating Arrays

• Next, we can allocate memory and

examine the pointer diagram:

int size = 21; //for example

char *char_ptr;

char_ptr = new char [size];

21 characters

(elements 0-20)

char_ptr

73CS162 Topic #2

Allocating Arrays

• Some interest thoughts:

– the pointer diagram is identical to the pointer

diagram for the statically allocated array

discussed earlier!

– therefore, we can access the elements in the

exact same way we do for any array:

char_ptr[index] = „a‟; //or

cin.get(char_ptr,21,‟\n‟);

74CS162 Topic #2

Allocating Arrays

• The only difference is when we are finally

done with the array,

– we must deallocate the memory:

delete [] char_ptr;

not-your-memory
char_ptr

It is best, after doing this to say: char_ptr = NULL;

75CS162 Topic #2

Allocating Arrays

• One of the common errors we get

– once allocating memory dynamically

– is a segmentation fault

– it means you have accessed memory that is not

yours,

• you have dereferenced the null pointer,

• you have stepped outside the array bounds,

• or you are accessing memory that has already been

deallocated

76CS162 Topic #2

Pointer Arithmetic

• When we use the subscript operator,

– pointer arithmetic is really happening

– this means the following are equivalent:

ptr1[3] == *(ptr1+3)

– This means the subscript operator adds the

value of the index to the starting address and

then deferences the quantity!!!

77CS162 Topic #2

Dynamic Structures

• Let’s take these notions and apply them to

dynamically allocated structures

• What if we had a storeitem structure, how

could the client allocate an item

dynamically?

storeitem *ptr = new storeitem;

• Then, how would we access the item?

*ptr.item ? Nope! WRONG

78CS162 Topic #2

Dynamic Structures

• To access a member of a struct, we need to

realize that there is a “precedence”

problem.

• Both the dereference (*) and the member

access operator (.) have the same operator

precedence....and they associate from right

to left

• So, parens are required:

(*ptr).item Correct (but ugly) 79CS162 Topic #2

Dynamic Structures

• A short cut (luckily) cleans this up:

(*ptr).item Correct (but ugly)

Can be replaced by using the indirect member

access operator (->) ... it is the dash followed

by the greater than sign:

ptr->item Great!

80CS162 Topic #2

Dynamic Structures

• Now, to allocate an array of structures

dynamically:

storeitem *ptr;

ptr = new storeitem[some_size];

• In this case, how would we access the first

item?

ptr[0].item

Notice that the -> operator would be incorrect in this

case because ptr[0] is not a pointer variable. Instead, it

is simply an object. ptr is a pointer to the first element of

an array of objects
81CS162 Topic #2

Dynamic Structures

• What this tells us is that the -> operator

expects a pointer variable as the first

operand.

– In this case, ptr[0] is not a pointer, but rather

an instance of a structure. Just one of the

elements of the array!

– the . operator expects an object as the first

operand...which is why it is used in this case!

82CS162 Topic #2

Dynamic Structures

• Ok, what about passing pointers to

functions?

• Pass by value and pass by value apply.

– Passing a pointer by value makes a copy of the

pointer variable (i.e., a copy of the address).

– Passing a pointer by reference places an

address of the pointer variable on the program

stack.

83CS162 Topic #2

Dynamic Structures

• Passing a pointer by value:

storeitem *ptr = new storeitem;

display(ptr);

void display(storeitem * p) {

cout <<p->item <<endl;

} p is a pointer to an

object, passed by value.

So, p is a local variable with

an initial value of the address

of a storeitem object
84CS162 Topic #2

Dynamic Structures

• Here is the pointer diagram for the

previous example:

dynamic storeitem

object

ptr

main function

p

display function

85CS162 Topic #2

Dynamic Structures

• Passing a pointer by reference allows us to

modify the calling routine’s pointer

variable (not just the memory it

references):
storeitem *ptr; set(ptr); cout <<ptr->item;

void set(storeitem * & p) {

p = new storeitem;

cin.get(p->item,100,‟\n‟);

cin.ignore(100,‟\n‟);

}

The order of the *

and & is critical!

86CS162 Topic #2

Dynamic Structures

• But, what if we didn’t want to waste

memory for the item (100 characters may

be way too big

• So, let’s change our structure to include a

dynamically allocated array:
struct storeitem {

char * item;

float cost;

float price;

int barcode;

};
87CS162 Topic #2

Dynamic Structures

• Rewriting the set function to take

advantage of this:
storeitem *ptr; set(ptr);

void set(storeitem * & p) {

char temp[100];

cin.get(temp,100,‟\n‟);

cin.ignore(100,‟\n‟);

p = new storeitem;

p->item = new char[strlen(temp)+1];

strcpy(p->item,temp); }

watch out for where

the +1 is placed!

88CS162 Topic #2

