
Introduction to C++ 

Data Abstraction w/ Classes

Topic #3

1CS162 Topic #3



Topic #3

• Abstract Data Types
– Introduction to...Object Models
– Introduction to...Data Abstraction
– Using Data Abstraction in C++ ...an introduction 

to the class

• Members of a Class
– The class interface, using the class, the class 

interface versus implementation
– Classes versus Structures
– Constructors, Destructors
– Dynamic Memory and Linked Lists

2CS162 Topic #3



Programming Paradigms

• The most important aspect of C++ is its 

ability to support many different 

programming paradigms

– procedural abstraction

– modular abstraction

– data abstraction

– object oriented programming (this is discussed 

later, in CS202)

3CS162 Topic #3



Procedural Abstraction

• This is where you build a “fence” around 

program segments, preventing some parts 

of the program from “seeing” how tasks 

are being accomplished. 

• Any use of globals causes side effects that 

may not be predictable, reducing the 

viability of procedural abstraction

4CS162 Topic #3



Modular Abstraction

• With modular abstraction, we build a 

“screen” surrounding the internal structure 

of our program prohibiting programmers 

from accessing the data except through 

specified functions.

• Many times data structures (e.g., 

structures) common to a module are placed 

in a header files along with prototypes 

(allows external references)
5CS162 Topic #3



Modular Abstraction

• The corresponding functions that 

manipulate the data are then placed in an 

implementation file. 

• Modules (files) can be compiled 

separately, allowing users access only to 

the object (.o) files

• We progress one small step toward OOP 

by thinking about the actions that need to 

take place on data... 6CS162 Topic #3



Modular Abstraction

• We implement modular abstraction by 

separating out various 

functions/structures/classes into multiple 

.cpp and .h files.

• .cpp files contain the implementation of 

our functions

• .h files contain the prototypes, class and 

structure definitions.

7CS162 Topic #3



Modular Abstraction

• We then include the .h files in modules that 

need access to the prototypes, structures, or 

class declarations:

– #include “myfile.h”

– (Notice the double quotes!)

• We then compile programs (on UNIX) by:

– g++ main.cpp myfile.cpp

– (Notice no .h file is listed on the above line)

8CS162 Topic #3



Data Abstraction

• Data Abstraction is one of the most 

powerful programming paradigms 

• It allows us to create our own user defined 

data types (using the class construct) and 

– then define variables (i.e., objects) of those 

new data types.

9CS162 Topic #3



Data Abstraction

• With data abstraction we think about what

operations can be performed on a particular 

type of data and not how it does it

• Here we are one step closer to object 

oriented programming

10CS162 Topic #3



Data Abstraction

• Data abstraction is used as a tool to 

increase the modularity of a program

• It is used to build walls between a program 

and its data structures

– what is a data structure? 

– talk about some examples of data structures

• We use it to build new abstract data types

11CS162 Topic #3



Data Abstraction

• An abstract data type (ADT) is a data type 

that we create

– consists of data and operations that can be 

performed on that data

• Think about a char type

– it consists of 1 byte of memory and operations 

such as assignment, input, output, arithmetic 

operations can be performed on the data

12CS162 Topic #3



Data Abstraction

• An abstract data type is any type you want 

to add to the language over and above the 

fundamental types

• For example, you might want to add a new 

type called: list

– which maintains a list of data

– the data structure might be an array of 

structures

– operations might be to add to, remove, display 

all, display some items in the list
13CS162 Topic #3



Data Abstraction

• Once defined, we can create lists without 

worrying about how the data is stored

• We “hide” the data structure used for the 

data within the data type -- so it is 

transparent to the program using the data 

type

• We call the program using this new data 

type: the client program (or client)

14CS162 Topic #3



Data Abstraction

• Once we have defined what data and 

operations make sense for a new data type, 

we can define them using the class 

construct in C++

• Once you have defined a class, you can 

create as many instances of that class as 

you want

• Each “instance” of the class is considered 

to be an “object” (variable) 15CS162 Topic #3



Data Abstraction

• Think of a class as similar to a data type

– and an object as a variable

• And, just as we can have zero or more 

variables of any data type...

– we can have zero or more objects of a class!

• Then, we can perform operations on an 

object in the same way that we can access 

members of a struct...

16CS162 Topic #3



What is a Class?

• Remember, we used a structure to group different 

types of data together under a common name

• With a class, we can go the next step an actually 

define a new data type

• In reality, structures and classes are 100% the 

same except for the default conditions

– everything you can do with a class you can do 

with a structure!

17CS162 Topic #3



What is a Class?

• First, let’s talk about some terminology

– Think of a class as the same as a data type

– Think of an object as the same as a variable

• An “object” is an instance of a class

– Just like a “variable” is an instance of a specific 

data type

• We can zero or more variables (or objects) in 

our programs

18CS162 Topic #3



When do we used Classes?

• I recommend using structures when you want to 

group different types of data together

– and, to use a class when we are interested in 

building a new type of data into the language 

itself

– to do this, I always recommend forming that data 

type such that it behaves in a consistently to how 

the fundamental data types work

19CS162 Topic #3



But, What is a Data Type?

• We’ve been working with fundamental data types 

this term, such as ints, floats, chars...

• Whenever we define variables of these types,

– memory is allocated to hold the data

– a set of operations can now be performed on that 

data

– different data types have different sets of 

operations that make sense (the mod operator 

doesn’t make sense for floats...)

20CS162 Topic #3



Defining new Data Types...

• Therefore, when we define a new data type with the 

class construct

– we need to specify how much memory should be 

set aside for each variable (or object) of this type

– and, we need to specify which operations make 

sense for this type of data (and then implement 

them!!)

– and, what operators makes sense (do be discussed 

with operator overloading)

21CS162 Topic #3



Defining a Class...

• Once we have decided on how the new type of data 

should behave, we are ready to define a class:

class data_type_name {

public:

//operations go here

private:

//memory is reserved here

};

22CS162 Topic #3



For Example, here is a Class Interface 

class string {

public:

string();

int copy(char []);

int length();

int display();

private:

char str[20];

int len;

};

23CS162 Topic #3



Then, the Class Implementation

string::string() {

str[0]=„\0‟; len = 0;

}

int string::copy(char s []) [

if (strlen(s) < 20)

strcpy (str, s);

else {

for (int i = 0; i< 20; ++i)

str[i] = s[i];

str[20]=„\0‟;

len = strlen(str); return len; }
24CS162 Topic #3



More of the Class Implementation

int string::length() {

return len;

}

int string::display() {

cout <<str;

return len;

}

25CS162 Topic #3



Defining Objects of this Class

• Notice how similar defining objects of class is to 

defining variables of any data type:

string my_str; vs. int i;

• Defining an object causes the “constructor” to be 

invoked; a constructor is the same named function as 

the class (string) and is used to initialize the memory 

set aside for this object

• Think about how much memory is set aside?

• What initial values should it take on?

26CS162 Topic #3



Using Objects of this Class

• Think about how you can use those objects

my_str.copy(“hi!”);

cout << my_str.length();

• We are limited to using only those operations that are defined 

within the public section of the class interface

• The only “built-in” operation that can be used with objects of 

a class is the assignment operation, which does a 

memberwise copy (as we learned with structures)

27CS162 Topic #3



Using Objects of this Class

• Notice how similar the use of these operations is to 

the cin.get function.....

cin.get(ch);

• This should be a clue. cin therefore is an object of the istream 

class. 

• The dot is the member access operator; it allows us to access 

a particular public member function defined within the 

istream class.

• The function get is therefore defined within the public section 

of the istream class

28CS162 Topic #3



Limitations...

• But, there are limitations!

• If our goal is to really be able to use my string 

objects in a way consistent with the fundamental 

data types, 

– then I would expect to be able to read strings 

using the extraction operator

– and to display strings by directly using the 

insertion operator

– and to concatenate strings using +

29CS162 Topic #3



Limitations...

• With the class as it is defined, none of these things 

can be done...

– the only operations that can be performed are 

those specified within the public section of the 

class interface, and a memberwise copy with the 

assignment operator

– No other operations are known

• Therefore, to be consistent, we must revise our class 

to use operator overloading

30CS162 Topic #3



For Example, here is a Class Interface 

class string {

public:

string();

int length();

friend ofstream & operator << 

(ofstream &, const string &);

friend ifstream & operator >>

(ifstream &, string &);

private:

char str[20];

int len;

}; 31CS162 Topic #3



List Example

• For a list of videos, we might start with a 

struct defining what a video is:

struct video {

char title[100];

char category[5];

int quantity;

};

We will re-visit this example using

dynamic memory once we understand

the mechanics of classes
32CS162 Topic #3



List Example

• For a list of videos data type:
class list {

public:

list();

int add (const video &);

int remove (char title[]);

int display_all();

private:

video my_list[CONST_SIZE];  //for now...

int num_of_videos;

};

33CS162 Topic #3



List Example

• For a client to create a list object:
int main() {

list home_videos; //has an array of 100 

videos

list kids_shows; //another 100 videos 

here...

•••

video out_of_site;

cin.get(out_of_site.title,100,‟\n‟);

cin.ignore(100,‟\n‟);

•••

home_videos.add(out_of_site); //use 

operation
34CS162 Topic #3



Data Hiding

and 

Member Functions

Introduction to C++

35CS162 Topic #3



Data Abstraction in C++

• Terminology

• Data Hiding

• Class Constructors

• Defining and using functions in classes

• Where to place the class interface and 

implementation of the member functions

36CS162 Topic #3



“class” Terminology

• Class

– think data type

• Object

– instance of a class, e.g., variable

• Members

– like structures, the data and functions declared in 

a class

– called “data members” and “member functions”

37CS162 Topic #3



“class” Terminology

• A class could be a list, a string, a counter, a 

clock, a bank account, etc.

– discuss a simple counter class on the board

• An object is as real as a variable, and gets 

allocated and deallocated just like variables

– discuss the similarities of:

int i; list j;

38CS162 Topic #3



“class” Terminology

• For the list of videos data type we used

class list { <--- the data type!!!

public:

list(); <--- the constructor

int add (const video &);    3 member functions

int remove (char title[]); 

int display_all();

private:

video my_list[CONST_SIZE];     data members

int num_of_videos;

}; <--- notice like structures we need a semicolon

39CS162 Topic #3



“class” Terminology

• If we examine the previous class, 

– notice that classes are really very similar to 

structures

– a class is simply a generalized structure

– in fact, even though we may not have used 

structures in this way...

Structures and Classes are 100% identical 

except for their default conditions...
– by default, all members in a structure are available for use by 

clients (e.g., main programs); they are public
40CS162 Topic #3



“class” Terminology

• We have seen the use of structures in a more 

simple context, 

• as we examined with the video struct.

• It had three members (data members) 

– called title, category, and quantity. 

• They are “public” by default, 

– so all functions that have objects of type video 

can directly access members by:
video object;

object.title object.category object.quantity 41CS162 Topic #3



“class” Terminology

• This limited use of a structure was 

appropriate, because

– it served the purpose of grouping different types 

of data together as a single unit

– so, anytime we want to access a particular video -

- we get all of the information pertaining to the 

video all at once

42CS162 Topic #3



Structure Example

• Remember, anything you can do in a struct 

you can do in a class.

• It is up to your personal style how many structures 

versus classes you use to solve a problem.

• Benefit: Using structures for simple 

“groupings” is compatible with C
struct video {

char title[100];

char category[5];

int quantity;

};
43CS162 Topic #3



“class” Terminology

• To accomplish data hiding and encapsulation

– we usually turn towards classes

• What is data hiding?

– It is the ability to protect data from unauthorized 

use

– Notice, with the video structure, any code that has 

an object of the structure can access or modify the 

title or other members

44CS162 Topic #3



Data Hiding

• With data hiding

– accessing the data is restricted to authorized 

functions 

– “clients” (e.g., main program) can’t muck with 

the data directly

– this is done by placing the data members in the 

private section

– and, placing member functions to access & 

modify that data in the public section

45CS162 Topic #3



Data Hiding

• So, the public section

– includes the data and operations that are visible, 

accessible, and useable by all of the clients that 

have objects of this class

– this means that the information in the public 

section is “transparent”; therefore, all of the data 

and operations are accessible outside the scope of 

this class

– by default, nothing in a class is public!

46CS162 Topic #3



Data Hiding

• The private section

– includes the data and operations that are not 

visible to any other class or client

– this means that the information in the private 

section is “opaque” and therefore is inaccessible 

outside the scope of this class

– the client has no direct access to the data and 

must use the public member functions 

– this is where you should place all data to ensure 

the memory’s integrity 47CS162 Topic #3



Data Hiding

• The good news is that

– member functions defined in the public section 

can use, return, or modify the contents of any of 

the data members, directly

– it is best to assume that member functions are the 

only way to work with private data

• (there are “friends” but don’t use them this term)

– Think of the member functions and private data 

as working together as a team

48CS162 Topic #3



“class” Terminology

• Let’s see how “display_all” can access the data 

members:
class list {

public: notice it is public

int display_all() {

for (int i=0; i<num_of_videos; ++i)

cout <<my_list[i].title <<„\t‟

<<my_list[i].category

<<„\t‟ <<my_list[i].quantity <<endl;

}

•••

private:

video my_list[CONST_SIZE]; 

int num_of_videos;

}; 
49CS162 Topic #3



Data Hiding

• Notice, that the display_all function can 

access the private my_list and num_of_videos 

members, directly

– without an object in front of them!!!

– this is because the client calls the display_all 

function through an object

• object.display_all();

– so the object is implicitly available once we enter 

“class scope”
50CS162 Topic #3



Where to place....

• In reality, the previous example was 

misleading. We don’t place the 

implementation of functions with this this 

class interface

• Instead, we place them in the class 

implementation, and separate this into its own 

file

51CS162 Topic #3



Class Interface  (.h)

• Class Interface: list.h
class list {

public:

int display_all() 

•••

private:

video my_list[CONST_SIZE]; 

int num_of_videos;

}; 

• list.h can contain:
– prototype statements

– structure declarations and definitions

– class interfaces and class declarations

– include other files 52CS162 Topic #3



Class Implementation

• Class Implementation list.c
#include “list.h” notice the double quotes

int list::display_all() {

for (int i=0; i<num_of_videos; ++i)

cout <<my_list[i].title <<„\t‟

<<my_list[i].category

<<„\t‟ <<my_list[i].quantity <<endl;

}

– Notice, the code is the same

– But, the function is prefaced with the class name and the scope resolution 

operator!

– This places the function in class scope even though it is implemented in 

another file

– Including the list.h file is a “must”
53CS162 Topic #3



Constructors

• Remember that when you define a local variable in 

C++, the memory is not automatically initialized for 

you

• This could be a problem with classes and objects

• If we define an object of our list class, we really 

need the “num_of_videos” data member to have the 

value zero

• Uninitialized just wouldn’t work!

54CS162 Topic #3



Constructors

• Luckily, with a constructor we can write a function 

to initialize our data members

– and have it implicitly be invoked whenever a 

client creates an object of the class

• The constructor is a strange function, as it 

has the same name as the class, and no return 

type (at all...not even void). 

55CS162 Topic #3



Constructor

• The list constructor was:  (list.h)
class list {

public:

list(); <--- the constructor

•••

};  

• The implementation is: (list.cpp)
list::list(){

num_of_videos = 0;

}

56CS162 Topic #3



Constructor

• The constructor is implicitly invoked when 

an object of the class is formed:

int main() {

list fun_videos; implicitly calls the 

constructor

list all_videos[10];  implicitly calls the

constructor 10 times for

each of the 10 objects!!

57CS162 Topic #3



Dynamic Memory w/ Classes

• But, what if we didn’t want to waste 

memory for the title (100 characters may 

be way too big (Big, with Tom Hanks)

• So, let’s change our video structure to 

include a dynamically allocated array:
struct video {

char * title;

char category[5];

int quantity;

};
58CS162 Topic #3



Dynamic Memory w/ Classes

• Let’s write a class that now allocates this 

list of videos dynamically, at run time

• This way, we can wait until we run our 

program to find out how much memory 

should be allocated for our video array

59CS162 Topic #3



Dynamic Memory w/ Classes

• What changes in this case are the data 

members:
class list {

public:

list();

int add (const video &);

int remove (char title[]);

int display_all();

private:

video *my_list;

int video_list_size;

int num_of_videos;

};

Replace the array

with these

60CS162 Topic #3



Default Constructor

• Now, let’s think about the implementation. 

• First, what should the constructor do?

– initialize the data members

list::list() {

my_list = NULL;

video_list_size = 0;

num_of_videos = 0;

}

61CS162 Topic #3



Another Constructor

• Remember function overloading? We can 

have the same named function occur (in 

the same scope) if the argument lists are 

unique.

• So, we can have another constructor take in 

a value as an argument of the number of 

videos

– and go ahead and allocate the memory,  so that 

subsequent functions can use the array
62CS162 Topic #3



2nd Constructor

list::list(int size) {

my_list = new video [size];

video_list_size = size;

num_of_videos = 0;

}

Notice, unlike arrays of characters, we don’t 

need to add one for the terminating nul!

63CS162 Topic #3



Clients creating objects

• The client can cause this 2nd constructor to 

be invoked by defining objects with initial 

values

list fun_videos(20);  //size is 20

If a size isn’t supplied, then no memory is 

allocated and nothing can be stored in the 

array....
64CS162 Topic #3



Default Arguments

• To fix this problem, we can merge the two 

constructors and replace them with a single 

constructor:
list::list(int size=100) {

my_list = new video [size];

video_list_size = size;

num_of_videos = 0;

}

(Remember, to change the prototype 

for the constructor in the class 

interface)
65CS162 Topic #3



Destructor

• Then, we can deallocate the memory when 

the lifetime of a list object is over

• When is that?

• Luckily, when the client’s object of the list 

class lifetime is over (at the end of the 

block in which it is defined) -- the 

destructor is implicitly invoked

66CS162 Topic #3



Destructor

• So, all we have to do is write a destructor to 

deallocate our dynamic memory.
list::~list() {

delete [] my_list;

my_list = NULL;

•••

} 

(Notice the ~ in front of the function name)

(It can take NO arguments and has NO return type)

(This too must be in the class interface....)

67CS162 Topic #3



Review of Classes

• What is the difference between a class and 

a struct

• What is a data member?

• Where should a data member be placed in 

a class? (what section)

• What is a member function?

• Where should member functions be placed, 

if clients should use them?
68CS162 Topic #3



Review of Classes

• What is the difference between a member 

function and a regular-old C++ function?

• What is the purpose of the constructor?

• Why is it important to implement a 

constructor?

• What is the difference between a class and 

an object?

69CS162 Topic #3



Review of Classes

• Show an example of how a client program 

defines an object of a list class

• How then would the client program call the 

constructor? (trick question!)

• How then would the client program call the 

display_all function?

• Why are parens needed?

70CS162 Topic #3



Review of Classes

• Write a simple class interface (called 

number) that has the following members: 

– an integer private data member (containing a 
value)

– a constructor

– a set member function, that takes an integer as 

an argument and returns nothing

– a display member function

71CS162 Topic #3



Review of Classes

• Now, let’s try our hand at implementing

these functions

– a constructor

– a set member function, that takes an integer 

as an argument and returns nothing

– a display member function

72CS162 Topic #3



Review of Classes

• What happens if we forgot to put the 

keyword public in the previous class 

interface?

• Why is it necessary to place the class 

name, followed by the scope resolution 

operator (::) when we implement a 

member function outside of a class?

73CS162 Topic #3


