
Introduction to C++

Linear Linked Lists

Topic #4

1CS162 Topic #4

CS162 - Topic #4

• Lecture: Dynamic Data Structures

– Review of pointers and the new operator

– Introduction to Linked Lists

– Begin walking thru examples of linked lists

– Insert (beginning, end)

– Removing (beginning, end)

– Remove All

– Insert in Sorted Order

2CS162 Topic #4

CS162 - Pointers

• What advantage do pointers give us?

• How can we use pointers and new to
allocating memory dynamically

• Why allocating memory dynamically vs.
statically?

• Why is it necessary to deallocate this
memory when we are done with the
memory?

3CS162 Topic #4

CS162 - Pointers and Arrays

• Are there any disadvantages to a dynamically

allocated array?

– The benefit - of course - is that we get to wait until run

time to determine how large our array is.

– The drawback - however - is that the array is still fixed

size.... it is just that we can wait until run time to fix

that size.

– And, at some point prior to using the array we must

determine how large it should be.

4CS162 Topic #4

CS162 - Linked Lists

• Our solution to this problem is to use
linear linked lists instead of arrays to
maintain a “list”

• With a linear linked list, we can grow and
shrink the size of the list as new data is
added or as data is removed

• The list is ALWAYS sized exactly
appropriately for the size of the list

5CS162 Topic #4

CS162 - Linked Lists

• A linear linked list starts out as empty

– An empty list is represented by a null pointer

– We commonly call this the head pointer

head

6CS162 Topic #4

CS162 - Linked Lists

• As we add the first data item, the list gets

one node added to it

– So, head points to a node instead of being null

– And, a node contains the data to be stored in

the list and a next pointer (to the next node...if

there is one)

head
a dynamically
allocated node

data next

7CS162 Topic #4

CS162 - Linked Lists

• To add another data item we must first

decide in what order

– does it get added at the beginning

– does it get inserted in sorted order

– does it get added at the end

• This term, we will learn how to add in each

of these positions.

8CS162 Topic #4

CS162 - Linked Lists

• Ultimately, our lists could look like:

data next data next data next•••

head tail

Sometimes we also have a tail pointer. This is another
pointer to a node -- but keeps track of the end of the
list.
This is useful if you are commonly adding data to the
end

9CS162 Topic #4

CS162 - Linked Lists

• So, how do linked lists differ than arrays?

– An array is direct access; we supply an

element number and can go directly to that

element (through pointer arithmetic)

– With a linked list, we must either start at the

head or the tail pointer and sequentially

traverse to the desired position in the list

10CS162 Topic #4

CS162 - Linked Lists

• In addition, linear linked lists (singly) are

connected with just one set of next

pointers.

– This means you can go from the first to the

second to the third to the forth (etc) nodes

– But, once you are at the forth you can’t go

back to the second without starting at the

beginning again.....

11CS162 Topic #4

CS162 - Linked Lists

• Besides linear linked lists (singly linked)

– There are other types of lists

• Circular linked lists

• Doubly linked lists

• Non-linear linked lists (CS163)

12CS162 Topic #4

CS162 - Linked Lists

• For a linear linked lists (singly linked)

– We need to define both the head pointer and

the node

– The node can be defined as a struct or a class;

for these lectures we will use a struct but on

the board we can go through a class definition

in addition (if time permits)

13CS162 Topic #4

CS162 - Linked Lists

• We’ll start with the following:
struct video { //our data

char * title;

char category[5];

int quantity;

};

• Then, we define a node structure:
struct node {

video data; //or, could be a pointer

node * next; //a pointer to the next

};

14CS162 Topic #4

CS162 - Linked Lists

• Then, our list class changes to be:
class list {

public:

list(); ~list(); //must have these

int add (const video &);

int remove (char title[]);

int display_all();

private:

node * head; //optionally node * tail;

};

15CS162 Topic #4

CS162 - Default Constructor

• Now, what should the constructor do?

– initialize the data members

– this means: we want the list to be empty to
begin with, so head should be set to NULL

list::list() {

head = NULL;

}

16CS162 Topic #4

CS162 - Traversing

• To show how to traverse a linear linked
list, let’s spend some time with the
display_all function:

int list::display_all() {

node * current = head;

while (current != NULL) {

cout <<current->data.title <<‘\t’

<<current->data.category <<endl;

current = current->next;

}

return 1;

}

17CS162 Topic #4

CS162 - Traversing

• Let’s examine this step-by-step:

– Why do we need a “current” pointer?

– What is “current”?

– Why couldn’t we have said:
while (head != NULL) {

cout <<head->data.title <<‘\t’

<<head->data.category <<endl;

head = head->next; //NO!!!!!!!

}

We would have lost our list!!!!!!

18CS162 Topic #4

CS162 - Traversing

– Next, why do we use the NULL stopping
condition:

while (current != NULL) {

– This implies that the very last node’s next
pointer must have a NULL value

• so that we know when to stop when traversing

• NULL is a #define constant for zero

• So, we could have said:
while (current) {

19CS162 Topic #4

CS162 - Traversing

– Now let’s examine how we access the data’s values:
cout <<current->data.title <<‘\t’

<<current->data.category <<endl;

– Since current is a pointer, we use the -> operator

(indirect member access operator) to access the “data”

and the “next” members of the node structure

– But, since “data” is an object (and not a pointer), we

use the . operator to access the title, category, etc.

20CS162 Topic #4

CS162 - Linked Lists

– If our node structure had defined data to be a
pointer:

struct node {
video * ptr_data;

node * next;

};

– Then, we would have accessed the members
via:

cout <<current->ptr_data->title <<‘\t’

<<current->ptr_data->category <<endl;

(And, when we insert nodes we would have to remember to allocate
memory for a video object in addition to a node object...)

21CS162 Topic #4

CS162 - Traversing

• So, if current is initialized to the head of

the list, and we display that first node

– to display the second node we must traverse

– this is done by:
current = current->next;

– why couldn’t we say:
current = head->next; //NO!!!!!

22CS162 Topic #4

CS162 - Building

• Well, this is fine for traversal

• But, you should be wondering at this point,

how do I create (build) a linked list?

• So, let’s write the algorithm to add a node

to the beginning of a linked list

23CS162 Topic #4

CS162 - Insert at Beginning

• We go from:

• To:

• So, can we say:

head = new node; //why not???

head
data next •••

head
new node

data next

previous first
node

data next

24CS162 Topic #4

CS162 - Insert at Beginning

• If we did, we would lose the rest of the list!

• So, we need a temporary pointer to hold
onto the previous head of the list
node * current = head;

head = new node;

head->data = new video; //if data is a pointer

head->data->title = new char [strlen(newtitle)+1];

strcpy(head->data->title, newtitle);

//etc.

head->next = current; //reattach the list!!!

25CS162 Topic #4

CS162 - Inserting at End

• Add a node at the end of a linked list.

– What is wrong with the following. Correct it
in class:

node * current = head;

while (current != NULL) {

current = current->next;

}

current= new node;

current->data = new video;

current->data = data_to_be_stored;

}

LOOK AT THE BOLD/ITALICS FOR HINTS

OF WHAT IS WRONG!
26CS162 Topic #4

CS162 - Inserting at End

• We need a temporary pointer because if we use

the head pointer
• we will lose the original head of the list and therefore all of

our data

• If our loop’s stopping condition is if current is

not null -- then what we are saying is loop until

current IS null
• well, if current is null, then dereferencing current will give us

a segmentation fault

• and, we will NOT be pointing to the last node!

27CS162 Topic #4

CS162 - Inserting at End

• Instead, think about the “before” and

“after” pointer diagrams:

1ST NTH
•••head

Before

1ST NTH
•••head

After

new
node

current
28CS162 Topic #4

CS162 - Inserting at End

• So, we want to loop until current->next is not
NULL!

• But, to do that, we must make sure current isn’t
NULL

– This is because if the list is empty, current will be null
and we’ll get a fault (or should) by dereferencing the
pointer

if (current)

while (current->next != NULL) {

current = current->next;

}

29CS162 Topic #4

CS162 - Inserting at End

• Next, we need to connect up the nodes

– having the last node point to this new node
current->next = new node;

– then, traverse to this new node:
current = current->next;

current->data = new video;

– and, set the next pointer of this new last node to null:
current->next = NULL;

30CS162 Topic #4

CS162 - Inserting at End

• Lastly, in our first example for today, it was
inappropriate to just copy over the pointers to our
data

– we allocated memory for a video and then
immediately lost that memory with the following:

current->data = new video;

current->data = data_to_be_stored;

– the correct approach is to allocate the memory for the
data members of the video and physically copy each
and every one

31CS162 Topic #4

CS162 - Removing at Beg.

• Now let’s look at the code to remove at
node at the beginning of a linear linked list.

• Remember when doing this, we need to
deallocate all dynamically allocated
memory associated with the node.

• Will we need a temporary pointer?

– Why or why not...

32CS162 Topic #4

CS162 - Removing at Beg.

• What is wrong with the following?

node * current = head->next;

delete head;

head = current;

– everything? (just about!)

33CS162 Topic #4

CS162 - Removing at Beg.

• First, don’t dereference the head pointer
before making sure head is not NULL

if (head) {

node * current = head->next;

– If head is NULL, then there is nothing to remove!

• Next, we must deallocate all dynamic
memory:

delete [] head->data->title;

delete head->data;

delete head;

head = current; //this was correct....

34CS162 Topic #4

CS162 - Removing at End

• Now take what you’ve learned and write
the code to remove a node from the end of
a linear linked list

• What is wrong with: (lots!)
node * current = head;

while (current != NULL) {

current = current->next;

}

delete [] current->data->title;

delete current->data;

delete current;

}

35CS162 Topic #4

CS162 - Removing at End

• Look at the stopping condition

– if current is null when the loop ends, how can we

dereference current? It isn’t pointing to anything

– therefore, we’ve gone too far again
node * current = head;

if (!head) return 0; //failure mode

while (current->next != NULL) {

current = current->next;

}

– is there anything else wrong? (yes)

36CS162 Topic #4

CS162 - Removing at End

• So, the deleting is fine....
delete [] current->data->title;

delete current->data;

delete current;

– but, doesn’t the previous node to this still
point to this deallocated node?

– when we retraverse the list -- we will still
come to this node and access the memory (as
if it was still attached).

37CS162 Topic #4

CS162 - Removing at End

• When removing the last node, we need to
reset the new last node’s next pointer to
NULL

– but, to do that, we must keep a pointer to the
previous node

– because we do not want to “retraverse” the list
to find the previous node

– therefore, we will use an additional pointer

• (we will call it “previous”)

38CS162 Topic #4

CS162 - Removing at End

• Taking this into account:
node * current= head;

node * previous = NULL;

if (!head) return 0;

while (current->next) {

previous = current;

current = current->next;

}

delete [] current->data->title;

delete current->data;

delete current;

previous->next = NULL; //oops...

}

Can anyone see the remaining problem? 39CS162 Topic #4

CS162 - Removing at End

• Always think about what special cases
need to be taken into account.

• What if...

– there is only ONE item in the list?

– previous->next won’t be accessing the
deallocated node (previous will be NULL)

– we would need to reset head to NULL, after
deallocating the one and only node

40CS162 Topic #4

CS162 - Removing at End

• Taking this into account:
•••

if (!previous) //only 1 node

head = NULL;

else

previous->next = NULL;

}

Now, put this all together as an exercise

41CS162 Topic #4

CS162 - Deallocating all

• The purpose of the destructor is to

– perform any operations necessary to clean up

memory and resources used for an object’s

whose lifetime is over

– this means that when a linked list is managed

by the class that the destructor should

deallocate all nodes in the linear linked list

– delete head won’t do it!!!

42CS162 Topic #4

CS162 - Deallocating all

• So, what is wrong with the following:

list::~list() {

while (head) {

delete head;

head = head->next;

}

– We want head to be NULL at the end, so that is not
one of the problems

– We are accessing memory that has been deallocated.
Poor programming!

43CS162 Topic #4

CS162 - Deallocating all

• The answer requires the use of a temporary
pointer, to save the pointer to the next node
to be deleted prior to deleting the current
node:

list::~list() {

node * current;

while (head) {

current = head->next;

delete [] head->data->title;

delete head->data;

delete head;

head = current;

}

44CS162 Topic #4

CS162 - Insert in Order

• Next, let’s insert nodes in sorted order.

• Like deleting the last node in a LLL,

– we need to keep a pointer to the previous node

in addition to the current node

– this is necessary to re-attach the nodes to

include the inserted node.

• So, what special cases need to be

considered to insert in sorted order?

45CS162 Topic #4

CS162 - Insert in Order

• Special Cases:

– Empty List

• inserting as the head of the list

– Insert at head

• data being inserted is less than the previous head of

the list

– Insert elsewhere

46CS162 Topic #4

CS162 - Insert in Order

• Empty List

– if head is null, then we are adding the first

node to the list:

head
Before

1SThead

After

if (!head) {

head = new node;

head->data =...

head->next = 0;

}

47CS162 Topic #4

CS162 - Insert in Order

• Inserting at the Head of the List

– if head is not null but the data being inserted is

less than the first node

1ST NTH
•••head

Before

new node
•••head

After

NTH

current

1ST
•••

b z

a b z

48CS162 Topic #4

CS162 - Insert in Order

• Here is the “insert elsewhere” case:

1ST NTH
•••head

Before

1ST new node
•••head

After

NTH

currentprevious
49CS162 Topic #4

CS162 - Special Cases

• When inserting in the middle

– can the same algorithm and code be used to

add at the end (if the data being added is

“larger” than all data existing in the sorted

list)?

– Yes? No?

50CS162 Topic #4

CS162 - In Class, Work thru:

• Any questions on how to:

– insert (at beginning, middle, end)

– remove (at beginning middle, end)

– remove all

• Next, let’s examine how similar/different
this is for

– circular linked lists

– doubly linked lists

51CS162 Topic #4

CS162 - In Class, Work thru:

• For circular linked lists:

– insert the very first node into a Circular L L

(i.e., into an empty list)

– insert a node at the end of a Circular L L

– remove the first node from a Circular L L

– Walk through the answers in class or as an

assignment (depending on time available)

52CS162 Topic #4

CS162 - In Class, Work thru:

• For doubly linked lists:

– write the node definition for a double linked list

– insert the very first node into a Doubly L L (i.e., into

an empty list)

– insert a node at the end of a Doubly L L

– remove the first node from a Doubly L L

– Walk through the answers in class or as an assignment

(depending on time available)

53CS162 Topic #4

CS162 - What if...

• What if our node structure was a class

– and that class had a destructor

– how would this change (or could change) the
list class’ (or stack or queue class’) destructor?

//Discuss the pros/cons of the following design....

class node {

public:

node(); node(const video &); ~node();

private:

video * data; node * next;

};

54CS162 Topic #4

CS162 - What if...

• OK, so what if the node’s destructor was:
node::~node() {

delete [] data->title;

delete data;

delete next;

};

list::~list() {

delete head; //yep, this is not a typo

}

– This is a “recursive” function.... (a preview of our Recursion Lecture;

saying delete next causes the destructor to be implicitly invoked. This

process ends when the next ptr of the last node is null.)

55CS162 Topic #4

