 Introductionto C++

 Linear Linked Lists

Topic #4 _

e
- -
ES
=
-
=
=
=
-
=
-
P
S
=
-
it
Dt
=
ot
-
-
-.
-
-
-

CS162 - Topic #4

» Lecture: Dynamic Data Structures
— Review of pointers and the new operator
— Introduction to Linked Lists
— Begin walking thru examples of linked lists
— Insert (beginning, end)
— Removing (beginning, end)
— Remove All
— Insert in Sorted Order

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Pointers

What advantage do pointers give us?

How can we use pointers and new to
allocating memory dynamically

Why allocating memory dynamically vs.
statically?

Why Is it necessary to deallocate this
memory when we are done with the
memory?

CS162 Topic #4

l1I

\

CS162 - Pointers and Arrays

 Are there any disadvantages to a dynamically
allocated array?

— The benefit - of course - Is that we get to walit until run
time to determine how large our array Is.

— The drawback - however - is that the array is still fixed
size.... It Is just that we can wait until run time to fix
that size.

— And, at some point prior to using the array we must
determine how large it should be.

\

L

—
===
)
—
—
=
—
-
o

e
-
-
-
-
-
-~
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

 Our solution to this problem is to use
linear linked lists instead of arrays to
maintain a “list”

 With a linear linked list, we can grow and
shrink the size of the list as new data Is
added or as data 1S removed

« The list is ALWAYS sized exactly
appropriately for the size of the list

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

A linear linked list starts out as empty

— An empty list is represented by a null pointer
— We commonly call this the head pointer

LR nn

\

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
S
-
-
. -
-
e
-

CS162 Topic #4

CS162 - Linked Lists

« As we add the first data item, the list gets
one node added to it

— S0, head points to a node instead of being null

— And, a node contains the data to be stored In
the list and a next pointer (to the next node...if
there 1s one)

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

 To add another data item we must first
decide in what order

— does It get added at the beginning
— does it get inserted in sorted order
— does it get added at the end

 This term, we will learn how to add In each
of these positions.

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

 Ultimately, our lists could look like:

S U AT Y AN 0 N A

\

/

|t s

\

CS162 Topic #4

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
-
-
-
-
-
e
-

LW

CS162 - Linked Lists

* S0, how do linked lists differ than arrays?

— An array Is direct access; we supply an
element number and can go directly to that
element (through pointer arithmetic)

— With a linked list, we must either start at the
head or the tail pointer and sequentially
traverse to the desired position in the list

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

* In addition, linear linked lists (singly) are
connected with just one set of next
pointers.

— This means you can go from the first to the
second to the third to the forth (etc) nodes

— But, once you are at the forth you can’t go
back to the second without starting at the
beginning again

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

 Besides linear linked lists (singly linked)

— There are other types of lists
e Circular linked lists
* Doubly linked lists
* Non-linear linked lists (CS163)

LR nn

\

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
S
-
-
. -
-
e
-

CS162 Topic #4

CS162 - Linked Lists

 For a linear linked lists (singly linked)

— We need to define both the head pointer and
the node

— The node can be defined as a struct or a class;
for these lectures we will use a struct but on
the board we can go through a class definition
In addition (if time permits)

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Linked Lists

« We’ll start with the following:

struct video { /lour data
char * title;

char category[5];
Int quantity;
I3
» Then, we define a node structure:

struct node {

video data; //or, could be a pointer
node * next; //a pointer to the next

J

NN RT

\

CS162 Topic #4

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
S
-
-
. -
-
e
-

CS162 - Linked Lists

* Then, our list class changes to be:

class list {

public:
list(); ~list(); //must have these
int add (const video &);
Int remove (char title[]);
int display_all();

private:
node * head,; /loptionally node * tail;

J

LR nn

\

CS162 Topic #4

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
S
-
-
. -
-
e
-

CS162 - Default Constructor

 Now, what should the constructor do?
— Initialize the data members

— this means: we want the list to be empty to
begin with, so head should be set to NULL

list::list() {
head = NULL;
}

L I e

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Topic #4

CS162 - Traversing

 To show how to traverse a linear linked
list, let’s spend some time with the

display_all function:
int list::display_all() {
node * current = head,
while (current != NULL) {
cout <<current->data.title <<'\t’
<<current->data.category <<endl;
current = current->next;

}

return 1;

}

L I e

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Topic #4

l1I

\

CS162 - Traversing

» Let’s examine this step-by-step:
— Why do we need a “current” pointer?
— What 1s “current”?

VD

\

L

— Why couldn’t we have said:
while (head '= NULL) {
cout <<head->data.title <<‘\t’

<<head->data.category <<endl,
head = head->next;

}

—
===

)
—

—
—
—
-

-
-
-
>
-
e
e

— -
-
-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Topic #4

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Traversing

— Next, why do we use the NULL stopping

condition:
while (current != NULL) {

— This implies that the very last node’s next
pointer must have a NULL value

* 50 that we know when to stop when traversing
 NULL Is a #define constant for zero

« So, we could have said:
while (current) {

CS162 Topic #4

CS162 - Traversing

— Now let’s examine how we access the data’s values:
cout <<current->data.title <<‘\t’
<<current->data.category <<endl;

— Since current Is a pointer, we use the -> operator
(indirect member access operator) to access the “data”
and the “next” members of the node structure

— But, since “data” 1s an object (and not a pointer), we
use the . operator to access the title, category, etc.

CS162 Topic #4

-
e
=
>
-
. D
- A
— -
-
_—
-
. 2
o
- =
A
=
- A
— -
-
S
-
. =
. -
= =
e
=

l1I

\

\

e L e e

VD

L

-
-
-
>
-
e
e

— -
-

-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 - Linked Lists

— |f our node structure had defined data to be a
pointer:

struct node {
video * ptr_data;
node * next;
¥
— Then, we would have accessed the members
Via.

cout <<current->ptr_data->title <<\’

<<current->ptr_data->category <<endl;

(And, when we insert nodes we would have to remember to allocate
memory for a video object in addition to a node object...)

CS162 Topic #4

CS162 - Traversing

S0, If current is Initialized to the head of
the list, and we display that first node

— to display the second node we must traverse
— this Is done by:

current = current->next;

— why couldn’t we say:
current = head->next:

L I e

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Topic #4

CS162 - Building

« Well, this is fine for traversal

 But, you should be wondering at this point,
how do | create (build) a linked list?

* So, let’s write the algorithm to add a node
to the beginning of a linked list

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Insert at Beginning

« We go from:

S U AT Y AN 0 N A

\

e To:

* S0, can we say:.
head = new node; [/why not???

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
- -
-
-
. -
-
e
-

CS162 Topic #4

CS162 - Insert at Beginning

e |f we did, we would lose the rest of the list!

* S0, we need a temporary pointer to hold
onto the previous head of the list

node * current = head;

head = new node;

head->data = new video; //if data is a pointer
head->data->title = new char [strlen(newtitle)+1];
strcpy(head->data->title, newtitle);

/letc.

head->next = current; //reattach the list!!!

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Inserting at End

Add a node at the end of a linked list.

— What is wrong with the following. Correct it
In class:

node * current = head;
while (current '= NULL) {
current = current->next;

}

current= new node;
current->data = new video;
current->data = data_to_be_stored;

}
LOOK AT THE BOLD/ITALICS FOR HINTS

OF WHAT IS WRONG!

l1I

\

CS162 - Inserting at End

* We need a temporary pointer because If we use
the head pointer

« we will lose the original head of the list and therefore all of
our data

\

L

 If our loop’s stopping condition is 1f current 1s
not null -- then what we are saying is loop until
current IS null

 well, if current is null, then dereferencing current will give us
a segmentation fault

« and, we will NOT be pointing to the last node!

T Ll (e I B VAR |

CS162 Topic #4

e
-
-
-
-
-
-~
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Inserting at End

 Instead, think about the “before” and
“after” pointer diagrams:

S U AT Y AN 0 N A

\

{

CS162 Topic #4

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
- -
-
-
. -
-
e
-

l1I

\

CS162 - Inserting at End

« S0, we want to loop until current->next Is not
NULL!

* But, to do that, we must make sure current 1sn’t
NULL

— This i1s because If the list is empty, current will be null

and we’ll get a fault (or should) by dereferencing the
pointer

If (current)
while (current->next '= NULL) {
current = current->next;

(I A L A b

\

L

}

e L e e

CS162 Topic #4

-
-
-
>
-
e
e

— -
-

-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

l1I

\

CS162 - Inserting at End

Next, we need to connect up the nodes
— having the last node point to this new node

current->next = new node;

— then, traverse to this new node:

current = current->next;
current->data = new video;

— and, set the next pointer of this new last node to null:
current->next = NULL;

VD

\

L

e L e e

CS162 Topic #4

-
-
-
>
-
e
e

— -
-

-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

l1I

\

CS162 - Inserting at End

« Lastly, in our first example for today, it was

Inappropriate to just copy over the pointers to our
data

— we allocated memory for a video and then

Immediately lost that memory with the following:

current->data = new video;
current->data = data_to_be_stored,;

— the correct approach is to allocate the memory for the
data members of the video and physically copy each
and every one

\

L

—
===
)
—
—
=
—
-
o

e
-
-
-
-
-
-~
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Removing at Beg.

e Now let’s look at the code to remove at
node at the beginning of a linear linked list.

» Remember when doing this, we need to
deallocate all dynamically allocated
memory associated with the node.

« Will we need a temporary pointer?

— Why or why not...

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Removing at Beg.

» What is wrong with the following?

S U AT Y AN 0 N A

node * current = head->next;
delete head;
head = current;

\

— everything? (just about!)

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
- -
-
-
. -
-
e
-

CS162 Topic #4

CS162 - Removing at Beg.

 First, don’t dereference the head pointer

before making sure head is not NULL
iIf (head) {
node * current = head->next;
— If head is NULL, then there is nothing to remove!

* Next, we must deallocate all dynamic
memory:

delete [| head->data->title;

delete head->data;

delete head,;

head = current; //this was correct....

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Removing at End

* Now take what you’ve learned and write
the code to remove a node from the end of
a linear linked list

« What is wrong with: (lots!)

node * current = head,;
while (current '= NULL) {
current = current->next;
}
delete [] current->data->title;
delete current->data;
delete current;

}

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

l1I

\

CS162 - Removing at End

ook at the stopping condition

— 1f current is null when the loop ends, how can we
dereference current? It 1sn’t pointing to anything

(I A L A b

\

L

— therefore, we’ve gone too far again
node * current = head;
if ("head) return O; //failure mode
while (current->next '= NULL) {
current = current->next;

}
— 1S there anything else wrong? (yes)

e g e A

CS162 Topic #4

-
-
-
>
-
e
e

— -
-

-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 - Removing at End

* S0, the deleting Is fine....

delete [] current->data->title;
delete current->data;
delete current;

— but, doesn’t the previous node to this still
point to this deallocated node?

— when we retraverse the list -- we will still
come to this node and access the memory (as
If it was still attached).

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Removing at End

* When removing the last node, we need to

reset the new last node’s next pointer to
NULL

— but, to do that, we must keep a pointer to the
previous node

— because we do not want to “retraverse’ the list
to find the previous node

— therefore, we will use an additional pointer
 (we will call 1t “previous”)

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

l1I

\

CS162 - Removing at End

 Taking this into account:

node * current= head;

node * previous = NULL,;

if ('"head) return O;

while (current->next) {
previous = current;
current = current->next;

(I A L A b

\

L

}

delete [] current->data->title;
delete current->data,;

delete current;

previous->next = NULL; //oops...

}
Can anyone see the kemaining problem?

e L e e

-
-
-
>
-
e
e

— -
-
-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 - Removing at End

 Always think about what special cases
need to be taken into account.

« What If...

— there 1s only ONE item in the list?

— previous->next won’t be accessing the
deallocated node (previous will be NULL)

— we would need to reset head to NULL, after
deallocating the one and only node

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Removing at End

 Taking this into account:

S U AT Y AN 0 N A

if ('previous) //only 1 node
head = NULL;

else
previous->next = NULL,;

}

\

Now, put this all together as an exercise

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
- -
-
-
. -
-
e
-

CS162 Topic #4

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 - Deallocating all

* The purpose of th

e destructor Is to

— perform any operations necessary to clean up
memory and resources used for an object’s

whose lifetime 1s

— this means that w
by the class that t

over

nen a linked list is managed
ne destructor should

deallocate all noc

es in the linear linked list

— delete head won’t do 1t!!!

CS162 Topic #4

l1I

\

CS162 - Deallocating all

« S0, what Is wrong with the following:

(I A L A b

\

list::~list() {
while (head) {
delete head;
head = head->next;

L

}
— We want head to be NULL at the end, so that 1s not
one of the problems

— We are accessing memory that has been deallocated.
Poor programming!

—

===
—
—
—
—
—
—

-
-
-
>
-
e
e

— -
-

-
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Topic #4

CS162 - Deallocating all

» The answer requires the use of a temporary
pointer, to save the pointer to the next node
to be deleted prior to deleting the current
node:

list::~list() {
node * current;
while (head) {

current = head->next;

delete [] head->data->title;
delete head->data;
delete head;
head = current;

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Insert In Order

e Next, let’s insert nodes in sorted order.

 Like deleting the last node ina LLL,

— we need to keep a pointer to the previous node
In addition to the current node

— this Is necessary to re-attach the nodes to
Include the inserted node.

» S0, what special cases need to be
considered to Insert In sorted order?

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - Insert In Order

» Special Cases:
— Empty List
* inserting as the head of the list
— Insert at head

« data being inserted is less than the previous head of
the list

— Insert elsewhere

S U AT Y AN 0 N A

\

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
- -
-
-
. -
-
e
-

CS162 Topic #4

CS162 - Insert In Order

« Empty Llist

— 1f head Is null, then we are adding the first
node to the list:

S U AT Y AN 0 N A

\

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-
-
- -
-
-
. -
-
e
-

CS162 Topic #4

CS162 - Insert In Order

* Inserting at the Head of the List

— 1f head is not null but the data being inserted is
less than the first node

-
-
-
>
-
e

- A
— -
-
_—
-
-
-

-
R
-
e

— -

-

¢

—
===
)
—
—
—
—
-

{

CS162 Topic #4

vy

\

S U AT Y AN 0 N A

-
-
-
>
-
e
e
-
-
-
-
-
-
-
R
-
e
-

......Tﬂ

CS162 - Insert In Order

e Here 1s the “insert elsewhere” case:

{

CS162 Topic #4

N\

CS162 - Special Cases

« When inserting in the middle

— can the same algorithm and code be used to

add at the end (if the data being added is

“larger” than all data existing in the sorted
list)?

— Yes? No?

) S

-
-
-
>
-
e

- A
— -
-

_—
-
-
-

-
R
-
e

— -

-
-
-
-
-

-

e

-

CS162 Topic #4

CS162 - In Class, Work thru:

« Any guestions on how to:
— Insert (at beginning, middle, end)
— remove (at beginning middle, end)
— remove all
* Next, let’s examine how similar/different
this Is for
— circular linked lists
— doubly linked lists

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - In Class, Work thru:

e For circular linked lists:

— Insert the very first node into a Circular L L
(1.e., Into an empty list)

— Insert a node at the end of a Circular L L
— remove the first node from a Circular L L

— Walk through the answers in class or as an
assignment (depending on time available)

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - In Class, Work thru:

» For doubly linked lists:
— write the node definition for a double linked list

— Insert the very first node into a Doubly L L (i.e., into
an empty list)

— Insert a node at the end of a Doubly L L
— remove the first node from a Doubly L L

— Walk through the answers in class or as an assignment
(depending on time available)

I A I L o

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - What If...

 \What If our node structure was a class
— and that class had a destructor

— how would this change (or could change) the

list class’ (or stack or queue class’) destructor?
/IDiscuss the pros/cons of the following design....
class node {
public:
node(); node(const video &); ~node();
private:
video * data; node * next;

J

) S

e
-
-
-
-

-

-
-
-
-
-
-
e
-
S
-
-~
-
-
-
e
-
e
-
End
-

CS162 Topic #4

CS162 - What If...

* OK, so what if the node’s destructor was:

node::~node() {
delete [] data->title;
delete data;
delete next;
b
list::~list() {
delete head; //yep, this is not a typo
}

— This is a “recursive” function.... (a preview of our Recursion Lecture;
saying delete next causes the destructor to be implicitly invoked. This
process ends when the next ptr of the last node is null.)

CS162 Topic #4

-
e
=
>
-
. D
- A
-
-
_—
-
. 2
o
- =
A
=
- A
-
-
S
-
. =
. -
-
e
=

