
Introduction to C++

Recursion

Topic #5

1CS162 Topic #5

CS162 - Topic #5

• Lecture: Recursion

– The Nature of Recursion

– Tracing a Recursive Function

– Work through Examples of Recursion

– Problem solving with recursion

2CS162 Topic #5

CS162 - Recursion

• Recursion is repetition (by self-reference)

– it is caused when a function calls/invokes

itself.

– Such a process will repeat forever unless

terminated by some control structure.

3CS162 Topic #5

CS162 - Recursion

• So far, we have learned about control

structures that allow C++ to iterate a set of

statements a number of times.

• In addition to iteration, C++ can repeat an

action by having a function call itself.

– This is called recursion. In some cases it is

more suitable than iteration.

4CS162 Topic #5

CS162 - Recursion

• While recursion is very powerful

– and will allow us to at times simply solve

complex problems

– it should not be used if iteration can be used to

solve the problem in a maintainable way (i.e.,

if it isn’t too difficult to solve using iteration)

– so, think about the problem. Can loops do the

trick instead of recursion?

5CS162 Topic #5

CS162 - Recursion

– Why select iteration versus recursion?

• Efficiency!

• Every time we call a function a stack frame is pushed onto

the program stack and a jump is made to the corresponding

function

• This is done in addition to evaluating a control structure (such

as the conditional expression for an if statement) to determine

when to stop the recursive calls.

• With iteration all we need is to check the control structure

(such as the conditional expression for the while, do-while, or

for)

6CS162 Topic #5

CS162 - Recursion

• Let's look at a very simple example;

– in this case we can see that by using recursion
we can make some difficult problems very
trivial...

– many of these problems would be very
difficult to solve if you only were able to use
iteration.

– trace through the following problem in
class...showing how the stack frame works

7CS162 Topic #5

CS162 - Recursion

• What is the purpose of the following?
void strange(void);
int main(){

cout <<"Please enter a string" <<endl;
strange();
cout <<endl;
return 0;

}

void strange(void) {
char ch;
cin.get(ch);
if (!cin.eof() && ch != '\n'){

strange();
cout <<ch;

}
}

8CS162 Topic #5

CS162 - Recursion

• This program writes the reverse of what was

entered at the keyboard, no matter how many

characters were entered!
• Try to write an equally simple program just using the

iterative statements we know about; it would be difficult to

make it behave the same without limiting the number of

characters that can be entered or using up a lot of memory

with a huge array of characters!

• Notice, with recursion, we didn't have to even use an array!!

9CS162 Topic #5

CS162 - Recursion

• What happens to this “power” if we had

swapped the cout statement with the

recursive call in the previous example?
• It would have simply read and echoed what was

typed in.

• Recursion would be overkill; iteration should be

used instead.

10CS162 Topic #5

CS162 - Recursion

• When a recursive call is encountered, execution of the

current function is temporarily stopped.

• This is because the result of the recursive call must be

known before it can proceed.

• So, it saves all of the information it needs in order to

continue executing that function later (i.e., all current

values of all local variables and the location where it

stopped).

• Then, when the recursive call is completed, the computer

returns and completes execution of the function.

11CS162 Topic #5

CS162 - Recursion

• In order for your recursive calls to be useful, they must be

designed so that your program will ultimately terminate.

• As with iteration or looping, there is danger of creating a

recursive function that is an infinite loop!

• We need to be careful to prevent infinite repetition.

• Therefore, when designing a recursive function

– one of the first steps should be to determine

what the stopping condition should be

12CS162 Topic #5

CS162 - Recursion

• The best way to do this is to use

– an if statement to determine if a recursive call
should be made -- depending on the value of
some conditional expression.

• Eventually, every recursive set of calls should reach a
point that does not require recursion (i.e., this will stop
recursion).

• Recursion should not be used if it makes your algorithm
harder to understand or if it results in excessive demands
on storage or execution time.

13CS162 Topic #5

CS162 - Recursion

• Therefore, there are three requirements when using
recursion:

• Every recursive function must contain a control structure
that prevents further recursion when a certain state is
reached.

• That state must be able to be reached each time you run
the program.

• When that state is reached, the function must have
completed its computation and (if the function returns a
value) return the appropriate value for each recursive call.
don’t forget to have the function “use” the returned
value...if there is one!

14CS162 Topic #5

CS162 - Recursion

• In class, walk through the following:

int factorial(int n)

{

if (n < 2)

return 1;

else

return (n * factorial(n-1));

}

15CS162 Topic #5

CS162 - Recursion
• In class, walk through the following:

int factorial(int n)

{

if (n < 2)

return 1;

else

return (n * factorial(n-1));

}

• Compare and contrast with the iterative version (in
the lecture notes). Which is better? Why?

16CS162 Topic #5

CS162 - Recursion

• If you request nesting or recursion that goes beyond what

your system can handle...you will get an error when you

try to execute your program...such as "stack overflow".

• This simply means that you've tried to make too many

function calls - recursively.

• If you get this error, one clue would be to look to see if

you have infinite recursion.

– This situation will cause you to exceed the size

of your stack -- no matter how large your stack

is!

17CS162 Topic #5

CS162 - Examples of Recursion

• Two meaningful examples of recursion are the

– towers of hanoi problem

– binary search

• Let’s discuss each of these in class and
examine:
– the process they go thru

– see how recursion helps solve the problem

– look at the implementation details (of the binary search)

– discuss the benefits and drawbacks of recursion for
these algorithms

18CS162 Topic #5

CS162 - Using Recursion

• Today we will walk through examples solving

problems with recursion

• To get used to this process

– we will select simple problems that in reality should

be solved using iteration and not recursion

– but, it should give you an understanding of how to
design using recursion

– which we will need to understand for CS163

19CS162 Topic #5

CS162 - Example #1

• First, let’s display the contents of a linear linked

list, recursively

– obviously this is should be done iteratively!

– but, as an exercise determine what the stopping

condition should be first:

• when the head pointer is NULL

– what should be done when this condition is reached?
return

– what should be done otherwise? display and call the
function recursively

20CS162 Topic #5

CS162 - Example #1

• If we were to do this iteratively:
void display(node * head) {

while (head) {

cout <<head->data->title <<endl;

head = head->next;

}

}

• Why is it ok in this case to change head?

• Look at the stopping condition

– with recursion we will replace the while with an

if....and replace the traversal with a function call

21CS162 Topic #5

CS162 - Example #1

• If we were to do this recursively:
void display(node * head) {

if (head) {

cout <<head->data->title <<endl;

display(head->next);

}

}

• Now, change this to display the list
backwards (recursively)

• Discuss the code you’d need to do THAT

recursively....
22CS162 Topic #5

CS162 - Example #2

• Next, let’s insert at the end of a linear linked

list, recursively

– again this is should be done iteratively!

– but, as an exercise determine what the stopping

condition should be first:

• when the head pointer is NULL

– what should be done when this condition is
reached? allocate memory and save the data

– what should be done otherwise? call the function
recursively with the next ptr

23CS162 Topic #5

CS162 - Example #2
• If we were to do this iteratively:

void append(node * & head, const video & d) {

if (!head) {

head = new node;

head->data = ••• //save the data

head->next = NULL;

} else {

node * current = head;

while (current->next) {

current = current->next;

}

current->next = new node;

current = current->next;

current->data = ••• //save the data

current->next = NULL;

}

} 24CS162 Topic #5

CS162 - Example #2
• If we were to do this recursively:

void append(node * & head, const video & d) {

if (!head) {

head = new node;

head->data = ••• //save the data

head->next = NULL;

} else

append(head->next,d);

}

• Notice this is much shorter (but less efficient)

• Notice the stopping condition (!head)

• Examine how the pass by reference can be used to
implicitly connect up the nodes

• Walk thru an example of invoking this function
25CS162 Topic #5

CS162 - Example #2
• This can also be done recursively by using the returned

value (rather than call by reference):
node * append(node * head, const video & d) {

if (!head) {

head = new node;

head->data = ••• //save the data

head->next = NULL;

} else

head ->next = append(head->next,d);

return head;

}

• Notice the function call must use the returned value

• Here, we are explicitly connecting up the nodes

• Walk thru an example of invoking this function

26CS162 Topic #5

CS162 - Example #3

• Next, let’s remove an item from a linear
linked list, recursively

– again this is should be done iteratively!

– but, as an exercise determine what the stopping
condition should be first:

• when the head pointer is NULL

• when a match (the item to be removed) is found

– what should be done when this condition is
reached? deallocate memory

– what should be done otherwise? call the function
recursively with the next ptr

27CS162 Topic #5

CS162 - Example #3
• If we were to do this recursively:

int remove(node * & head, const video & d) {

if (!head) return 0; //match not found!

if (strcmp(head->data->title, d->title)==0) {

delete [] head->data->title;

delete head->data;

delete head;

head = NULL;

return 1;

} return remove(head->next,d);

}

• Does this reconnect the nodes?

• How does it handle the special cases of a) empty list, b)
deleting the first item, c) deleting elsewhere

28CS162 Topic #5

CS162 - More Examples

• Now in class, let’s design and implement

the following recursively

– count the number of items in a linear linked

list

– delete all nodes in a linear linked list

• Why would recursion not be the proper

solution for push, pop, enqueue, dequeue?

29CS162 Topic #5

CS162 - More Examples

• What is the output for the following
program fragment? called: f(5)

int f(int n) {

cout <<n <<endl;

if (n == 0) return 4;

else if (n == 1) return 2;

else if (n == 2) return 3;

n=f(n-2) * f(n-4);

cout <<n <<endl;

return n;

}

30CS162 Topic #5

CS162 - More Examples

• What is the output of the following program or write INFINITE if
there are indefinite recursive calls? called:

cout <<watch(-7)

int watch(int n) {
if (n > 0)

return n;
cout <<n <<endl;
return watch(n+2)*2;

}

31CS162 Topic #5

