
Introduction to C++

Arrays of Arrays

Topic #6

1CS162 Topic #6

CS162 - Topic #6

• Lecture:

– Arrays with Structured Elements

• defining and using arrays of arrays

• remember pointer arithmetic

– Review for the Final Exam

• Comprehensive

2CS162 Topic #6

CS162 - Subscript Operator

• The subscript operator provides access to individual elements of an

array.

• The subscript operator is a binary operator.

• The first operand is an expression designating the address of the first

element of an array; this can be the array identifier, or as we will see

later, this can also be a pointer expression.

• The second operand is an integer expression contained within the

brackets designating the element of the array to be accessed.

• The first element of an array always begins at index zero and the last

element of an array ends at the index that is one less than the size of

the array; thus, legal indices fall within the range 0 through size-1.

3CS162 Topic #6

CS162 - Subscript Operator

//for some statcially allocated array:

cout <<"address of array is " <<array << endl;

for(int i=0; i<size; ++i) //loop for i=0...6

cout <<"array[" <<i <<"] equals " <<array[i] << endl;

• Each of the elements of the array sequentially follow one another in
memory.

• We can think of each element of an array as an unnamed variable that
we identify by using an index.

• The actual address of each element is computed by the subscript
operator and takes into the account the size of the elements in the
array.

• The index is independent of the actual address of each element.

4CS162 Topic #6

CS162 - sizeof Operator
• The only other operator that can be directly applied to arrays is the

sizeof operator.

• The sizeof operator returns the number of characters (bytes) that

an array occupies.

• The number of elements in an array can be determined by dividing

the size of the array by the size of an element in the array.

cout <<"size of int array = " <<sizeof(array) <<endl;

cout <<"size of int = " <<sizeof(int) <<endl;

cout <<"number of elements in the array = "

<<sizeof(array)/sizeof(array[0]) << endl;

5CS162 Topic #6

CS162 - Pointers and Arrays

• We can also use pointers to point to data that is

stored sequentially in memory.

• We can treat a pointer to data stored sequentially

in memory as an array.

• All operations on arrays have an equivalent

pointer representation.

• We can take advantage of this to improve our

programs' performance when operating on arrays.

6CS162 Topic #6

CS162 - Pointers and Arrays

• It is possible to define the behavior of the subscript

operator entirely in terms of operations on a pointer.

• The first thing we need to know is that the identifier of

an array is a constant pointer to the first element of that

array.

• It is a pointer to the same type as the elements of the

array.

• This means that we can initialize or assign an array name

to a pointer, where the pointer points to data of the same

type as the elements of our array.

7CS162 Topic #6

CS162 - Pointers and Arrays

int ai[7]; //ai is of type pointer to int

int* pi; //pi is a pointer to int

pi = ai; //pi now points to the array ai

• We now have two ways to access elements of an array,
one using the name of the array (ai) and the other using a
pointer (pi).

• In this example, the name of the array (ai) is a constant
pointer to an int.

• The pointer (pi) is a variable pointer to an int that has
been assigned the same address as ai.

8CS162 Topic #6

CS162 - Pointers and Arrays

• Since the value of ai has been assigned to pi, the residual
value of using either ai or pi in an expression is the same
in either case:

– it is the address of the first element of the array.

• When ai is used in an expression, that expression uses the
value that the constant ai represents.

• When pi is used in an expression, that expression uses the
value currently assigned to variable pi.

• We can apply the subscript operator to this residual value
(an expression of type pointer to an int) in order to access
the elements of the array.

9CS162 Topic #6

CS162 - Pointers and Arrays

int *pi; //pi is a pointer to an int

pi = ai; //same as pi = &a[0]

for(int i=0; i<7; i++)

if(ai[i] != pi[i])

cout <<"Oops - big trouble in River City" <<endl;

• The relationship between pointers and arrays is defined

by the following identity, where E1 is a pointer (either an

array name or a pointer expression) and E2 is an integer

expression.

E1[E2] == *((E1)+(E2))

10CS162 Topic #6

CS162 - Pointers and Arrays

ai[3] = 42; //this stores 42 w/array subscripting

*(ai+3)=42; //same thing using pointer operations

*(3+ai)=42; //addition is communitive
3[ai] = 42; //this works!

• This identity means that the subscript operation is
equivalent to adding the index to the pointer expression
and then dereferencing the result.

• Understanding this identity allows us to decompose array
subscripting operations into pointer operations.

• Array and pointer operations can be the same, even
though the declarations for arrays and pointers are
different.

11CS162 Topic #6

CS162 - Pointers and Arrays

• This identity means that the subscript operation is
equivalent to adding the index to the pointer expression
and then dereferencing the result.

• Understanding this identity allows us to decompose array
subscripting operations into pointer operations.

• Array and pointer operations can be the same, even
though the declarations for arrays and pointers are
different.

ai[3] = 42; //this stores 42 w/array subscripting

*(ai+3)=42; //same thing using pointer operations

*(3+ai)=42; //addition is communitive

3[ai] = 42; //this works!

All of the above works as well if pi were used instead!
12CS162 Topic #6

CS162 - Pointers and Arrays

• We have seen that the name of an array can be replaced

with a pointer to the first element of the array.

• The only difference is that the name of an array is a

constant and cannot be modified, whereas a pointer can

be defined as a variable and therefore can be modified.

• The process of modifying a pointer variable is called

pointer arithmetic.

13CS162 Topic #6

CS162 - Pointer Arithmetic

• Walk through the following in class:

int a[10];
int* p=a; //initialize p to &a[0]
int* q=&a[2]; //initialize q to &a[2]
p = q; //assign q to p

p = &a[5]; //p points to the 6th element &a[5]
p+=3; //p now points to the 9th element &a[8]
p-=8; //p now points to the 1st element &a[0]

p = &a[5]; //p points to the 6th element &a[5]
++p; //p now points to the 7th element &a[6]
p++; //p now points to the 8th element &a[7]
p = p + 2; //p now points to the 10th element &a[9]
--p; //p now points to the 9th element &a[8]
p--; //p now points to the 8th element &a[7]
p = p - 2; //p now points to the 6th element &a[5]

14CS162 Topic #6

CS162 - Pointer Arithmetic

• There are two key points in understanding pointer
arithmetic.

• The first is that pointer variables can be modified whereas
array names are constants and cannot be modified.

• The second is that pointer operations automatically take
into account the size of the data pointed to, just like array
subscripts do.

• This means that operations such as addition and
subtraction are independent of the size of the data.

• When we add one to a pointer of some type, we point to
the next element of that type.

15CS162 Topic #6

CS162 - Pointer Arithmetic

• Walk through the following in class:

int a[10];
int* p=a; //define and initialize p to &a[0]
p = p + 1; //add 1 to p; p==&a[1]
*p = *p + 1; //(*p)=(*p)+1; add 1 to a[1]
*p = *(p + 1); //copy a[2] to a[1]
p+=1; //add 1 to p; p==&a[2]
*p+=1; //(*p)+=1; add 1 to a[2]
*(p+=1); //add 1 to p; p==&a[3]
++p; //add 1 to p; p==&a[4]
++*p; //derefer p; add 1 to a[4]
*++p; //add 1 to p; p==&a[5]
p++; //add 1 to p; p==&a[6]
p++; //(p++); rvalue==6; add 1 to p; p==&a[7]
(*p)++; //dereference p; add 1 to a[7]

16CS162 Topic #6

CS162 - Pointer Arithmetic

0

1

2

3

4

5

6

7

8

9

2 2

3

5

8

int a[]={0,1,2,3,4,5,6,7,8,9}
 int* p=a

 p = p + 1
 *p = *p + 1
 *p = *(p + 1)
 p+=1
 *p+=1
 *(p+=1)
 ++p
 ++*p
 *++p
 p++
 *p++
 (*p)++

&a[0]
 a[0]
&a[1]
 a[1]

17CS162 Topic #6

CS162 - Arrays of Arrays

• Arrays can be formed from any type of data, even other
arrays!

• When each element is an array, we define an array of
arrays.

• With an array of arrays, each element is an array of some
type.

• Arrays of arrays are sometimes called multidimensional
arrays in C++.

• This is not strictly correct because each dimension
represents a different type, rather than each dimension
representing the same type.

18CS162 Topic #6

CS162 - Arrays of Arrays

• An array of arrays is defined just like an array of a

fundamental type, except that the identifier is

immediately followed by an additional pair of brackets

([]).

• The size of each element's array, called a subarray, is

supplied within the second set of brackets as a literal,

constant, or constant expression.

int array[3][2];

19CS162 Topic #6

CS162 - Arrays of Arrays

• To access elements of an array of arrays, we can use the
subscript operator. To access the appropriate subarray, we
follow the name of the array by an index in brackets. For
example, array[0] accesses the first subarray. The value
of this element is the first subarray of two integers. Its
type is an array of integers (a pointer to an int).

• To access elements within a subarray, we follow the
name of the array by the index of the subarray in brackets
and then follow that by the index of the element within
the subarray that we wish to access in brackets. For
example, array[0][0] accesses the first integer in the first
subarray.

20CS162 Topic #6

CS162 - Arrays of Arrays

• The name of an array of arrays also represents a pointer

expression. By itself, it has a value equal to the address of

the first element of the array. The type is a pointer to the

first element of the array. For example, the type of array

is int (*)[2] (a pointer to an array of two integers).

int array[3][2];

int (*p1)[2]; //define pointer of same type as array

p1 = array; //assign pointer to point to array

21CS162 Topic #6

CS162 - Array of Arrays

• Walk through the following in class:

int array[6][2];
int (*p1)[2]; //define pointer of same type as array
p1 = array; //assign pointer to point to array

int *p; //define ptr of same type as subarray
p = *p1; //assign ptr to point to 1st subarray
p = array[0]; //this also points to 1st subarray and
p = *(array+0); //so does this because of our identity
p = *array; //and so does this

• We can define and initialize a pointer to a subarray. The
type of a subarray is a pointer to an element of the
subarray. By defining a pointer of that type, we can use
pointer arithmetic to access the subarray.

22CS162 Topic #6

CS162 - Array of Arrays

int a[3][2]={{0,1},{10,11},{20,21}};

a
a[0]
a[0][0]
a[0][1]
a[1]
a[1][0]
a[1][1]
a[2]
a[2][0]
a[2][1]

0 p1=a //int (*)[2]
 p1 //int
 **p1 //int
 p1+1 //int
*(*p1+1) //int
 p1+2 //int (*)[2]
 (p1+2) //int
 p=*(p1+2) //int*
 *p //int
 p+1 //int*

1

10

11

20

21

23CS162 Topic #6

CS162 - Arrays of Arrays

• If we were to print the value of the pointers p1 and p,
their values would be the same even though they are
different types.

• This is because the address of the first element of array is
at the same address as the first element in the first
subarray.

• However, when we add to or subtract from these two
pointers, the results are significantly different.

• By adding one to pointer p1, we point to the next
subarray of 2 integers.

• By adding one to pointer p, we point to the next int within
the first subarray.

24CS162 Topic #6

CS162 - Programming Lang.

• Discuss in class...

– How C++ relates to C and Java

• classes vs structures

• I/O (iostream vs. stdio)

• pass by reference vs pass by pointer

• etc.

25CS162 Topic #6

CS162 - Software Engineering

• Discuss in class...

– What have we learned about the design

process after developing our programs this

term?

• what would you do differently now that you’ve had

experience with this project

• how would you integrate files vs arrays vs linked

lists

• what role would classes and structures play

26CS162 Topic #6

CS162 - Software Engineering

• Looking back

– how critical was the design process

– what limitations did you encounter because of

your designs this term

– Did any of you use structure charts or data

flow diagrams?

27CS162 Topic #6

CS162 - Software Engineering

• Talk about software engineering in the real world

– how similar/different is the real world from what you

encountered in your projects this term?

– what steps are taken?

– how does a firm ensure software is maintainable and

reliable?

– what about post mortem’s? evaluating the design and

implementation process after to learn...

– what ethical issues do we need to consider?

28CS162 Topic #6

CS162 - Review for Final

• The final exam will be comprehensive

• Let’s list what we learned this term:

– structures

– classes

– arrays of structures and objects of classes

– pointers (definition)

– allocating memory dynamically (e.g., for
arrays)

29CS162 Topic #6

CS162 - Review for Final

• We also learned about:

• Linear linked lists...

– what are they

– why are them important

– how to build them, traverse them, remove

nodes from them, copy them, merge 2 lists

together

– how to destroy the contents completely

30CS162 Topic #6

CS162 - Review for Final

• We also learned about:

• Recursion

– what is it?

– what can it be used for?

– how it is used for the binary search

– how to write a simple recursive function

– how to trace through a simple recursive
function

31CS162 Topic #6

CS162 - Review for Final

Questions?

32CS162 Topic #6

