
1

Data Structures

Topic #1

Welcome!

2

Today’s Agenda

• Introduction...what to expect!?!

• Talk about our Goals and Objectives

• Textbook is highly recommended

• Lecture Notes at clean copy

• Discuss what Assignments will be like

• This week is mostly review, so we will go
rather rapidly through the material...and
then slow down

3

Programming Paradigms

• Procedural Abstraction

• Modular Abstraction

• Data Abstraction

• Object Oriented Programming

4

Data Structures

• Our goal this term is to spend our time talking

about different data structures, algorithms to solve

problems, and how to measure the efficiency of

the approaches taken

• This term is not about learning new C++ syntax!

• Instead, we will apply C++ and linked lists to new

abstract data types

5

Data Structures vs. ADT?

• So, what is the difference between a data

structure and an abstract data type?

• A data structure specifies how we store the data

(like an array, linked list)

• An abstract data type (ADT) specifies how a

new data type behaves: it includes the data and

operations that the new data type requires; the

data being stored in a data structure!

6

Data Structures vs. ADT?

• We will be building Abstract Data Types

all term!

• Let’s walk thru some examples of ADTs

– int

– list

– stack

– queue

7

Data Structures vs. ADT?

• So, what is the difference between:

– Data Abstraction

– Abstract Data Type

– Data Structure

– Client vs. Client Program

– User vs. Application

8

Using Classes to build ADTs

• We will use the C++ class construct to build

abstract data types

• The data (represented by a data structure)

are placed in the private section

• The operations (what the “client” or

application can do) is in the public section

9

Using Classes to build ADTs

• The user & client should not be aware of what
data structure is being used

• This means the client program should not be
aware that there is a node or a next pointer for a
linked list, or an index to an array -- if an array is
used

• This allows an ADT to “plug and play” different
data structures, to maximize efficiency w/o
disrupting the client program

10

Using Classes to build ADTs

• Given this, what do you think we should

do about:

– data members?

– error messages?

– input of data?

– output of data?

– prompting?

11

Using Classes to build ADTs

• For each data member, ask yourself the

question....could this be a local variable to a

member function instead?

• If the value of the variable does not need to

persist from operation to operation, it

should not be a data member!

12

Using Classes to build ADTs

• The client program represents...

– your “test bed” or the “application program”

– represented by your main program

• Keep your data members restricted to just
what is necessary

• Classes should not prompt

• For 163, classes should also not perform
input...we will change that in CS 202

13

Using Classes to build ADTs

• The main program is the only place you
should use statically allocated (do you
remember what this term means?) arrays

• All arrays must be dynamically allocated in
your class...why?

• Think about the when an ADT is written vs.
an application. The ADT should be able to
be used by many applications...

14

Using Classes to build ADTs

• Try to make your ADT’s as general as

possible (without getting into templates).

• This means don’t tie the member functions

to reading information from the keyboard

• Because...the ADT doesn’t know if there is

anyone AT the keyboard!!!

15

Using Classes to build ADTs

• Use arguments instead and have the main()
read from the keyboard (and prompt)

• This way, information can come from the
keyboard or a file!!!

• And, of course, no global variables are
allowed

• And, never prompt from a member
function! Think of an int prompting!!!!!

16

Using Classes to build ADTs

• Think about Efficiency Too this term!

• Only traverse lists when absolutely
necessary

• Use pass by reference to reduce the
information from continually being copied -
- when passing instances of a struct or a
class

• And, remember to wear “different hats”

