
Data Structures

Topic #10



Today’s Agenda

• Continue Discussing Trees

• Examine more advanced trees

– 2-3 (evaluate what we learned)

– B-Trees

– AVL

– 2-3-4

– red-black trees



Discuss 2-3 Trees

• A 2-3 tree is always balanced

• Therefore, you can search it in all 

situations with logarithmic efficiency of 

the binary search

• You might be concerned about the extra 

work in the insertion/deletion algorithms to 

split and merge the nodes...



Discuss 2-3 Trees

• But, rigorous mathematical analysis has 

proved that this extra work to maintain 

structure is not significant

• It is sufficient to consider only the time 

required to locate an item (or a position to 

insert)



Discuss 2-3 Trees

• So, if 2-3 trees are so good, why not have 

nodes that can have more data items and 

more than 3 children?

• Well, remember why 2-3 trees are great?

– because they are balanced and that balanced 

structure is pretty easy to maintain



Discuss 2-3 Trees

• The advantage is not that the tree is shorter 

than a balanced binary search tree

– the reduction in height is actually offset by the 

extra comparisons that have to be made to find 

out which branch to take

– actually a binary search tree that is balanced 

minimizes the amount of work required to 

support ADT table operations



Discuss 2-3 Trees

• But, with binary search trees balance is 

hard to maintain

– A 2-3 tree is really a compromise

– Searching may not be quite as efficient as a 

binary tree of minimum height

– but, it is relatively simple to maintain



Discuss 2-3 Trees

• Allowing nodes to have more than 3 

children would require more comparisons 

and would therefore be counter productive

– unless you are working with external storage 

and each node requires a disk access, then we 

use b-trees which have the minimum height 

possible



Discuss B-Trees

• Tables stored externally can be searched 

with B-Trees. 

– B-Trees are a more generalized approach than 

the 2-3 Tree 

– With externally stored tables, we want to keep 

the search tree as short as possible; it is much 

faster to do extra comparisons at a particular 

node than try to find the next node.  



Discuss B-Trees

• Every time we want to get another node, 

– we have to access the external file and read in the 

appropriate information. 

– It takes far less time to operate on a particular 

node (i.e., doing comparisons) once it has been 

read in.

– This means that for externally stored tables we 

should try to reduce the height of the tree...even if 

it means doing more comparisons at every node.



Discuss B-Trees

• Therefore, with an external search tree, 

– we allow each node to have as many children as 

possible. 

– If a node is to have m children, then you must be 

able to allocate enough memory for that node to 

contain the data and m pointers to the node. 

– The data such a node must have must be m-1 key 

values.



Discuss B-Trees

• Remember in a binary search tree, 

– if a node has 2 children then it contains one data value 

(i.e., one value). 

– You can think of the data value at a node as separating the 

data values in the two child subtrees. 

– All keys to the left are less than the node's data value and 

all key values to the right are greater than or equal. 

– The value of the data at a particular node tells you which 

branch to take.



Discuss B-Trees

• In a 2-3 tree, 

– if a node has 3 children then it must contain two key 
values. 

– These two values separate the key values in the node's 
three child subtrees. 

– All of the key values in the left subtree are less than 
the node's smaller key value; 

– all of the key values in the middle subtree are between 
the node's two key values; 

– all of the key values in the right subtree are greater 
than or equal to the node's larger key



Discuss B-Trees

• Ideally, you should structure these types of 

trees such that every internal node has m 

children and all leaves are at the same level. 

• For example, if m is 5 -- then every node 

should have 5 children and 4 data values. 

– But, this is too difficult to maintain when you 

are doing a variety of insertions and deletions. 



Discuss B-Trees

• So, we can require that B-trees be balanced 
(as we saw with 2-3 trees)...

– but the number of children for any internal 
node should be able to be somewhere between 
m and (m div 2)+1.

• We call this a B-Tree of degree m

• This requires that all leaves be at the same 
level (balanced). 



Discuss B-Trees

• Each node contains between m-1 and (m 

div 2) values. 

• Each internal node has one more child than 

it has values. 

• There is one exception; 

– the root of the tree can contain as few as 1 

value and can have as few as two children (or 

none -- if the tree consists of only a root!).



Discuss B-Trees

• Notice, a 2-3 tree is a B-tree of degree 3. 

• Data can be inserted into a B-tree using the same 

strategy 

of splitting and 

merging nodes 

that we discussed

• Here is a B-tree 

of degree 5:

• •

20 30

•

• •

35 48

• • •

60 68

•

50 56 57 58



Discuss B-Trees

• Then, insert 55. 

– The first step is to locate the leaf of the tree in which this 

index belongs by determining where the search for 55 

would terminate.

• We would find that we would want to insert 55 in 

the node containing 50,56,57, 58. 

– But, that would cause this node to contain 5 records. 

Since a node can contain only 4 records, you must split 

this node into two...the new left node gets the two smaller 

values and the new right node gets the two larger values. 



Discuss B-Trees

• The record with the middle key value (56) is 

moved up to the parent:

• •

20 30

•

• •

35 48

• • •

60 68

•

50 55 57 58

Mov e 56 here   



Discuss B-Trees

• This causes two problems, 

– the parent now has six children and five records!! 

– So, we must split the parent into two nodes and move 

the middle data value up to its parent. 

– Remember, when we split an internal node, we need 

to also move that node's children too

– Since the root only has 2 data items, we can simply 

add 56 there.

– The solution is on the next slide...



Discuss B-Trees

• •

20 30

•

• •

35 48

• • •

60 68

•

50 55 57 58

Mov e 56 here   

• •

20 30

•

• •

35 48

• • •

60 68

•

50 55 57 58

56

•



Discuss B-Trees

• Notice, that if the root had needed to be spit, 

– the new root will contain only one value and 
have only 2 children (that is why we have the 
exception to the B-Tree definition stated 
earlier).

• To traverse a B-Tree in sorted order, all we 
need to do is visit the search keys in sorted 
order by using an inorder traversal of the B-
Tree.



Balancing Algorithms

• But, are there other alternatives?

• Remember the advantage of trees is that 
they are well suited for problems that are 
hierarchical in nature and they are much 
faster than linked lists

– but, this is not valid if the tree in not balanced

– luckily, there are a number of techniques to 
balance a binary tree



Balancing Algorithms

• Some of the balancing techniques require constant 

restructuring of the tree as data is inserted

– the AVL algorithm uses this approach

• Some algorithms consist of build an unbalanced 

tree and then reordering the data once the tree is 

generated

– this can be simple but depending on the frequency of 

data being inserted, it may not be realistic



Balancing Algorithms

• The “brute force” technique is to create an array of 

pointers to your data by traversing an unbalanced 

BST using “inorder” traversal

– then re-build the tree by splitting the array in the middle 

for each subarray (much like what we have seen with 

the binary search algorithm used with arrays)

– the middle data item should be the root, as it splits what 

is less than it, and what is greater!



Balancing Algorithms

• The algorithm for the “brute force” 

approach is:

– balance(data_type data [], int first, int last)

• if (first <= last) {

• int middle = (first + last)/2;

• insert(data[middle]);

• balance(data, first, middle-1);

• balance(data, middle+1, last);



Balancing Algorithms

• The “brute force” technique has a serious 
drawback

– all of the data must be put in an array before a balanced 
tree can be created

– what would happen if you weren’t using pointers to the 
data but instances of the data? 

– if an unbalanced tree is not used (i.e., the data is 
directly inserted into the array from the client), then a 
sorting algorithm must be used and fixed size issues 
arise



AVL Trees

• The AVL tree is a classical method 
proposed by Adelson-Velskii and Landis

– creates an “admissible tree” (its original 
name!)

– focuses on rebalancing the tree locally to the 
portion of the tree affected by insertion and 
deletions

– it allows the height of the left and right 
subtrees of every node to differ by at most one



AVL Trees

• With AVL trees

– each node must now keep track of the “balance 
factors” which records the differences between 
the heights of the left and right subtrees

– the balance factor is the height of the right 
subtree minus the height of the left subtree

– all balance factors must be +1, 0, or -1

– notice, this does meet the definition we learned 
about for a balanced tree



AVL Trees

• However, the concept of AVL trees always 

includes implicitly the techniques for balancing 

trees

– and does not guarantee that the resulting tree is 

perfectly balanced (unlike all of the other techniques 

we have seen so far)

– but, an AVL tree can be searched almost as efficiently 

as a minimum height binary search tree

– but insert and removal are not as efficient



AVL Trees

• AVL trees actually maintains the height close to 

minimum by monitoring the shape of the tree as 

you insert and delete

• After you insert/delete

– the tree is checked to see if any node differs by more 

than 1 in height

– if it does, you rearrange the nodes to restore balance

– But, as you can guess, we can’t arbitrarily rearrange 

nodes....we must keep proper order



AVL Trees

• What we do is rotate the tree to make it balanced

• Rotations are not necessary after every insertion 

& deletion (it is only needed when the height 

differs by more than 1)

– experiments indicate that deletions in 78% of the cases 

require no rebalancing

– and only 53% of the insertions do not bring the tree out 

of balance



AVL Trees

• Single rotation is one type of rotation:

– In the following, the tree was fine after 

inserting 20, 10, 40, 30, 50...but when 60 is 

inserted...
20

50

40

60

10

30

An unbalanced 
binary search tree



AVL Trees

• Start at the node inserted...move up the 

tree (recursively return)

– examining the balancing factor

– stop when it is not +1, 0, -1 and rotate from 

the “heavy” side to the “light”
40

60

50

10

20

30

40 rotates up, 20 inherits
40’s left child



AVL Trees

• If a single rotation does not create a 

balanced tree

– then a double rotation is required

– first rotate the subtree at the root where the 

problem occurred

– and then rotate the tree’s root

– there is, however, on special case: 40

60

20



AVL Trees

• In class, walk through a few examples on 

your own (and then on the board) building 

AVL trees

– so you can understand the process of rotations

– insert: 50,60,30,70,55,20,52,65,40

– or, insert: 10, 20, 30, 40, 50, 60, 70, 80

– what would the corresponding BST and 2-3 

tree looked like?



AVL Trees

• The main question you should be facing with an 

AVL tree is

– whether or not such restructuring is always necessary

– binary search trees are used to insert, retrieve, and 

delete elements quickly and the speed of performing 

these operations i the issue, not the shape of the tree

– performance can be improved by balancing the tree but 

luckily this is not the only method available



2-3-4 and red-black Trees

• Now let’s go back to rethinking about how 
we organize our nodes

– maybe instead of trying to balance the tree we 
keep the tree balancing at all times (perfectly 
balanced)

– but the 2-3 tree had a flaw in that there may be 
situations where each node is “full” requiring a 
rippling effect of nodes being split as you 
recursively return back to the root



2-3-4 and red-black Trees

• A 2-3-4 tree solves this problem

– which allows 4-nodes which are nodes that 
have 4 pieces of data and 3 children

– each insertion and deletion can have fewer 
steps than are required by a 2-3 tree (when 
looking at the insertions/deletions in isolation)

– but does this by using more memory

– essentially, each node can have 1,2, or 3 pieces 
of data, and 4 child pointers!!!!!



2-3-4 and red-black Trees

• A 2-3-4 tree solves this problem

– a node can either be a leaf or, 

– if it has 1 data item there are 2 children, 

– 2 data items has 3 children, and 

– 3 data items has 4 children

• A 2-3-4 tree remains perfectly balanced

– but its insertion algorithm splits the nodes as it 

traverses down the tree toward a leaf, rather than upon 

the return to the root



2-3-4 and red-black Trees

• As you travel down the tree to insert a data 
item,

– if you encounter a node with 3 pieces of data 
you immediate split the node at that time (just as 
we did with a 2-3 tree...but now we don’t use 
the new data we are trying to insert...because we 
haven’t inserted it yet!)

– then, you continue traveling towards a leaf to 
insert the data



2-3-4 and red-black Trees

• What this means is that the tree cannot 
contain all nodes with 3 pieces of data. 
Impossible.

• In fact, on insert, once you insert data at a 
leaf it is guaranteed that the leaf’s parent 
will not have 3 pieces of data...

– because if it did, it would have split on the way 
to find the leaf!



2-3-4 and red-black Trees

• The advantage of both the 2-3 and 2-3-4 trees

– is that they are easy to maintain balance (not that their 

height is shorter due to the extra comparisons required)

– where the 2-3-4 tree has an advantage is that the 

insertion/deletion algs require only one pass through the 

tree so they are simpler than those for a 2-3 tree

– decrease in effort makes them attractive..........



2-3-4 and red-black Trees

• On the other hand, 2-3-4 trees require more 
storage than a binary search tree

– and more storage (and less efficiently used 
storage) than a 2-3 tree

• But, a binary search tree may be 
inappropriate

– because it may not be balanced

– so we use a red-black tree which is a special 
binary search tree 



2-3-4 and red-black Trees

• A red-black tree is a BST representation of 

a 2-3-4 tree with 2 extra fields in the node 

to represent whether the connection is 

within the current node or a child

– it retains the advantages of a 2-3-4 tree 

without the storage overhead!

– with all of the benefits of a binary search tree 

and none of the drawbacks!



2-3-4 and red-black Trees

• The idea is to represent a node with 2 

pieces of data and 3 children as a binary 

search tree with red and black child 

pointers

40, 60

7020 50
70

20

50

40

60

black

red

red

red



2-3-4 and red-black Trees

• And, we represent a node with 3 pieces of 

data and 4 children as a binary search tree 

with red and black child pointers

40,60,80

7020 50
90

40

50

60

80

black

red

black

red
90

20

red

70



2-3-4 and red-black Trees

• In class, walk through examples of 

– 2-3

– 2-3-4

– AVL

– BST

– and see how you can take a 2-3-4 and turn it 

into a red black tree (make sure to read the 

chapter on advanced trees!!!)



2-3-4 and red-black Trees

• For next time,

– practice creating each of these trees on your 

own so that you understand the insertion 

algorithms

– think about what would be needed to remove 

nodes from these trees

– try deleting a leaf and an internal node from you 

2-3, AVL, and 2-3-4 trees


