
Data Structures

Topic #11

Today’s Agenda

• Complete our discussion of trees

• Learn about heaps

• walk through the deletion algorithms for:

– AVL

– 2-3, 2-3-4

• Learn about graphs

Heaps

• A heap is a data structure similar to a
binary search tree.

• However, heaps are not sorted as binary
search trees are.

• And, heaps are always complete binary
trees.

• Therefore, we always know what the
maximum size of a heap is.

Heaps

• Unlike a binary search tree, the value of
each node in a heap is greater than or
equal to the value in each of its children.

• In addition, there is no relationship
between the values of the children; you
don't know which child contains the larger
value.

• Heaps are used to implement priority
queues.

Heaps

• A priority queue is an Abstract Data Type!

• Which, can be implemented using heaps.

Think of a To-Do lists; each item has a

priority value which reflects the urgency

with which each item needed to be

addressed.

Heaps

• By preparing a priority queue, we can

determine which item is the next highest

priority.

• A priority queue maintains items sorted in

descending order of their priority value --

so that the item with the highest priority

value is always at the beginning of the list.

Heaps

• Priority Queue ADT operations can be

implemented using heaps...

– which is a weaker binary tree but sufficient

for the efficient performance of priority

queue operations.

– Let's look at heap:
10

9

23 5

6

Heaps

• To remove an item from a heap, we remove the

largest item (or the item with the highest priority).

• Because the value of every node is greater than or

equal to that of either of its children, the largest

value must be the root of the tree.

• A remove operation is simply to remove the item at

the root and return it to the calling routine.

Heaps

• Once you have removed the largest value,

you are left with two disjoint heaps:

– Therefore, you need to transform the nodes

– Move the last node and place it in the root

– Then take that value and trickle it down the tree

until it reaches a node in which it will not be out

of place.
10

9

23 5

6

9

23

5

6 5

23

9

6

Step 1 Step 2

Heaps

• To insert an item, we use just the opposite

strategy.

– We insert at the bottom of the tree and trickle the

number upward to be in the proper place.

– With insert, the number of swaps cannot exceed the

height of the tree -- so that is the worst case!

– Which, since we are dealing with a binary tree, this is

always approximately log2(N) which is very efficient.

Heaps

5

23

9

6

Step 1:insert 15

5

23

9

6

Step 2

5

23

9

15

Step 3

15 6

5

23

15

9

Step 5

6

Heaps

• The real advantage of a heap is that it is
always balanced.

– It makes a heap more efficient for
implementing a priority queue than a binary
search tree because the operations that keep a
binary search tree balanced are far more
complex than the heap operations.

– However, heaps are not useful if you want to
try to traverse a heap in sorted order -- or
retrieve a particular item.

Heapsort

• A heapsort uses a heap to sort a list of items

that are not in any particular order.

• The first step of the algorithm transforms

the array into a heap.

• We do this by inserting the numbers into the

heap and having them trickle up...one

number at a time.

Heapsort

• A better approach is to put all of the

numbers in a binary tree -- in the order you

received them.

• Then, perform the algorithm we used to

adjust the heap after deleting an item.

• This will cause the smaller numbers to

trickle down to the bottom.

Heapsort

3

29

6

5

Step 1

10

3

29

6

5

Step 2: compare 6 with 3 & 5;

no swaps

10

9

23

6

5

Step 3: compare 3 with 9 and 2; swap 3 and 9;

this means that 3 & 2 are now in their correct

sorted locations

10

Heapsort

9

23

6

10

5

Step 4: compare 5 with 10; swap;

this means that 5 is now in its correct

sorted location; Level 3 is sorted.

9

23

10

6

5

Pass 2: start again. Compare 6 with 3 and 10; swap

6 and 10. 3 and 6 are now in the correct sorted locations;

Level 2 is sorted.

Deletion Algorithms

• In class, take 5 minutes and practice

creating the following trees:

– insert: 30, 50, 70, 10, 20, 60, 15, 25, 85

– create: BST, AVL, 2-3, 2-3-4, red-black

– create: a heap

– now, delete a leaf in each tree

– now, delete an internal node

Moving from Trees to Graphs

• Trees are useful when there is an inherent
hierarchical relationship between our data

– sorting data by a key can build such a
relationship

• But, not all problems are so simple

• Maybe there are complex relationships
between nodes ... not just hierarchical!

– this is where graphs become important

Graphs

• Graphs can be used as data structures and
as the last ADT we will learn about;

– to represent how data can be related to one
another...setting up an inherent structure.

• Graphs consist of vertices (nodes) and
edges which connect the vertices.

• A path is a sequence of edges that can be
taken to get from one vertex to another.

Graphs

• Paths may pass through the same vertex
more than once but simple paths may not.

• A cycle is a path that starts and ends at the
same vertex but does not pass through
other vertices more than once.

• Graphs are considered to be connected if
there is a path between every pair of
vertices.

Graphs

• A graph is complete if there is an edge

between every pair of vertices.

• Edges can have labels - or numeric values -

which create a weighted graph.

• Weights can label the distances between

cities.

connected

graph

disconnected

graph

complete

graph

Graphs

• ADT Graph operations might include:

– create an empty graph

– determine if the graph is empty

– insert a vertex

– insert an edge between two vertices

– delete a vertex

– delete an edge between two vertices

– retrieve the value of the data at a vertex

– replace the data at a particular vertex

– determine if an edge is between vertices

Graphs

• One common way of implementing a graph is
to use an adjacency list.

• Using this approach, imagine that the vertices
are numbered 1,2, thru N.

• This type of implementation consists of N
linked lists.

• There is a node in the ith linked list for the
vertex j if and only if there is an edge from
vertex i to vertex j.

Graphs

1

2

3

4

5

6

7

8

9

A directed graph

•

•

•

•

•

•

•

1

2

3

5

6

7

4

8

9

3 • 6

7

7

5

6

4 • 8

3 • 9

Graphs

• Two common operations are to find an edge

between two vertices and to find all vertices

adjacent to a given vertex.

• Using an adjacency list to determine whether

there is an edge from one vertex to another,

we must traverse the linked list associated

with one of the vertices to determine whether

the other vertex is present.

Graphs

• To determine all vertices adjacent to a given
vertex, we only need to traverse the linked
list associated with the specified vertex.

• What about traversing a graph?

– Graph-traversal starts at a specified vertex and
does not stop until it has visited all of the vertices
that it can reach.

– It visits all vertices that have a path between the
specified vertex and the next.

Graphs

• Notice how different this is than tree traversal.

– with tree traversal, we always visit all of the nodes

in the tree

– with graph traversal we do not necessarily visit all

of the vertices in the graph unless the graph is

connected.

– If a graph is not connected, then a graph traversal

that begins at a vertex will only visit a subset of the

graphs vertices.

Graphs

• There are two basic graph-traversal
algorithms that we will discuss.

• These algorithms visit the vertices in
different orders,

– but if they both start at the same vertex,
they will visit the same set of vertices.

• Depth first search

• Breadth first search

Graphs

• Depth-First Search

– This algorithm starts at a specified vertex and
goes as deep into the graph as it can before
backtracking.

– This means that after visiting the starting vertex,
it goes to an unvisited vertex that is adjacent to
the one just visited.

– The algorithm continues from this way until it
has gotten as far as possible before returning to
visit the next unvisited vertex adjacent to the
starting place.

Graphs

• Depth-First Search

– This traversal algorithm does not completely

specify the order in which you should visit the

vertices adjacent to a particular vertex.

– One possibility is to visit the vertices in sorted

order.

– This only works - of course - when our nodes in

each linked list of an adjacency list are in sorted

order.

Graphs

• Depth-First Search

– Because the graph is connected, DFS will visit
every vertex. In fact, the traversal could visit the
vertices in this order:

a b c d g e f h i

– Notice a stack of vertices can be used to implement
this approach -- where the last one visited is

i

a

b

f

c

e

g

d

h

Graphs

• Breadth-First Search

– This starts at a specified vertex and visits every vertex
adjacent to that vertex before embarking from any of
those vertices to the next set.

– It does not embark from any of these vertices adjacent to
the starting vertex until it has visited all possible vertices
adjacent.

– Notice that this is a first visited -- first explored strategy.
Therefore, it should be obvious that a queue of vertices
can be used

Graphs

• Breadth-First Search

– The the above graph, starting at vertex a we

could traverse the vertices in the following

order:

a b f i c e g d h

i

a

b

f

c

e

g

d

h

