
Data Structures

Topic #11



Today’s Agenda

• Complete our discussion of trees

• Learn about heaps

• walk through the deletion algorithms for:

– AVL

– 2-3, 2-3-4

• Learn about graphs



Heaps

• A heap is a data structure similar to a 
binary search tree. 

• However, heaps are not sorted as binary 
search trees are. 

• And, heaps are always complete binary 
trees. 

• Therefore, we always know what the 
maximum size of a heap is.



Heaps

• Unlike a binary search tree, the value of 
each node in a heap is greater than or 
equal to the value in each of its children. 

• In addition, there is no relationship 
between the values of the children; you 
don't know which child contains the larger 
value. 

• Heaps are used to implement priority 
queues.



Heaps

• A priority queue is an Abstract Data Type! 

• Which, can be implemented using heaps. 

Think of a To-Do lists; each item has a 

priority value which reflects the urgency 

with which each item needed to be 

addressed. 



Heaps

• By preparing a priority queue, we can 

determine which item is the next highest 

priority. 

• A priority queue maintains items sorted in 

descending order of their priority value --

so that the item with the highest priority 

value is always at the beginning of the list.



Heaps

• Priority Queue ADT operations can be 

implemented using heaps...

– which is a weaker binary tree but sufficient 

for the efficient performance of priority 

queue operations. 

– Let's look at heap:
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Heaps

• To remove an item from a heap, we remove the 

largest item (or the item with the highest priority). 

• Because the value of every node is greater than or 

equal to that of either of its children, the largest 

value must be the root of the tree. 

• A remove operation is simply to remove the item at 

the root and return it to the calling routine.



Heaps

• Once you have removed the largest value, 

you are left with two disjoint heaps:

– Therefore, you need to transform the nodes

– Move the last node and place it in the root

– Then take that value and trickle it down the tree 

until it reaches a node in which it will not be out 

of place. 
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Heaps

• To insert an item, we use just the opposite 

strategy. 

– We insert at the bottom of the tree and trickle the 

number upward to be in the proper place. 

– With insert, the number of swaps cannot exceed the 

height of the tree -- so that is the worst case! 

– Which, since we are dealing with a binary tree, this is 

always approximately log2(N) which is very efficient.



Heaps
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Heaps

• The real advantage of a heap is that it is 
always balanced. 

– It makes a heap more efficient for 
implementing a priority queue than a binary 
search tree because the operations that keep a 
binary search tree balanced are far more 
complex than the heap operations. 

– However, heaps are not useful if you want to 
try to traverse a heap in sorted order -- or 
retrieve a particular item.



Heapsort

• A heapsort uses a heap to sort a list of items 

that are not in any particular order. 

• The first step of the algorithm transforms 

the array into a heap. 

• We do this by inserting the numbers into the 

heap and having them trickle up...one 

number at a time.



Heapsort

• A better approach is to put all of the 

numbers in a binary tree -- in the order you 

received them. 

• Then, perform the algorithm we used to 

adjust the heap after deleting an item. 

• This will cause the smaller numbers to 

trickle down to the bottom. 



Heapsort
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Step 3: compare 3 with 9 and 2; swap 3 and 9; 

this means that 3 & 2 are now in their correct 

sorted locations
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Heapsort
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Step 4: compare 5 with 10; swap; 

this means that 5 is now in its correct 

sorted location; Level 3 is sorted.
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Pass 2: start again. Compare 6 with 3 and 10; swap 

6 and 10. 3 and 6 are now in the correct sorted locations; 

Level 2 is sorted.



Deletion Algorithms

• In class, take 5 minutes and practice 

creating the following trees:

– insert:   30, 50, 70, 10, 20, 60, 15, 25, 85

– create: BST, AVL, 2-3, 2-3-4, red-black

– create: a heap

– now, delete a leaf in each tree

– now, delete an internal node



Moving from Trees to Graphs

• Trees are useful when there is an inherent 
hierarchical relationship between our data

– sorting data by a key can build such a 
relationship

• But, not all problems are so simple

• Maybe there are complex relationships 
between nodes ... not just hierarchical!

– this is where graphs become important



Graphs

• Graphs can be used as data structures and 
as the last ADT we will learn about; 

– to represent how data can be related to one 
another...setting up an inherent structure.

• Graphs consist of vertices (nodes) and 
edges which connect the vertices. 

• A path is a sequence of edges that can be 
taken to get from one vertex to another. 



Graphs

• Paths may pass through the same vertex 
more than once but simple paths may not. 

• A cycle is a path that starts and ends at the 
same vertex but does not pass through 
other vertices more than once. 

• Graphs are considered to be connected if 
there is a path between every pair of 
vertices. 



Graphs

• A graph is complete if there is an edge 

between every pair of vertices. 

• Edges can have labels - or numeric values -

which create a weighted graph. 

• Weights can label the distances between 

cities.
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Graphs

• ADT Graph operations might include:

– create an empty graph

– determine if the graph is empty

– insert a vertex

– insert an edge between two vertices

– delete a vertex

– delete an edge between two vertices

– retrieve the value of the data at a vertex

– replace the data at a particular vertex

– determine if an edge is between vertices



Graphs

• One common way of implementing a graph is 
to use an adjacency list. 

• Using this approach, imagine that the vertices 
are numbered 1,2, thru N. 

• This type of implementation consists of N 
linked lists. 

• There is a node in the ith linked list for the 
vertex j if and only if there is an edge from 
vertex i to vertex j.



Graphs
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Graphs

• Two common operations are to find an edge 

between two vertices and to find all vertices 

adjacent to a given vertex. 

• Using an adjacency list to determine whether 

there is an edge from one vertex to another, 

we must traverse the linked list associated 

with one of the vertices to determine whether 

the other vertex is present.



Graphs

• To determine all vertices adjacent to a given 
vertex,  we only need to traverse the linked 
list associated with the specified vertex.

• What about traversing a graph? 

– Graph-traversal starts at a specified vertex and 
does not stop until it has visited all of the vertices 
that it can reach. 

– It visits all vertices that have a path between the 
specified vertex and the next.



Graphs

• Notice how different this is than tree traversal. 

– with tree traversal, we always visit all of the nodes 

in the tree

– with graph traversal we do not necessarily visit all 

of the vertices in the graph unless the graph is 

connected. 

– If a graph is not connected, then a graph traversal 

that begins at a vertex will only visit a subset of the 

graphs vertices. 



Graphs

• There are two basic graph-traversal 
algorithms that we will discuss. 

• These algorithms visit the vertices in 
different orders, 

– but if they both start at the same vertex, 
they will visit the same set of vertices.

• Depth first search

• Breadth first search



Graphs

• Depth-First Search

– This algorithm starts at a specified vertex and 
goes as deep into the graph as it can before 
backtracking. 

– This means that after visiting the starting vertex, 
it goes to an unvisited vertex that is adjacent to 
the one just visited. 

– The algorithm continues from this way until it 
has gotten as far as possible before returning to 
visit the next unvisited vertex adjacent to the 
starting place.



Graphs

• Depth-First Search

– This traversal algorithm does not completely 

specify the order in which you should visit the 

vertices adjacent to a particular vertex. 

– One possibility is to visit the vertices in sorted 

order. 

– This only works - of course - when our nodes in 

each linked list of an adjacency list are in sorted 

order.



Graphs

• Depth-First Search

– Because the graph is connected, DFS will visit 
every vertex. In fact, the traversal could visit the 
vertices in this order:

a  b c d g e f h i

– Notice a stack of vertices can be used to implement 
this approach -- where the last one visited is
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Graphs

• Breadth-First Search

– This starts at a specified vertex and visits every vertex 
adjacent to that vertex before embarking from any of 
those vertices to the next set. 

– It does not embark from any of these vertices adjacent to 
the starting vertex until it has visited all possible vertices 
adjacent. 

– Notice that this is a first visited -- first explored strategy. 
Therefore, it should be obvious that a queue of vertices 
can be used



Graphs

• Breadth-First Search

– The the above graph, starting at vertex a we 

could traverse the vertices in the following 

order:
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