
Data Structures

Topic #13

Today’s Agenda

• Sorting Algorithms: Recursive

– mergesort

– quicksort

• As we learn about each sorting algorithm,

we will discuss its efficiency

• Review for the Final Exam

Mergesort

• The mergesort is considered to be a divide and

conquer sorting algorithm (as is the quicksort).

• The mergesort is a recursive approach which is

very efficient.

• The mergesort can work on arrays, linked lists, or

even external files.

• At first glance, it doesn’t seem like a sorting

algorithm at all...

Mergesort

• The mergesort is a recursive sorting
algorithm that always gives the same
performance regardless of the initial order
of the data.

– For example, you might divide an array in
half - sort each half - then merge the sorted
halves into 1 data structure.

– To merge, you compare 1 element in 1 half of
the list to an element in the other half,
moving the smaller item into the new data
structure.

Mergesort

• The sorting method for each half is done by a

recursive call to merge sort.

– That is why this is a divide and conquer method.

• Mergesort(list,starting place, ending place)

– if the starting place is less than the ending place

middle place = (starting + ending) div 2

mergesort(list, starting place, middle place)

mergesort(list,middle place+1, ending place)

merge the 2 halves of the list

Mergesort

Original Lis t

Recursive calls
to Mergesort

Time to Merge

38 16 27 39 12 27

38 16 27 39 12 27

38 16 27 39 12 27

38 16 39 12

16 38 12 39

16 27 38 12 27 39

12 16 27 27 38 39

Mergesort

• If we implemented this approach using

arrays ---

– If the total number of items in your list is

m...then for each merge we must do m-1

comparisons.

– For example, if there are 6 items we must do

five comparisons.

– In addition, there are m moves from the original

location to some temporary location (and back).

Mergesort

• Even though this seems like a lot, you will

see that this is actually faster than either the

selection sort or the insertion sort.

• Although the mergesort is extremely

efficient with respect to time, it does require

that an equal "temporary" array be used

which is the same size as the original array.

– If temporary arrays are not used...this approach

ends up being no better than any of the others

Mergesort

• If we implement the mergesort using linked lists,

we do not need to be concerned with the amount

of time needed to move data

– Instead, we just need to concentrate on the number of

comparisons.

– When lists get very long, the number of comparisons is

far less with the mergesort than it is with the insertion

sort.

– Problems requiring 1/2 hour of computer time using the

insertion sort will probably require no more than a

minute using the mergesort.

Mergesort

• Remember, the mergesort is a recursive
sorting algorithm

– that always gives the same performance
regardless of the initial order of the data.

– For example, you might divide an array in half
- sort each half - then merge the sorted halves
into 1 data structure.

– To merge, you compare 1 element in 1 half of
the list to an element in the other half, moving
the smaller item into the new data structure.

Mergesort

• Start by looking at the merge operation.

– Each merge step merges your list in half.

– If the total number of elements in the two
segments to be merged is m then merging the
segments requires m-1 comparisons.

– In addition, there are m moves from the original
array to the temporary array and m moves back
from the temporary array to the original array.

– 3*m-1 major operations in the merge step

Mergesort

• Now we need to remember that each call to
mergesort calls itself twice.

– How many levels of recursion are there?

– Remember we continue halving the list of
numbers until the result is a piece with only 1
number in it.

– Therefore, if there are N items in your list, there
will be either log2N levels (if N is a power of 2)
and 1+log2N (if N is NOT a power of 2).

Mergesort

• Remember, each one of these calls requires 3*M-1
operations, where M starts equal to N, then becomes
N/2.

• When M = N/2, there are actually 2 calls to merge,
so there are 2*(3*M-1) operations or 6(N/2)-2
=>>>>> 3N-2.

• Expanding on this: at recursive call m, there are 2m
calls to re-merge where each call merges N/2m

elements, so it requires 3*(N/2m)-1 operations.

Mergesort

• Which is the same as 3*N-2m .

• Using the BIG O approach, this breaks down

to O(N) operations at each level of recursion.

• Because there are either log2N or 1+log2N

levels, mergesort altogether has a worst and

average case efficiency of O(N*log2N)

Mergesort

• If you work through how log works, you

will see that this is actually significantly

faster than an efficiency of O(N2).

• Therefore, this is an extremely efficient alg.

• The only drawback is that it requires a

temporary array of equal size to the original

array.

– This could be too restrictive when storage is

limited.

Quicksort

• The quicksort is also considered to be a
divide and conquer sorting algorithm.

• The quicksort partitions a list of data items
that are less than a pivot point and those that
are greater than or equal to the pivot point.

• You could think of this as recursive steps:

– step 1 - choose a pivot point in the list of items

– step 2 - partition the elements around the pivot

Quicksort

• This generates two smaller sorting problems,
sorting the left section of the list and the right
section (excluding the pivot point...as it is
already in the correct sorted place).

• Once each of the left and right smaller lists
are sorted in the same way, the entire list will
be sorted (this terminates the recursive
algorithm).

Quicksort

• Notice that partitioning the list is probably

the most difficult part of the algorithm.

• It must arrange the elements in two regions:

those greater than the pivot and those less.

– The first question which might come to mind is

which pivot to use?

– If the elements are arranged randomly, you can

chose a pivot randomly.

Quicksort

• We are not required to choose the first
item in the list as the pivot point.

– We can choose any item we want and swap it
with the first before beginning the sequence
of partitions.

– In fact, the first item is usually not a good
choice...many times the first item in a list is
already sorted.

– That would mean that there would be no items
in the left partition!

Quicksort

• Therefore, it might be better to chose a pivot
from the center of the list, hoping that it will
divide the list approximately in two.

– If you are sorting a list that is almost in sorted
order...this would require less data movement!

– At each step in the partition function, we need to
examine one element in the unknown region,
determine how it relates to the pivot point, and
place it in one of the two regions (< or =>).

– think of this as making piles...

Quicksort

• Notice that quicksort actually alters the array
itself...not a temporary array.

• Quicksort and mergesort are very similar.

– Quicksort does work before its recursive calls.

– Mergesort does work after its recursive calls.

• Sort in class the following using both
methods:

– 29, 10, 14, 37, 13, 12, 30, 20

Quicksort

• The worst case with this method is when one

of the regions (left or right) remains empty

(i.e., the pivot value was the largest or

smallest of the unknown region).

• This means that one of the regions will only

decrease in size by only 1 number (the pivot)

for each recursive call to Quicksort.

Quicksort

• Also, notice what would happen if our array

is already sorted in ascending order?

• If we pick a pivot value as the first value, for

each recursive call we only decrease the size

by 1 -- and do SIZE-1 comparisons.

• Therefore, we will have many unnecessary

comparisons.

Quicksort

• The good news is that if the list is already

sorted in ascending order and the pivot is the

smallest #, then we actually do not perform

any moves.

• But, if the list is sorted in descending order

and the pivot is the largest, there will not

only be a large number of un-necessary

comparisons but also the same number of

moves.

Quicksort

• On average, quicksort runs much faster
than the insertion sort on large arrays.

• In the worst case, quicksort will require
roughly the same amount of time as the
insertion sort.

– If the data is in a random order, the quicksort
performs at least as well as any known sorting
algorithm that involves comparisons.

– Therefore, unless the array is already ordered --
the quicksort is the best bet!

Quicksort

• Mergesort, on the other hand,

– runs somewhere between the Quicksort's best

and worst case (insertion sort).

– Sometimes quicksort is faster; sometimes it is

slower!

– The thing to keep in mind is that the worst case

behavior of the mergesort is about the same as

the quicksort's average case.

Quicksort

• Usually the quicksort will run faster than

the mergesort...

– but if you are dealing with already sorted or

mostly sorted data, you will get worst case

performance out of the quicksort which will be

significantly slower than the mergesort.

– with an array that is already sorted in ascending

order and the pivot is always the smallest

element in the array, then there are N-1

comparisons for N elements in your array.

Quicksort

• On the next recursive call there are N-2
comparisons, etc.

– This will continue leaving the left hand side
empty doing comparisons until the size of the
unsorted area is only 1.

– Therefore, there are N-1 levels of recursion
and 1+2+...+(N-1) comparisons...which is:
N*(N-1)/2.

– The good news that in this case there are no
exchanges.

Quicksort

• Also, if you are dealing with an array that is
already sorted in descending order and the
pivot is always the largest element in the
array, there are N*(N-1)/2 comparisons and
N*(N-1)/2 exchanges (requiring 3 data
moves each).

• Therefore, we should be able to quickly
remember that this is just like the insertion
sort -- and in the worst case has an
efficiency of O(N2).

Quicksort

• Now look at the case where we have a
randomly ordered list and pick reasonably
good pivot values that divide the list almost
equally in two.

– This will require fewer recursive calls (either
log2N or 1+log2N recursive calls).

– Each call requires M comparisons and at most
M exchanges, where M is the number of
elements in the unsorted area and is less than
N-1.

Quicksort

• We come to the realization that in an
average-case behavior, quicksort has an
efficiency of O(N*log2N).

– This means that on large arrays, expect
Quicksort to run significantly faster than the
insertion sort.

– Quicksort is important to learn because its
average case is far better than its worst case
behavior -- and in practice it is usually very fast.

Quicksort

• It can out perform the mergesort if good

pivot values are selected.

• However, in its worst case, it will run

significantly slower than the mergesort (but

doesn't require the extra memory

overhead).

Review for the Final Exam

• The Final Exam in CS163 is

– comprehensive

– closed book

– closed notes

• It will focus on:

– trees (BST, 2-3, AVL, 2-3-4, red-black, heaps)

– graphs (depth first, breadth first traversal)

– sorting algorithms (insertion, selection, mergesort,

quicksort)

Review for the Final Exam

• In addition, you will be asked questions

about:

– hash tables using chaining

– stacks, queues, ordered lists

– various data structures such as LLL, circular

linked lists, doubly linked lists, doubly threaded

lists, arrays of linked lists, linked lists of arrays

Review for the Final Exam

• When implementing a table abstract data type,
explain why you would select:

– a) hash table

– b) binary search tree

– c) red-black tree

– d) 2-3 tree

– e) graph

– f) linear linked list

– g) 2-3-4 tree

– h) doubly linked list

Review for the Final Exam

• Given the following data, draw the
following trees: 40 20 25 60 65 70 73 15

– AVL tree

– 2-3 tree

– BST tree

– Heap

– 2-3-4 tree

– red-black tree

Review for the Final Exam

• Now, delete 40 from

– AVL tree

– 2-3 tree

• Now, delete 65 from

– AVL tree

– 2-3 tree

Review for the Final Exam

• Given the following data, show the steps of

sorting: 40 20 25 60 65 70 73 15

– using insertion sort

– using selection sort

– using exchange sort

– using mergesort

– using quicksort

– discuss the efficiency of each...which is better and why

Review for the Final Exam

• Explain the process of inserting data into a

2-3 tree.

• Explain the process of deleting a node from

a BST

– what special cases do we need to consider

– how do we delete a node that has two children?

(write the algorithm)

