
1

Data Structures

Topic #2

2

Today‟s Agenda

• Data Abstraction

– Given what we talked about last time, we need
to step through an example of an abstract data
type using

• classes,

• constructors,

• member functions,

• data hiding,

• distinguishing the difference between what the
client can do and what the ADT can do

3

List Abstraction

• Let’s begin by building a “list” abstraction

• Remember, the data structure used should be

able to “plug and play” (i.e., be replaced

without affecting the client program

• Operations will incloude to:

– insert, remove, retrieve, and display

– create, destroy

4

List Abstraction

• Once the operations are understood, we
can begin to examine the data

• Let’s build a list to be used for a student
roster

– so, the data will include the student name,
current grade % in the class, and psu id#

– we can use a struct or a class to represent the
underlying data

– we will examine both of these approaches
today

5

List Abstraction

• The list of students can be implemented
using a variety of data structures

• Our choices are:

– array (statically allocated),

– array (dynamically allocated),

– linear linked list

– circular linked list

– doubly linked list

6

List Abstraction

struct data {

char * name;

char * psu_id;

float grade;

};

• Options for placement:

– before the class in the header file

– in the implementation file

– nested within the class

7

Placed in the .h file

struct data {

char * name;

char * psu_id;

float grade;

};

class list {

public:

...

8

Placed in the .cpp file

//.h file

struct data;

class list {

public:

...

//.cpp file

struct data {

char * name;

char * psu_id;

float grade;

};

9

Nested...

class list {

public:

...

private:

struct data {

char * name;

char * psu_id;

float grade;

};

};

10

Structs vs. Classes

class data {

char * name;

char * psu_id;

float grade;

friend class list;

};

• If a class had been used, the
members would have been private
by default requiring the list class to
be declared as a friend...

11

Structs vs. Classes

• My personal preference is to use
structures for the underlying data

– this has the benefit of grouping various data
types together

– the data is accessible directly by the class
that uses the underlying data

– and there is little overhead to access the data
members (of the name, psu id#, and grade)

12

Structs vs. Classes

• But, doesn’t this violate data hiding?

no!

– think about what code can access this data? You

would have to have the „array‟ of students, or the

„head‟ pointer to the first node containing a student

to actually access the data

– certainly, the client can “see” the structure, but they

can‟t access the data if properly hidden within the

class!

13

Structs vs. Classes

• But, couldn’t I use a class instead
and specify the members as public to
avoid using friends? yes...but...

– then what is the difference between a class and a
struct?

– personally, I consider that structs should be used
when you simply want to group different data
items and that classes be used when you want to
create new data types, new abstractions, or are
doing OOP

14

Defining the List Class

class list {

public:

list();

~list();

int insert(const data &);

int retrieve(char *, data &);

int display();

int remove (char *);

15

List class...continued...

private:

data s_array[SIZE];

int number_of_students;

};

• This provides for a statically allocated
array of students

• Notice, none of the member functions
uses an index or passes the array

• Why do we need the 2nd data member?

16

Or...List class...continued...

private:

data * d_array;

int number_of_students;

int size_of_array;

};

• This provides for a dynamically
allocated array of students

• Notice, none of the member functions
changes in their client interface

• Add: list (int size);

17

Or...List class...continued...

• By replacing the constructor with:

list (int size=SIZE); //in prototype only

• We can have only one constructor act as either
the default constructor (with the same size of an
array as the previous example), or with a client-
specified size

• The constructor would need to:

d_array = new data [size];

size_of_array = size;

18

Or...List class...continued...

private:

node * head;

};

• This provides for a linked list (linear,
circular, or doubly linked)

• Notice, none of the member functions
changes in their client interface

• That’s right. Insert and retrieve have
the same arguments as before!!!!

19

Defining the node structure

• But, what does the node look like?
struct node { //linear/circular

data student;

node * next;

};

• Add, node * previous to the structure
for a doubly linked list.

• Where do we place this?
• Should the “student” member be a

pointer to a data instead?

20

Constructors

• The purpose of the constructor is to
initialize the data members

• So, for the dynamic array it simply
allocated the array’s memory and
initialized the size. What else?

• Yes, it also needs to set the number of
items currently stored in the list to
zero.

• Why doesn’t it need to initialize each
element of the array?

21

Constructors

• For the linked list implementation, the
constructor would simply set the head
pointer to null

• In some situations, you will also want a
second list data member, called tail, to
keep track of the end of the list

• This is important when you want to
frequently add to the end of the list

• Why doesn’t a tail pointer help when
removing the last item?

22

Destructors

• The purpose of a destructor is to
deallocate all dynamic memory and
close down any resources being used

• For the statically allocated array, the
destructor had no purpose

• For the dynamically allocated array, it
would be: delete [] d_array;

• Question: Do we need to set the other
data members to zero? And, d_array to
zero?

23

Destructors

• For a linked list, the purpose of the
destructor is to deallocate all memory

• This requires traversing through the
linked data structure, deallocating all
items

• Will this do it?
delete head;

• Of course not. This will deallocate one
node unless the “node” has a
destructor of its own...

24

Destructors

• OK, so what is wrong with this:
while (head) {

delete head;

head = head->next;

}

delete head;

• Two things. We are accessing memory
within the loop that has already been
deallocated

• Second, we have an extra “delete”

25

Destructors

• OK, is this correct?
while (head) {

node * temp = head;

delete head;

head = temp; }

• Close...but why reallocate the memory
for temp each time through the loop

• Think about the inefficiency of this!!!
• Therefore, remove the “underlined”

portion

26

Other Member Functions

• For insert, we would need to define what
it is that insert actually does

• Does it insert at the beginning, at the end,
in sorted order?

• The approach should be well documented
in the header file for any client program
using the software

• Remember, insert should not prompt or
read from the user but rather get its data
through arguments from the client

27

Other Member Functions

• Let’s examine some various prototype
statements for insert and discuss the
pros/cons of each:

int insert(const data &);

bool insert(const data &);

void insert(const data &);

void insert(data &, bool);

int insert(const node &);

28

Other Member Functions

• What about retrieve?

• Should it display the matching item or

“return” it to the client program?

• Which prototype is best?

int retrieve(char *, data &);

data retrieve(char *, bool);

data & retrieve (char *, bool);

29

Efficiency...

• Now that we have seen a partial example
of a list abstraction, we should examine
the efficiency of using an array versus a
linked list for the data structure

• An array allows for direct access, which is
only useful if you know the position of
where the data is located

• If the array is sorted, then a binary search
can be used to get to the correct position

30

Efficiency...

• If a linked list is used, we must traverse to

the correct spot to insert into sorted order

• If the array is not sorted, and we are

inserting at the beginning or the end, an

array is extremely efficient...direct access

for both arrays and linked lists why?

• Would you need a tail pointer now????

31

Efficiency...

• But, what about retrieval?
• An array, if sorted, will allow us to use the

binary search
• A linked list - regardless of if it is sorted

or not - will require traversal starting at
the head

• Think of the overhead if you have a list of
10,000 items? How many comparisons
would we have in the worst case?

32

Efficiency...

• With an array that is not sorted, the same
is true. An array provides no additional
advantage in this case!

• Ok, so what about memory efficiency?
• An array’s size must be determined prior

to actually needing to use the memory

– A statically allocated array must be decided upon at
compile time

– A dynamically allocated array‟s size can be determined
later, at run time

33

Next Time...

• Now that we have seen a simple list
example, and started to examine how we
can use different data structures to solve
the same problem

• We will move on to examine linked list,
circular linked list, linked list of linked
lists, doubly linked lists, etc. beginning
next time!

• Our next ADT will be an “ordered list”
adt!

34

Data Structures

Programming

Assignment

Discussion

