
Data Structures

Topic #4

Today‟s Agenda

• Stack and Queue ADTs

– What are they

– Like Ordered Lists, are “position oriented”

• Use of Data Structures for Stacks and
Queues

– arrays (statically & dynamically allocated)

– linear linked lists

– circular linked lists

Remember

• Data abstraction is a technique for

controlling the interaction between a

program and its data structures and the

operations performed on this data.

• It builds "walls" around a program's data

structures. Such walls make programs

easier to design, implement, read, and

modify.

Stacks

• Stacks are considered to be the easiest
type of list to use.

• The only operations we have on stacks
are to add things to the top of the stack
and to remove things from the top of the
stack.

• We never need to insert, delete, or access
data that is somewhere other than at the
top of the stack.

Stacks: Operations

• When we add things to the top of the
stack we say we are pushing data
onto the stack.

• When we remove things from the top
of the stack we say we are popping
data from the stack.

• We also might want to determine if
the stack is empty or full.

Stacks: Operations

• Many computers implement function calls
using a mechanism of pushing and
popping information concerning the local
variables on a stack.

• When you make a function call, it is like
pushing the current state on the stack
and starting with a new set of information
relevant to this new function. When we
return to the calling routine, it is like
popping.

Stacks: Operations

• When implementing the code for a stack's
operations, we need to keep in mind that
we should have functions to push data
and to pop data.

• This way we can hide the implementation
details from the user as to how these
routines actually access our
memory...why?

– because you can actually implement stacks using either
arrays or using linked lists with dynamic memory
allocation.

Stacks: Operations

• There are five important stack operations:

1) Determine whether the stack is empty

2) Add a new item onto the stack...push

3) Remove an item from the stack...pop

4) Initialize a stack (this operation is easy to overlook!)

5) Retrieve the item at the top of the stack...without

modifying the stack...peek

Stack Operations

• Notice what was interesting about

the last few slides

• The operations should be pushing,

popping, peeking at the underlying

data not allowing the client direct

access to the data structure used for

storing this data.

Client Interface

• In addition, there are many different

interpretations of how these operations

should actually be implemented

– should “is empty” be combined with “pop”

– should “is full” be combined with “push”

– should pop return and remove the item on the top of

the stack, or

– should pop just remove the item at the top of the stack,

requiring that a “peek” also be provided

Client Interface

class stack {

public:

stack();

~stack();

int push(const data &);

int pop(data &);

int peek(data &);

int isempty(); int isfull();

Client Interface

• With the previous class public section

– the constructor might be changed to have an integer

argument if we were implementing this abstraction with

an array

– the int return types for each member function represent

the “success/failure” situation; if more than two states are

used (to represent the error-code) ints are a good choice;

otherwise, select a bool return type

Data Structures

• Now let’s examine various data
structures for a stack and discuss
the efficiency tradeoffs, based on:

– run-time performance

– memory usage

• We will examine:

– statically/dynamically allocated arrays

– linked lists (linear, circular, doubly)

Data Structures

• Statically Allocated array...
private:

data array[SIZE];

int number_of_items;

• Efficiency Discussion:

– direct access (insert at “top” position, remove at “top”
position)

– the first element would not be considered the “top” in
all cases, why? ... unnecessary shifts!

– problem: fixed size, all stack objects have the same
size array, size is set at compile time

Data Structures

• Dynamically Allocated array...
private:

data * array;

int number_of_items;

int size_of_array;

• Efficiency Discussion:

– same as the previous slide, except for the timing of
when the array size is selected

– each stack object may have a different size array

– problem: memory limitations (fixed size)

Data Structures

• What this tells us is that a dynamically

allocated list is better than a statically

allocated list (one less problem)

– if the cost of memory allocation for the array is

manageable at run-time.

– may not be reasonable if the array sizes are very large

or if there are many stack objects

– is not required if the size of the data is known up-front

at compile time (and is the same for each instance of

the class)

Data Structures

• We also should have noticed from

the previous discussion that...

– stacks are well suited for array

implementations, since they are truly direct

access abstractions

– with stacks, data should never need to shift

– if pop doesn‟t return the “data” you need peek

– if pop does return the “data” you may still have

peek

Data Structures

• Linear Linked list...
private:

node * head;

node * tail; //???helpful? no!

• So, Where is the “top”?

– if the top is at the “tail”, what would the implication of
push and pop be? Push would be fine if a tail pointer
were provided...but Pop would be disastrous, requiring
traversal!!

– if the top is at the “head”, push and pop are essentially
“direct access”, no traversals needed!

Data Structures

• So, did we need a tail pointer?

– No! Head is sufficient

• How can we say it is essentially “direct
access”?

• Array: array[top_index] = data

– which actually is: *(array+top_index) = data

• Linked list: head->member = data

– which actually is: (*head).member = data

• Of course, = may not be appropriate

Data Structures

• Circular Linked list...
private:

node * tail;

• There is nothing in a stack that will
benefit from the last node pointing to the
first node

• A circular linked list will require additional
code to manage, with no additional
benefits

Data Structures

• Doubly Linked list...
private: (each node has a node * prev)

node * head;

node * tail; //???helpful?

• Again, there is nothing in a stack that will
benefit from each node having a pointer to
the previous node.

• Using a doubly linked list to allow the
“top” to be at the “end” or tail position,
this is a poor choice...wastes memory and
adds additional operations...

Data Structures

• So, which data structure is best for a stack?

• If we know at compile time the size of the stack,
and if that size doesn‟t vary greatly, and if all
objects of the class require the same size

– then use statically allocated arrays

• If we know at run time (before we use the stack),
how large the stack should be, it is manageable
and doesn‟t vary greatly

– then use a dynamically allocated array

Data Structures

• If the size varies greatly, or cannot be allocated

contiguously, or is unknown

– use a linear linked list with little additional costs in run-

time performance

– does, however, add the memory cost of one additional

address per node which should not be forgotten

– what happens if we implemented the traversal algorithms

using recursion?

Queues

• We can think of stacks as having only one

end; because, all operations are performed at

the top of the stack.

– That is why we call it a Last in -- First out data

structure.

• A queue, on the other hand, has two ends: a

front and a rear (or tail).

Queues

• With a queue, data items are only added at

the rear of the queue and items are only

removed at the front of the queue.

– This is what we call a First in -- First out

structure (FIFO).

– They are very useful for modeling real-world

characteristics (like lines at a bank).

Queue: Operations

• When we add things to the rear of the
queue we enqueue the data

• When we remove things from the front of
the queue we dequeue the data

• We also might want to determine if the
queue is empty or full

• We may also want to peek at the front
• A DEQUE is a double ended queue where

you can enqueue and dequeue at either
front or rear

Client Interface

• As with stacks, there are many different

interpretations of how these operations

should actually be implemented

– should “is empty” be combined with “dequeue”

– should “is full” be combined with “enqueue”

– should dequeue return and remove the item at the front

of the queue

– should dequeue just remove the item at the front of the

queue, requiring that a “peek” also be provided

Client Interface

class queue {

public:

queue();

~queue();

int enqueue(const data &);

int dequeue(data &);

int peek(data &);

int isempty(); int isfull();

Client Interface

• With the previous class public section

– the constructor might be changed to have an integer
argument if we were implementing this abstraction with
an array

– the int return types for each member function represent
the “success/failure” situation; if more than two states
are used (to represent the error-code) ints are a good
choice; otherwise, select a bool return type

– peek might be useful regardless of the interpretation of
dequeue...

Data Structures

• Now let’s examine various data structures
for a queue and discuss the efficiency
tradeoffs, based on:

– run-time performance

– memory usage

• We will examine:

– statically/dynamically allocated arrays

– “circular” arrays

– linked lists (linear, circular, doubly)

Data Structures

• Linear Arrays...

– direct access (insert at the “rear” position, remove at

“front” position)

– extreme problem: rightward drift

– as data is inserted and removed it slowly drifts to the

right; soon the „queue‟ may seem empty but yet there is

not data!

– alternating enqueues and dequeues will cause this

disastrous result...

Data Structures

• Circular Array...dynamically allocated
private:

data * array;

int number_of_items;

int size_of_array;

• Manner of Operation:

– when the “rear” or “front” indices progress to the end,
they wrap around back to the beginning

– front = front % size_of_array +1;

– rear = rear % size_of_array +1;

Data Structures

• Efficiency Discussion of a Circular Array:

– Progressing the indices is not as simple as just adding 1
with the increment operator (++front) which reduces the
gain achieved from direct access

– Still has fixed size memory limitations that we examined
with stacks

• do we know at compile time the maximum size

• is there are large variance in the size

– At least no shifting should be required (unless it is
implemented incorrectly!)

Data Structures

• Linear Linked list...
private:

node * head;

node * tail; //???helpful? yes!

• So, Where is the “rear” and “front”?

– if the rear is at the “head”, and the front is at the “tail”

what would the implication of enqueue and dequeue be?

Enqueue would be fine...but Pop would be disastrous,

requiring traversal (even with a tail pointer,...why?)!!

Data Structures

• So, Where is the “rear” and “front”?

– if the rear is at the “tail”, and the front is at the “head”

what would the implication of enqueue and dequeue

be?

– Enqueue would be fine if there is a tail pointer...and

pop would be great (inserting at the head

– No traversals needed!

– No shifting!

Data Structures

• So, did we need a tail pointer?

– Yes! Otherwise traversals would have been required

• How does the linked list compare with the
circular array?

• Array: array[rear] = data

rear = rear % size +1;

• Linked list: tail->next = new node;

tail = tail->next;

tail->member = data

tail->next = NULL;

Data Structures

• Circular Linked list...
private:

node * rear;

• With a queue, a circular linked list is a

viable alternative but does require

additional dereferencing to get to the

“front” which is not required with a linear

linked list.

Data Structures

• Doubly Linked list...
private: (each node has a node * prev)

node * head;

node * tail; //???helpful?

• Again, there is nothing in a queue that

will benefit from each node having a

pointer to the previous node.

• UNLESS, the abstraction is a deque

Next Time...

• Now that we have applied data
structures to stacks and queues

• We will move on to examine other types
of linked lists:

– doubly linked lists

– arrays of linked lists

– linked lists of linked lists

– linked lists with “dummy” head nodes

• We will also walk through the homework

Data Structures

Programming

Assignment

Discussion

