
Data Structures

Topic #5

Today’s Agenda

• Other types of linked lists

– discuss algorithms to manage circular and
doubly linked lists

– should we use a dummy head node? What are
the advantages and disadvantages

– what about arrays of linked lists, or linked lists
of arrays?

– evaluate the benefits/drawbacks of a doubly
“threaded” list

Dynamic Linked Lists

• Wisely controlled dynamic memory can
save considerable memory that may be
wasted by other implementations

• We are not limited to fixed size
restrictions

• Certain operations are simpler with
linked structures (inserting into a linked
list consists of only 2 assignment
statements, once we have found the
location)...no shifting!

Dynamic Linked Lists

• Of course, algorithms may be more

complex, harder to read, and harder to

debug than similar algorithms with

statically allocated structures

• Think about program #1...how would

have an “array” changed the debugging

process? Would it have provided all of the

necessary functionality?

Dynamic Linked Lists

• And, don’t forget that in some cases
dynamic linked lists can waste
memory. It is possible to store many
pointers compared to the quantity
of data. This pointer space must be
considered as overhead, which is
accentuated when the nodes
contain a small amount of data (like
a LLL of single characters!)

Dynamic Linked Lists

• For example, a list with a single character
data member (one byte)

– may require a 4-byte pointer as its link

– resulting in 80% overhead (4 bytes out of 5) in each list
node

• Lastly, allocating and deallocating memory at run-
time is overhead and can overshadow the time
saved by simple list-processing algorithms.

• ** no hard and fast rules! **

Doubly Linked Lists

• We have already discussed

– the benefits and drawbacks of doubly linked lists in
relation to various “position oriented” ADTs

– avoids the need to manage a previous pointer when we
traverse

– think about this: when you traverse a singly linked list to
remove a node -- what happens?

– yes! two pointers must be managed (current, previous) or
a look-ahead approach is used which requires 2
dereferences!

Traversing...singly LLL

• Let’s examine this further:
node * current=head;

node * previous= NULL;

while (current && current->data

!= match) {

previous = current;

current = current->next; }

• Count the number of operations, fetches...

Traversing...singly LLL

• With the look ahead approach:

node * current=head;

if (current)

while (current->next &&

current->next->data != match) {

current = current->next; }

• Count the number of operations, fetches...

• Compare these two techniques

Traversing...doubly LLL

• But, with a doubly linked list, we have:

node * current=head;

while (current &&

current->data != match) {

current = current->next; }

• Count the number of operations, fetches...

• Compare this with the last two techniques

Updating...doubly LLL

• When we update the pointers for a singly
linked list, we need to:
if (previous)

previous->next = current->next;

else head = current->next;

• Versus:
if (current->prev) {

current->prev->next = current->next;

else head = current->next;

Updating...doubly LLL

• But, this is not all...we have to update

the previous pointer in the “next” node
too:

if (current->next)

current->next->prev =current->prev;

– anything else? (draw a picture)

– why did we have to check if current->next?

Doubly Linked Lists

• What we should have learned from these
last few slides is that

– while doubly linked lists reduce the need to manage two
pointers (or use the look ahead)

– they do not necessarily improve our overall efficiency
dramatically for normal deletion

– instead, they add an extra pointer required for every
single node

– but they can minimize the need for traversals if used in
more complicated searches

Doubly Linked Lists

• Remember with a doubly linked list,

– there are two pointers in each node

– a next pointer, and a previous pointer

– the previous pointer should point to the node’s
immediate successor, and should be null if this
is the first node

– a node with both next and previous as null
means that there is just one node in the list

Doubly Linked Lists

• Compared to a singly linked list

– inserting and deleting nodes is a bit slower

– this is because both the next and the previous
members must be updated

– however, updating the extra pointer in each
node inserted/removed is still much faster than
doing a complete list traversal to find a
predecessor (or to backup 3 nodes...)

Doubly Linked Lists

• Given this, we know that insert will not
be as elegant as our LLL code:
//add as the first node:

node * temp = head;

head = new node;

head->data = new_data;

head->prev = NULL;

head->next = temp;

//anything else?

Doubly Linked Lists

• Yes!

head->next->prev = head;

• Anything wrong with this? Yes!

– if this is the first node in the list, we’d have a seg fault

with the code above.

if (temp) //why not if (head->next)?

head->next->prev = head;

Doubly Linked Lists

• Let’s do one more. Add at the end of a
doubly linked list without a tail ptr:

• What is wrong with this code:
node * current = head;

while (current)

current= current->next;

current->next = new node;

current->next->prev = current

current->next->next = NULL;

Doubly Linked Lists

• We can still go “too far” with a doubly LL
node * current = head;

if (!current) //insert at the head

else while (current->next)

current= current->next;

current->next = new node;

current->next->prev = current;

current->next->next = NULL;

– Any better approaches? Anything missing?

Doubly Linked Lists

• Is the “ideal” solution to have a tail
pointer instead? are there any
drawbacks to a tail pointer?
tail->next = new node;

tail->next->prev = tail;

tail->next->next = NULL;

– every time the list is altered the tail pointer
must be updated

Traversing...Circular LLL

• How would circular linked lists compare
with singly and doubly for traversal

• Do we still have to check for null? why?
• What should the stopping condition be

for traversal?
if (!head) //no items in list

else while (current->data != match) {

prev=current;

current = current->next;

if (current == head) break; }

Traversing...Circular LLL

• Why, instead couldn’t we have said:
else while (current != head &¤t-

>data != match) {

previous=current;

current = current->next; }

• or:
else while (current->next != head

&¤t->data != match) {

previous = current;

current = current->next; }

Circular Linked Lists

• Can we avoid having a previous pointer in

our traversals with a circular linked list?

No! (unless a look ahead is used)

• Count the number of operations/fetches

and compare with the other approaches

for today

• What about deallocating all nodes? How

does that work?

Deallocating all in Circular LL

• Remember, with a circular linked list

– it is the stopping condition that changes

– if we check for it too soon...we won’t get

anywhere!

//for example, this is wrong

node * current = head;

while (current != head) {...}

Deallocating all in Circular LL

• But, waiting to check can also be wrong:
//for example, this is wrong

node * current = head;

node * temp;

do {

temp = current->next;

delete current;

current = temp;

} while (current != head);

Deallocating all in Circular LL

• The previous slide would have caused a

seg fault (dereferencing a null pointer) if

the list was already empty...

• By adding the following at the beginning, would
we have solved this problem?

if (!head) return;

– yes, but there is another choice.

Deallocating all in Circular LL

• Is this better or worse?
if (!head) return;

node * current = head;

node * temp;

while (current->next != head) {

temp = current->next;

delete current;

current = temp;

} //now what needs to get done?

Deallocating all in Circular LL

• Yes, we have one node left...oops!
delete head;

head = NULL;

• Compare this approach with the one
before, which is better and why?

• Also realize...that with both approaches

– we had 3 pointers (head, current, temp)

– in addition, the stopping condition requires more work
than just checking for null!

Deallocating all in Circular LL

//An alternate approach

if (!head) return;

node * current = head->next;

head->next = NULL; ///say what?

while (current){

head = current->next;

delete current;

current = head;

}

Dummy Head Nodes

• Variations to singly linked lists have been
designed to decrease the complexity and
increase the efficiency of specific algorithms

• For many list processing algs, the first node
of the list is a special case

– we’ve seen this with inserting and deleting

– because updating the head pointer is different
from updating a next pointer of another node

Dummy Head Nodes

• The result is that many of our algorithms have the
form:

– if the node is the first node being processed
• update the head appropriately

– otherwise
• process the node normally

• One way to eliminate this special case is to
include a head node or list header (dummy head
node)

Dummy Head Nodes

• A head node is an extra node placed at the

beginning of the list

• It has the same data type as all other nodes

in the list

– but, its data member is unused

– eliminating the special case for the first node -

because every list has this empty node.

Dummy Head Nodes

• So, to insert at the end would not require a special
case for if the list existed or not:
node * current = head;

while (current->next) //no seg fault!

current = current->next;

current->next = new node;

current = current->next;

current->data = new_data;

current->next = NULL;

Dummy Head Nodes

• This means your constructor would NOT set head to

null

– in fact, there should be no situation where head is null!!

//constructor:

head = new node;

head->next = NULL;

– problems occur with a destructor if it is ever explicitly

invoked. Why?

Other Data Structures

• We are not limited to these data structures

– why not combine what we have learned about linked

lists and arrays to create list that draws off of the

strengths of both?

– if we had a linked list of arrays, where each node is an

array we could dynamically grow it (no fixed size

limitations), we could easily insert/remove nodes

(blocks of memory), and we could directly access

within an array once found

Other Data Structures

• For example, let’s manage a linked list of arrays,
where each array contains 10 data items

– we figure that even if all 10 are not used in a given
node, that wasting 9-0 data “cells” is trivial

– commonly called a “flexible array”

struct node {

data fixed_array[SIZE];

node * next;

};

Other Data Structures

• So, assume that we have built a flexible array and
we are interested in accessing the 15th data item
(i.e., by position)

node * current = head;

int traverse = dposition/SIZE;

while (--traverse && current) {

current = current->next;

if (current) cout <<

current->fixed_array[dposition%SIZE];

Other Data Structures

• Discuss the benefits and drawbacks of this
approach...

– How do the number of operations/fetches
compare?

– How does the use of memory compare?

– Are there any problems with the direct access in
the previous code? will it work in all cases?

– Could we have avoided traversal all together?

Next Time...

• Next time we will begin discussing

– how to measure the efficiency of our algorithms in a

more precise manner

• Then, we will move on and begin discussing

abstractions that are value oriented instead of

position oriented

– and begin applying non-linear data structures to improve

our insertion, deletion, retrieval performance

Data Structures

Programming

Assignment

Discussion

