
Data Structures

Topic #6

Today’s Agenda

• “Table” Abstract Data Types

– Work by “value” rather than “position”

– May be implemented using a variety of data structures

such as

• arrays (statically, dynamically allocated)

• linear linked lists

• non-linear linked lists

– Today, we begin our introduction into non-linear

linked lists by examining arrays of linked lists!

Table ADTs

• The ADT's we have learned about so far are
appropriate for problems that must manage data
by the position of the data (the ADT operations
for an Ordered List, Stack, and Queue are all
position oriented).

• These operations insert data (at the ith position,
the top of stack, or the rear of the queue); they
delete data (at the ith position, the top of stack, or
the front of the queue); they retrieve data and find
out if the list is full or empty.

Table ADTs

• Tables manage data by its value!

• As with the other ADT's we have talked about,
table operations can be implemented using arrays
or linked lists.

• Valued Oriented ADTs allow you to:

– -- insert data containing a certain VALUE into a data
structure

– -- delete a data item containing a certain VALUE from
a data structure

– -- retrieve data and find out if the structure is empty or
full.

Table ADTs

• Applications that use value oriented ADTs are:

– ...finding the phone number of John Smith

– ...deleting all information about an employee

with an ID # 4432

• Think about you 162 project...it could have been

written using a table!

Table ADTs

• When you think of an ADT table, think of a table

of major cities in the world including the

city/country/population, a table of To-Do-List

items, or a table of addresses including

names/addresses/phone number/birthday.

• Each entry in the table contains several pieces of

information.

• It is designed to allow you to look up information

by various search keys

Table ADTs

• The basic operations that define an ADT Table
are:(notice, various search keys!!)

• Create an empty table (e.g., Create(Table))

• Insert an item into the table (e.g.,
Insert(Table,Newdata))

• Delete an item from the table (e.g.,
Delete(Table, Key))

• Retrieve an item from the table (e.g.,
Retrieve(Table, Key, Returneddata))

Table ADTs

• But, just like before, you should realize that these

operations are only one possible set of table

operations.

• Your application might require either a subset of

these operations or other operations not listed

here.

• Or, it might be better to modify the

definitions...to allow for duplicate items in a

table.

Table ADTs

• Does anyone see a problem with this approach so
far?

• What if we wanted to print out all of the items
that are in the table? Let's add a traverse.:

• Traverse the Table (e.g., Traverse(Table,
VisitOrder))

• But, because the data is not defined to be in a
given order...”sorting” may be required (the
client should be unaware of this taking place)

Data Structures for Tables

• We will look at both array based and pointer
based implementations of the ADT Table.

• When we say linear, we mean that our items
appear one after another...like a list.

• We can either organize the data in sorted order or
not.

• If your application frequently needs a key
accessed in sorted order, then they should be
stored that way. But, if you access the
information in a variety of ways, sorting may not
help!

Data Structures for Tables

• With an unsorted table, we can save information

at the end of the list or at the beginning of the

list;

• therefore, insert is simple to implement: for both

array and pointer-based implementations.

• For an unsorted table, it will take the same

amount of time to insert an item regardless of

how many items you have in your table.

Data Structures for Tables

• The only advantage of using a pointer-based

implementation is if you are unable to give a

good estimate of the maximum possible size of

the table.

• Keep in mind that the space requirements for an

array based implementation are slightly less than

that of a pointer based implementation....because

no explicit pointer is stored.

Data Structures for Tables

• For sorted tables (which is most common), we
organize the table in regard to one of the fields in
the data's structure.

• Generally this is used when insertion and deletion
is rare and the typical operation is traversal (i.e.,
your data base has already been created and you
want to print a list of all of the high priority
items). Therefore, the most frequently used
operation would be the Traverse operation,
sorting on a particular key.

Data Structures for Tables

• For a sorted list, you need to decide:

• Whether dynamic memory is needed or whether

you can determine the maximum size of your

table

• How quickly do items need to be located given a

search key

• How quickly do you need to insert and delete

Data Structures for Tables

• So, have you noticed that we have a problem for
sorted tables?

• Having a dynamic table requires pointers.

• Having a good means for retrieving items
requires arrays.

• Doing a lot of insertion and deletion is a toss
up...probably an array is best because of the
searching.

• So, what happens if you need to DO ALL of
these operations?

Searching for Data

• Searching is typically a high priority for table
abstractions, so let’s spend a moment reviewing
searching in general.

• Searching is considered to be "invisible" to the
user.

• It doesn't have input and output the user works
with.

• Instead, the program gets to the stage where
searching is required and it is performed.

Searching for Data

• In many applications, a significant amount of

computation time is spent sorting data or

searching for data.

• Therefore, it is really important that you pick an

efficient algorithm that matches the tasks you are

trying to perform. Why?

• Because some algorithms to sort and search are

much slower than others, especially when we are

dealing with large collections of data.

Searching for Data

• When searching, the fields that we search to be

able to find a match are called search keys (or, a

key...or a target).

• Searching algorithms may be designed to search

for any occurrence of a key, the first occurrence

of a key, all occurrences of a key, or the last

occurrence of a key.

• To begin with, our searching algorithms will

assume only one occurrence of a key.

Searching for Data

• Searching is either done internally or externally.

• Searching internally means that we will search an

list of items for a match; this might be searching

an array of data items, an array of structures, or a

linked list.

• Searching externally means that a file of data

items needs to be searched to find a match

Searching for Data

• Searching algorithms will typically be
modularized into their own function(s)...which
will have two input arguments:

– (1) The key to search for (target)

– (2) The list to search

• and, two output arguments:

– (1) A boolean indicating success or failure (did we find
a match?)

– (2) The location in the list where the target was found;
generally if the search was not successful the location
returned is some undefined value and should not be
used.

Searching for Data
• The most obvious and primitive way to search for

a given key is to start at the beginning of the list
of data items and look at each item in sequence.

• This is called a sequential or linear search.

• The sequential search quits as soon as it finds a
copy of the search key in the array. If we are very
lucky, the very first key examined may be the one
we are looking for. This is the best possible case.

• In the worst case, the algorithm may search the
entire search area - from the first to the last key
before finding the search value in the last element
-- or finding that it isn't present at all.

Searching for Data

• For a faster way to perform a search, you might
instead select the binary search algorithm. This is
similar to the way in which we use either a
dictionary or a phone book.

• As you should know from CS162, this method is
one which divides and conquers. We divide the list
of items in two halves and then "conquer" the
appropriate half! You continue doing this until you
either find a match or determine that the word does
not exist!

Searching for Data

• Thinking about binary search, we should notice a
few facts:

• #1) The binary search is NOT good for searching
linked lists. Because it requires jumping back and
forth from one end of the list to the middle; this is
easy with an array but requires tedious traversal
with a linear linked list.

• #2) The binary search REQUIRES that your data
be arranged in sorted order! Otherwise, it is not
applicable.

Non-Linear Data Structures

• Instead of using an array or a linear linked list for
our Table ADT

• We could have used a non-linear data structure,
since the client is not aware of the order in which
the data is stored

• Our first look at non-linear data structures will be
as a hash table, implemented using an array of
linear linked lists.

Hash tables

• For example, we could treat teh searching as a “black
box”

– ... like an "address calculator" that takes the item we
want to search for and returns to us the exact location
in our table where the item is located. Or, if we want to
insert something into the table...we give this black box
our item and it tells us where we should place it in the
table. First of all, we need to learn about hash tables

• when you see the word “table” in this context, think of just a
way of storing data rather than the “adt” itself.

Hash tables

• So, using this type of approach...to insert would simply

be:

– Step 1: Tell the "black box" (formally called the

hashing function) the search key of the item to be

inserted

– Step 2: The "black box" returns to us the location

where we should insert the item (e.g., location i)

– Step 3: Table[location i] = newitem

Hash tables

• For Retrieve:

– Step 1: Tell the "black box" the search key of the item

to be retrieved

– Step 2: The "black box" returns to us the location where

it should be located if it is in the table (e.g., location i)

– Step 3: Check If our Table[location i] matches the

search key....if it does, then return the record at that

location with a TRUE success!

• ...if it does not, then our success is FALSE (no match found).

Hash tables

• Delete would work the same way. Notice we
never have to search for an item.

• The amount of time required to carry out the
operation depends only on how quickly the black
box can perform its computation!

• To implement this approach, we need to be able
to construct a black box, which we refer to
formally as the hash function. The method we
have been describing is called hashing. The Table
containing the location of our structures...is
called the hash table.

Hash tables

• Assume we have a Table of structures with
locations 0 thru 100.

• Say we are searching for employee id numbers
(positive integers).

• We start with a hash function that takes the id
number as input and maps it to an integer
ranging from 0 to 100.

• So, the ADT operations performs the following:

– TableIndex=hashfunction(employee id #)

Hash tables

key hash
function

index

“Table ADT”

hash table

data

Hash tables

• Notice Hashing uses a table to store and retrieve

items.

• This means that off hand it looks like we are once

again limited to a fixed-size implementation.

• The good news is that we will learn in this class

about chaining...which will allow us to grow the

table dynamically.

Hash tables

• Ideally we want our hash function to map each
search key into a unique index into our table.

• This would be considered a perfect hash function.
But, it is only possible to construct perfect hash
functions if we can afford to have a unique entry
in our table for each search key -- which is not
typically the case.

• This means that a typical hash function will end
up mapping two or more search keys into the
same table index! Obviously this causes a
collision.

Hash tables

• Another way to avoid collisions is to create a hash
table which is large enough so that each

• For example, for employee id numbers (###-##-
###) ... we'd need to have enough locations to
hold numbers from 000-00-000 to 999-99-999.

• Obviously this would require a TREMENDOUS
amount of memory!

• And, if we only have 100 employees -- our hash
table FAR EXCEEDS the number of items we
really need to store. RESERVING SUCH VAST
amounts of memory is not practical.

Collision Resolution

• As an alternative, we need to understand how to implement
schemes to resolve collisions.

• Otherwise, hashing isn't a viable searching algorithm.

• When developing a hash functions:

– try to develop a function that is simple & fast

– make sure that the function places items evenly
throughout the hash table without wasting excess
memory

– make the hash table large enough to be able to
accomplish this.

Hash Functions

• Hash functions typically operate on search keys
that are integers.

• It doesn't mean that you can't search for a
character or for a string...but what it means is that
we need to map our search keys to integers
before performing the hashing operation. This
keeps it as simple as possible

• But, be careful how you form the hash functions

– your goal should be to keep the number of
collisions to a minimum and avoid clustering
of data

Hash Functions

• For example, suppose our search key is a 9-digit
employee id number. Our hash function could
be as simple as selecting the 4th and last digits
to obtain an index into the hash table:

• Therefore, we store the item with a search key
566-99-3411 in our hash table at index 91.

• In this example, we need to be careful which
digits we select. Since the first 3 digits of an ID
number are based on geography, if we only
selected those digits we would be mapping
people from the same state into the same
location

Hash Functions

• Another example would be to "fold" our search
keys: adds up the digits.

• Therefore, we store the item with a search key 566-
99-3411 in our hash table at index 44.

• Notice that if you add up all of the digits of a 9
digit number...the result will always be between 0
and 9+9+9+9+9+9+9+9+9 which is 81!

• This means that we'd only use indices 0 thru 81 of
our hash table. If we have 100 employees...this
means we immediately know that there will be
some collisions to deal with.

Hash Functions

• Another example would be to "fold" our search
keys a different way. Maybe in groups of 3:

• 566+993+411 = 1,970

• Obviously with this approach would require a
larger hash table. Notice that with a 9 digit
number, the result will always be between 0 and
999+999+999 which is 2,997.

• If you are limited to 101 locations in a hash table,
a mapping function is required. We would need to
map 0 -> 2997 to the range 0 -> 100.

Hash Functions

• But the most simple AND most effective approach for
hashing is to use modulo arithmetic (finding an integer
remainder after a division).

• All we need to do is use a hash function like:

– employee id # % Tablesize

– 566-99-3411 % 101 results in a remainder of 15

• This type of hash function will always map our
numbers to range WITHIN the range of the
table. In this case, the results will always range
between 0 and 100!

Hash Functions

• Typically, the larger the table the fewer
collisions. We can control the distribution of
table items more evenly, and reduce collisions,
by choosing a prime number as the Table size.
For example, 101 is prime.

• Notice that if the tablesize is a power of a small
integer like 2 or 10...then many keys tend to
map to the same index. So, even if the hash table
is of size 1000...it might be better to choose 997
or 1009.

Hash Functions

• When two or more items are mapped to the same
index after

• using a hash function, a collision occurs. For
example, what if our two employee id #s were:
123445678 and 123445779

– ...using the % operator, with a table of size 101...both of
these map to index 44.

– This means that after we have inserted the first id# at
index 44, we can't insert the second id # at index 44
also!

Linear Probing

• There are many techniques for collision resolution

• We will discuss

– linear probing

– chaining

• Linear probing searches for some other empty
slot...sequentially...until either we find a empty
place to store our new item or determine that the
table is full.

Linear Probing

• With this scheme,

– we search the hash table sequentially, starting at the
original hash location...

– Typically we WRAP AROUND from the last table
location to the first table location if we have trouble
finding a spot.

– Notice what this approach does to retrieving and
deleting items. We may have to make a number of
comparisons before being able to determine where an
item is located...or to determine if an item is NOT in
the table.

Linear Probing

• Is this an efficient approach?

• As we use up more and more of the hash table,
the chances of collisions increase.

• As collisions increase, the number of probes
increase, increasing search time

• Unsuccessful searches will require more time
than a successful search.

• Tables end up having items CLUSTER together,
at one end/area of the table, affecting overall
efficiency.

Chaining

• A better approach is to design the hash

table as an array of linked lists.

• Think of each entry in your table as a

chain...or a pointer to a linked list of items

that the hash function has mapped into

that location.

hash table

chainshash fnct

Chaining

• Think of the hash table as an array of head

pointers:

node * hash_table[101];

• But, what is wrong with this? It is a statically

allocated hash table...

node ** hash_table;

•••

hash_table = new node * [tbl_size];

Chaining

• Do we need to initialize this hash table?

• Yes, each element should be initialized to
NULL,

– since each “head” pointer is null until a chain
is established

– so, your constructor needs a loop setting
elements 0 through tbl_size-1 to Null after the
memory for the hash table has been allocated

Chaining

• Then, the algorithm to insert an item into the

linked list:

– Use the hash function to find the hash index

– Allocate memory for this new item

– Store the newitem in this new memory

– Insert this new node between the "head" of this list

and the first node in the list

• Why shouldn’t we traverse the chain?

– Think about the order...

Chaining

• To retrieve, our algorithm would be:

– Use the hash function to find the hash index

– Begin traversing down the linked list searching for a
match

– Terminate the search when either a match is
encountered or the end of the linked list is reached.

– If a match is made...return the item & a flag of
SUCCESS!

– If the end of the list is reached and no match is found,
UNSUCCESS

Chaining

• This approach is beneficial because the total size of
the table is now dynamic!

• Each linked list can be as long as necessary!

• And, it still let's our Insert operation be almost
instantaneous.

• The problem with efficiency comes with retrieve
and delete, where we are required to search a
linked list of items that are mapped to the same
index in the hash table.

Chaining

• Therefore, when the linked lists are too long,
change the table size and the manner in which
the key is converted into an index into the hash
table

• Do you notice how we are using a combination
of direct access with the array and quick
insert/removal with linked lists?

• Notice as well that no data moving happens

• But, what if 2 or more keys are required?

Chaining
• For 2 or more search keys,

– you will have 2 or more hash tables (if the

performance for each is equally important)

– where the data within each node actually is a

pointer to the physical data rather than an

instance

hash table

By name data
data data

data

pointed to
from another
node in another
HT chain

Chaining

• What if all or most of the items end up hashing to
the same location?

• Our linked list(s) could be very large.

• In fact, the worst case is when ALL items are
mapped into the same linked list.

• In such cases, you should monitor the number of
collisions that happen and change your hash
function or increase your table size to reduce the
number of collisions and shorten your linked
lists.

In Summary

• For many applications, hashing provides the
most efficient way to use an ADT Table.

• But, you should be aware that hashing IS NOT
designed to support traversing an entire table of
items and have them appear in sorted order.

• Notice that a hash function scatters items
randomly throughout the table...so that there is
no ordering relationship between search keys
and adjacent items in the table

In Summary

• Therefore, to traverse a table and print out

items in sorted order would require you to

sort the table first.

• As we will learn, binary search trees can be

far more effective for letting you do both

searching and traversal - IN SORTED

ORDER than hash tables.

In Summary

• Hash functions should be easy and fast to

compute. Most common hash functions require

only a single division or multiplication.

• Hash functions should evenly scatter the data

throughout the hash table.

• To achieve the best performance for a chaining

method, each chain should be about the same

length (Total # items/Total size of table).

In Summary

• To help ensure this, the calculation of the hash
function should INVOLVE THE ENTIRE
SEARCH KEY and not just a portion of the
key.

• For example, computing a modulo of the entire
ID number is much safer than using only its
first two digits.

• And, if you do use modulo arithmetic, the Table
size should be a prime number.

– This takes care of cases where search keys are
multiples of one another.

Other Approaches

• Another approach is called quadratic probing.

• This approach significantly reduces the clustering
that happens with linear probing: index +
count2

• It is a more complicated hash function; it doesn't
probe all locations in the table.

– In fact, if you pick a hash table size that is a power of
2, then there are actually very few positions that get
probed w/ many collisions.

Other Approaches

• We might call a variation of this the Quadratic

Residue Search.

• This was developed in 1970 as a probe search

that starts at the first index using your hash

function (probably: key mod hashtablesize).

• Then, if there is a collision, take that index and

add count2. Then, if there is another collision,

take that index and subtract count2.

Next Time...

• Next time we will begin discussing

– how to measure the efficiency of our

algorithms in a more precise manner

Data Structures

Programming

Assignment

Discussion

