
Data Structures

Topic #7

Today’s Agenda

• How to measure the efficiency of

algorithms?

• Discuss program #3 in detail

• Review for the midterm

– what material to study

– types of questions

– walk through a sample midterm

Algorithm Efficiency

• So far, we have discussed the efficiency of

various data structures and algorithms in a

subjective manner

• Instead, we can measure the efficiency using

mathematical formulations using the Big O

notation

• This allows us to more easily compare and

contrast the run-time efficiency between

algorithms and data structures

Algorithm Efficiency

• If we say: Algorithm A requires a certain

amount of time proportional to f(N)...

– this means that regardless of the

implementation or computer, there is some

amount of time that A requires to solve the

problem of size N.

– Algorithm A is said to be order f(N) which is

denoted as O(f(N));

Algorithm Efficiency

• f(N) is called the algorithm's growth-rate

function.

• We call this the BIG O Notation!

• Examples of the Big O Notation:

– If a problem requires a constant time that is

independent of the problem's size N, then the

time requirement is defined as: O(1).

Algorithm Efficiency

• If a problem of size N requires time that is

directly proportional to N,

– then the problem is O(N).

• If the time requirement is directly

proportion to Nsquared,

– then the problem is O(Nsquared), etc.

Algorithm Efficiency

• Whenever you are analyzing these
algorithms,

– it is important to keep in mind that we are only
interested in significant differences in
efficiency.

– Can anyone tell me if there are significant
differences between an unsorted array, linear
linked list, or hash table implementation of
retrieve (for a “table” abstraction)??

Algorithm Efficiency

• Notice that as the size of the list grows,

– the unsorted array and pointer base
implementation might require more time to
retrieve the desired node (it definitely would
in the worst case situation...because the node
is farther away from the beginning of the list).

– In contrast, regardless of how large the list is,
the hash table implementation will always
require the same constant amount of time.

Algorithm Efficiency

• Therefore, the difference in efficiency is

worth considering if your problem is large

enough.

• However, if your list never has more than a

few items in it, the difference is not

significant!

Algorithm Efficiency

• There is one side note that we should
consider.

– When evaluating an algorithm's efficiency, we
always need to keep in mind the trade-offs
between execution time and memory
requirements.

– The Big O notation is denoting execution time
and does not fill us in concerning memory
requirements and/or algorithm limitations.

Algorithm Efficiency

• So, evaluate your performance needs and...

– consider how much memory one approach requires

over another

– evaluate the strengths/weaknesses of the algorithms

themselves (are there certain cases that are not

handled effectively?).

– Overall, it is important to examine algorithms for

both style and efficiency. If your problem size is

small, don't over analyze; pick the algorithm easiest

to code and understand. Sometimes less efficient

algorithms are more appropriate.

Algorithm Efficiency

• Some things to keep in mind when using this
notation:

– You can ignore low-order terms in an algorithm's
growth rate.

– For example, if an algorithm is O(N3+ 4*N2+3*N)
then it is also O(N3). Why?

– Because N3 is significantly lager than either 4*N2 or
3*N...especially when N is large.

– For large N values...the growth rate of N3+ 4*N2+3*N
is the same as N3

Algorithm Efficiency

• Also, you can ignore a constant being
multiplied to a high-order term.

• For example: if an algorithm is O(5*N3),
then it is the same as O(N3).

• However, not all experts agree with this
approach

– and there may be situations where the
constants have significance

Algorithm Efficiency

• Lastly, one algorithm might require

different times to solve different problems

that are of the same size.

– For example, searching for an item that

appears in the first location of a list will be

finished sooner than searching for an item that

appears in the last location of the list (or

doesn't appear at all!).

Algorithm Efficiency

• Therefore, when analyzing algorithms,

– we should consider the maximum amount of

time that an algorithm can require to solve a

problem of size N -- this is called the worst

case.

– Worst case analysis concludes that your

algorithm is O(f(N)) in the worst case.

Algorithm Efficiency

• You might also consider looking at your

algorithm time requirements using average

case analysis.

– This attempts to determine the average amount

of time that an algorithm requires to solve

problems of size N.

– In general, this is far more difficult to figure

out than worst case analysis.

Algorithm Efficiency

• This is because you have to figure out the

probability of encountering various

problems of a certain size and the

distribution of the type of operations

performed.

• Worst case analysis is far more practical to

calculate and therefore it is more common.

Algorithm Efficiency

• The next step is to learn how to figure out

an algorithm's growth rate.

• We know how to denote it...and we know

what it means (i.e., usually the worst case)

and we know how to simplify it (by not

including low order terms or constants)

– ...but how do we create it?

Algorithm Efficiency

• Here is an example of how to analyze the
efficiency of an algorithm to traverse a
linked list...

void printlist(node *head)

{

node * cur;

cur = head;

while (cur != NULL) {

cout <<cur->data;

cur = cur->link; }

Algorithm Efficiency

• If there are N nodes in the list;

– the number of operations that the function requires is

proportional to N.

– For example, there are N+1 assignments and N print

operations, which together are 2*N+1 operations.

– According to the rules we just learned about, we can

ignore both the coefficient 2 and the constant 1; they

are meaningless for large values of N.

Algorithm Efficiency

• Therefore, this algorithm's efficiency can

be denoted as O(N);

– the time that printlist requires to print N nodes

is proportional to N.

– his makes sense: it takes longer to print or

traverse a list of 100 items than it does a list of

10 items.

Algorithm Efficiency

• Another example, using a nested loop:

for (i=1; i <= n; i++)

for (j=1; j <=n; j++)

x = i*j;

• This is O(n squared)

Algorithm Efficiency

• The concepts learned here can also be used

to help choose the type of ADT to use and

how efficient it will be.

• For example, when considering whether to

use arrays or linked lists, you can use this

type of analysis

– ...since there may be significant difference in

the efficiency between the two!

Algorithm Efficiency

• Take, for example, the ADTs for the ordered list

operation RETRIEVE;

– remember, it retrieves a value of the item in the Nth

position in the ordered list.

– In the array based implementation, the Nth item can be

accessed directly (it is stored in position N). This

access is INDEPENDENT OF N!

– Therefore, RETRIEVE takes the same amount of time

to access either the 100th item or the first item in the

list. Thus, an array based implementation of

RETRIEVE is O(1).

CALCULATE BEST/WORST

• So, let’s evaluate what the Big O would be

– for an absolute ordered list using an array

retrieve: remove: insert:

– for a relative ordered list using an array

retrieve: remove: insert:

– for an absolute ordered list using a LLL

retrieve: remove: insert:

– for an relative ordered list using a LLL

retrieve: remove: insert:

Continue....BEST/WORST

• So, let’s evaluate what the Big O would be

– for a table ADT using an unsorted array:

retrieve: remove: insert:

– for a table ADT using an unsorted LLL:

retrieve: remove: insert:

– for a table ADT using a sorted array:

retrieve: remove: insert:

– for a table ADT using a hash table:

retrieve: remove: insert:

Discuss Program #3

• Program #3

– expects that you are able to build two different
hash tables for a “table ADT”

– needs to isolate the client program from
knowing that hashing is being performed

– where the class needs two data members for
two different hash tables

– and two different data members for the sizes
of these hash tables

Discuss Program #3

• Program #3

– why might the sizes of the hash tables be different

when the number of items in each table will be the

same???

– remember the hash tables, since we are implementing

chaining need to be arrays of pointers to nodes

– remember that the constructor needs to allocate these

arrays and then initialize each element of the arrays to

null

Discuss Program #3

• Program #3

– what is most important is developing a
technique for FAST retrieval by either key
value

– which is why two hash tables are being used

– but...at the same time we don’t want to
duplicate our data so make sure that the data
only occurs once and that each node points to
the data desired

Discuss Program #3

• Program #3

– Remember that you destructor needs to
deallocate the data (only deallocate the data
once...more than once may lead to a
segmentation fault!)

– deallocate the nodes for both hash tables

• (the nodes for one hash table will be DIFFERENT
than the nodes for the 2nd hash table)

– and, deallocate the two hash tables

Discuss Midterm

• Review for the Midterm

– The midterm is closed book, closed notes

– it will cover position oriented abstractions such as

stacks, queues, absolute ordered lists and relative

ordered lists

– it will cover array, linear linked list, circular linked

list, and doubly linked list representations

– it may also cover dummy head node and derivations of

the standard linked list

Discuss Midterm

• To prepare...

– I recommend walking through the self check

exercises in the book for the chapters that have

been assigned

– Answer the self-check exercises and compare

your results with other members in the class

– Practice writing code. Re-do your answers for

homework #1...very important!

Discuss Midterm

• For example...

– Can you make a copy of a linear linked list?

– What about deallocating all nodes in a circular
linked list

– Can you find the largest data item that resides
within a sorted linked list? How about an
unsorted linked list?

– Could you do the same thing with an array of
linked lists (unsorted, of course)

Discuss Midterm

• Or...

– Can you determine if two linked lists are the same?

– How about copying the data from a linked list into an

array...or vice versa?

– Can you determine if the data in an array is the same

as the data in a linked list?

– Would your answer change if you were comparing a

circular array to a circular linked list?

