
Data Structures

Topic #8

Today’s Agenda

• Continue Discussing Table Abstractions

• But, this time, let’s talk about them in

terms of new non-linear data structures

– trees

– which require that our data be organized in a

hierarchical fashion

Tree Introduction

• Remember when we learned about tables?

– We found that none of the methods for

implementing tables was really adequate.

– With many applications, table operations end

up not being as efficient as necessary.

– We found that hashing is good for retrieval,

but doesn't help if our goal is also to obtain a

sorted list of information.

Tree Introduction

• We found that the binary search also
allows for fast retrieval,

– but is limited to array implementations versus
linked list.

– Because of this, we need to move to more
sophisticated implementations of tables, using
binary search trees!

– These are "nonlinear" implementations of the
ADT table.

Tree Terminology

• Trees are used to represent the relationship

between data items.

– All trees are hierarchical in nature which means there

is a parent-child relationship between "nodes" in a

tree.

– The lines between nodes are called directed edges.

– If there is a directed edge from node A to node B --

then A is the parent of B and B is a child of A.

Tree Terminology

• Children of the same parent are called siblings.

• Each node in a tree has at most one parent,

starting at the top with the root node (which has

no parent).

• Parent of n The node directly

above node n in the tree

• Child of n The node directly below

the node n in the tree

Tree Terminology

• Root The only node in the

tree with no parent

• Leaf A node with no children

• Siblings Nodes with a common parent

• Ancestor of n A node on the

path from the root to n

Tree Terminology

• Descendant of n

– A node on a path from n to a leaf

• Empty tree

– A tree with no nodes

• Subtree of n

– A tree that consists of a child of n and the child's
descendants

• Height

– The number of nodes on the longest path from root to
a leaf

Tree Terminology

• Binary Tree

– A tree in which each node has at most two

children

• Full Binary Tree

– A binary tree of height h whose leaves are all

at the level h and whose nodes all have two

children; this is considered to be completely

balanced

Binary Trees

• A binary tree is a tree where each node has
no more than 2 children.

– If we traverse down a binary tree -- for every
node -- there are either no children (making
this node a leaf) or there are two children
called the left and right subtrees

– (A subtree is a subset of a tree including some
node in the tree along with all of its
descendants).

Binary Search Trees

• The nodes of a binary tree contain values.

• For a binary search tree, it is really sorted

according to the key values in the nodes.

– It allows us to traverse a binary tree and get our data in

sorted order!

– For example, for each node n, all values greater than n

are located in the right subtree...all values less than n

are located in the left subtree. Both subtrees are

considered to be binary trees themselves.

Binary Search Trees

Sm ith

Barn es

Taylor

Mon tgomery

Davi e s

NOT a Binary Search Tree

President

VP Finance VP Operations VP Sales

Field
Sales

Director Eng Director of
Manuf.

Public
Relations

Marketing

Binary Search Trees

• Notice that a binary tree organizes data in a way
that facilitates searching the tree for a particular
data item.

• It ends up solving the problems of sorted-
traversal with the linear implementations of the
ADT table.

• And, if reasonably balanced, it can provide a
logarithmic retrieval, removal, and insertion
performance!

Binary Trees

• Before we go on, let's make sure we understand

some concepts about trees.

• Trees can come in many different shapes. Some

trees are taller than others.

• To find the height of a tree, we need to find the

distance from the root to the farthest leaf.

Or....you could think of it as the number of nodes

on the longest path from the root to a leaf.

Binary Trees

• Each of these trees has the same number of

nodes -- but different heights:

Binary Trees

• You will find that experts define heights
differently.

• For example, just by intuition you would
think that the trees shown previously have a
height of 2 and 4.

• But, for the cleanest algorithms, we are
going to define the height of a tree as the
following (next slide)

Binary Trees

• If a node is a root, the level is 1. If a node is not
the root,

– then it has a level 1 greater than its parent.

• If the tree is entirely empty,

– then it has a height of zero.

• Otherwise, its height is equal to the maximum
level of its nodes.

• Using this definition,

– the trees shown previously have the height of 3, 5, and
5.

Full Binary Trees

• Now let's talk about full, complete, and
balanced binary trees.

• A full binary tree has all of its leaves at
level h.

• In the previous diagram, only the left hand
tree is a full binary tree!

• All nodes that are at a level less than the
height of the tree have 2 children.

Complete Binary Trees

• A complete binary tree is one which is a

full binary tree to a level of its height-1 ...

– then at the last level, it is filled from left to

right. For example:

Binary Search Trees

• This has a height of 4 and is a full binary tree at
level 3.

• But, at level 4, the leaves are filled in from left to
right!

• From this definition, we realize that a full binary
tree is also considered to be a complete binary
tree.

• However, a complete binary tree does not
necessarily mean it is full!

Implementing Binary Trees

• Just like other ADTs,

– we can implement a binary tree using pointers or

arrays.

– A pointer based implementation example:

struct node {

data value;

node * left_child;

node * right_child;

};

Binary Search Trees

• In what situations would the data being “stored”

in the node...

– be represented by a pointer to the data?

struct node {

data * ptr_value;

– when more than a single data structure needs to

reference the same tree (e.g., two binary search trees

referencing the same data but organized on two

different keys!)

Binary Search Trees

• In what situations would the data being

“stored” in the node...

– be represented by a pointer to a LLL node?

struct tree_node {

LLL_node * head;

– when each node’s data is actually a list of items

(a general purpose list, stack, queue, or other

ordered list representation)

Binary Search Trees

• In what situations would the data being “stored” in

the node...

– be represented by an array of data?

struct tree_node {

data ** array;

– when each node’s data is actually a list of items (a

general purpose list, stack, queue, or other ordered list

representation), but where the size and efficiency of this

data structure is preferred over a LLL

Implementing Binary Trees

class binary_tree {

public:

binary_tree();

~binary_tree();

int insert(const data &);

int remove(const key &);

int retrieve (const key &,

data [], int & num_matches);

void display();

Implementing Binary Trees

//continued....class interface

private:

node * root;

};

• Notice that instead of using “head” we use “root”
to establish the “starting point” in the tree

• If the tree is empty, root is NULL.

Implementing Binary Trees

Root

RootData Value

Left Right

Data Value

Left Right

Data Value

Left Right

etc.

Implementing Binary Trees

• When we implement binary tree algorithms

– we have a choice of using iteration or recursion and still

have reasonably efficient results

– remember why we didn’t use recursion for traversing

through a standard linear linked list?

– now, if the tree is reasonably balanced, we can traverse

through a tree with a minimal number of recursive calls

Traversal through BSTs

• Remember that a binary tree is either empty or it

is in the form of a Root with two subtrees.

– If the Root is empty, then the traversal algorithm

should take no action (i.e., this is an empty tree -- a

"degenerate" case).

– If the Root is not empty, then we need to print the

information in the root node and start traversing the

left and right subtrees.

– When a subtree is empty, then we know to stop

traversing it.

Traversal through BSTs

• Given all of this, the recursive traversal algorithm

is:

Traverse (Root)

If the Tree is not empty then

Visit the node at the Root (maybe display)

Traverse(Left subtree)

Traverse(Right subtree)

Traversal through BSTs

• But, this algorithm is not really complete.

• When traversing any binary tree, the algorithm

should have 3 choices of when to process the root:

– before it traverses both subtrees (like this algorithm),

– after it traverses the left subtree,

– or after it traverses both subtrees.

– Each of these traversal methods has a name: preorder,

inorder, postorder.

Traversal through BSTs

• You've already seen what the preorder

traversal algorithm looks like...

– it would traverse the following tree as:

60,20,10,5,15,40,30,70,65,85

– but what would it be using

inorder traversal?

– or, post order traversal?

60

20
70

10

5 15 30

40 65 85

Traversal through BSTs

• The inorder traversal algorithm would be:

Traverse (Root)

If the Tree is not empty then

Traverse(Left subtree)

Visit the node at the Root (display)

Traverse(Right subtree)

Traversal through BSTs

• It would traverse the same tree as:
5,10,15,20,30,40,60,65,70,85;

• Notice that this type of traversal produces the
numbers in order.

• Search trees can be set up so that

all of the nodes in the left subtree

are less than the nodes in the

right subtree.

60

20
70

10

5 15 30

40 65 85

Traversal through BSTs

• The postorder traversal is:

If the Tree is not empty then

Traverse(Left subtree)

Traverse(Right subtree)

Visit the node at the Root (maybe display)

• It would traverse the same tree as:

– 5, 15, 10,30,40,20,65,85,70,60

Traversal through BSTs

• Think about the code to traverse a tree
inorder using a pointer based
implementation:

void inorder_print(tree root) {

if (root) {

inorder_print(root->left_child);

cout <<root->value.name);

inorder_print(root->right_child);

}

Traversal through BSTs

• Why do we pass root by value vs. by reference?

void inorder_print(tree root) {

• Why don’t we say??

root = root->left_child;

• As an exercise, try to write a nonrecursive version

of this!

Using BSTs for Table ADTs

• We can implement our ADT Table operations
using a nonlinear approach of a binary search
tree.

• This provides the best features of a linear
implementation that we previously talked about
plus you can insert and delete items without
having to shift data.

• With a binary search tree we are able to take
advantage of dynamic memory allocation.

Using BSTs for Table ADTs

• Linear implementations of ADT table operations are
still useful.

• Remember when we talked about efficiency, it isn't
good to overanalyze our problems.

• If the size of the problem is small, it is unlikely that
there will be enough efficiency gain to implement
more difficult approaches.

• In fact, if the size of the table is small using a linear
implementation makes sense because the code is
simple to write and read!

Using BSTs for Table ADTs

• For test operations, we must define a binary search

tree where for each node -- the search key is greater

than all search keys in the left subtree and less than

all search keys in the right subtree.

– Since this is implicitly a sorted tree when we traverse it

inorder, we can write efficient algorithms for retrieval,

insertion, deletion, and traversal.

– Remember, traversal of linear ADT tables was not a

straightforward process!

Using BSTs for Table ADTs

• Let's quickly look at a search algorithm for a binary

search tree implemented using pointers (i.e.,

implementing our Retrieve ADT Table Operation):

• The following is pseudo code:

int retrieve (tree *root, key &k, data & value){

if (!root) //we have an empty tree

return 0;

Using BSTs for Table ADTs

else if (root->value == k) {

value = root->value;

return 1;

}

else if (k < root->value)
return retrieve(root->left_child, k,data);

else

return retrieve(root->right_child, k, data);

}

For Next Time...

• To prepare for next class

– write C++ code to insert a new data item at a

leaf in the appropriate sub-tree using the binary

search tree concept

– think about what you might need to do to then

remove an item?

– what special cases will we need to consider?

– how might we make a copy of a binary search

tree?

