
Data Structures

Topic #8



Today’s Agenda

• Continue Discussing Table Abstractions

• But, this time, let’s talk about them in 

terms of new non-linear data structures

– trees

– which require that our data be organized in a 

hierarchical fashion



Tree Introduction

• Remember when we learned about tables? 

– We found that none of the methods for 

implementing tables was really adequate. 

– With many applications, table operations end 

up not being as efficient as necessary. 

– We found that hashing is good for retrieval, 

but doesn't help if our goal is also to obtain a 

sorted list of information. 



Tree Introduction

• We found that the binary search also 
allows for fast retrieval, 

– but is limited to array implementations versus 
linked list.  

– Because of this, we need to move to more 
sophisticated implementations of tables, using 
binary search trees! 

– These are "nonlinear" implementations of the 
ADT table.



Tree Terminology

• Trees are used to represent the relationship 

between data items. 

– All trees are hierarchical in nature which means there 

is a parent-child relationship between "nodes" in a 

tree.  

– The lines between nodes are called directed edges. 

– If there is a directed edge from node A to node B --

then A is the parent of B and B is a child of A. 



Tree Terminology

• Children of the same parent are called siblings. 

• Each node in a tree has at most one parent, 

starting at the top with the root node (which has 

no parent).

• Parent of n The node directly 

above node n in the tree

• Child of n The node directly below 

the node n in the tree



Tree Terminology

• Root The only node in the 

tree with no parent

• Leaf A node with no children

• Siblings Nodes with a common parent

• Ancestor of n A node on the 

path from the root to n



Tree Terminology

• Descendant of n

– A node on a path from n to a leaf

• Empty tree

– A tree with no nodes

• Subtree of n

– A tree that consists of a child of n and the child's 
descendants

• Height

– The number of nodes on the longest path from root to 
a leaf



Tree Terminology

• Binary Tree

– A tree in which each node has at most two 

children

• Full Binary Tree

– A binary tree of height h whose leaves are all 

at the level h and whose nodes all have two 

children; this is considered to be completely 

balanced



Binary Trees

• A binary tree is a tree where each node has 
no more than 2 children. 

– If we traverse down a binary tree -- for every 
node -- there are either no children (making 
this node a leaf) or there are two children 
called the left and right subtrees 

– (A subtree is a subset of a tree including some 
node in the tree along with all of its 
descendants).



Binary Search Trees

• The nodes of a binary tree contain values. 

• For a binary search tree, it is really sorted 

according to the key values in the nodes. 

– It allows us to traverse a binary tree and get our data in 

sorted order!

– For example, for each node n, all values greater than n 

are located in the right subtree...all values less than n 

are located in the left subtree. Both subtrees are 

considered to be binary trees themselves. 
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Binary Search Trees

• Notice that a binary tree organizes data in a way 
that facilitates searching the tree for a particular 
data item. 

• It ends up solving the problems of sorted-
traversal with the linear implementations of the 
ADT table.

• And, if reasonably balanced, it can provide a 
logarithmic retrieval, removal, and insertion 
performance!



Binary Trees

• Before we go on, let's make sure we understand 

some concepts about trees. 

• Trees can come in many different shapes. Some 

trees are taller than others. 

• To find the height of a tree, we need to find the 

distance from the root to the farthest leaf. 

Or....you could think of it as the number of nodes 

on the longest path from the root to a leaf.  



Binary Trees

• Each of these trees has the same number of 

nodes -- but different heights:



Binary Trees

• You will find that experts define heights 
differently. 

• For example, just by intuition you would 
think that the trees shown previously have a 
height of 2 and 4. 

• But, for the cleanest algorithms, we are 
going to define the height of a tree as the 
following (next slide)



Binary Trees

• If a node is a root, the level is 1. If a node is not 
the root, 

– then it has a level 1 greater than its parent. 

• If the tree is entirely empty, 

– then it has a height of zero. 

• Otherwise, its height is equal to the maximum 
level of its nodes. 

• Using this definition, 

– the trees shown previously have the height of 3, 5, and 
5.



Full Binary Trees

• Now let's talk about full, complete, and 
balanced binary trees. 

• A full binary tree has all of its leaves at 
level h. 

• In the previous diagram, only the left hand 
tree is a full binary tree! 

• All nodes that are at a level less than the 
height of the tree have 2 children.



Complete Binary Trees

• A complete binary tree is one which is a 

full binary tree to a level of its height-1 ... 

– then at the last level, it is filled from left to 

right. For example:



Binary Search Trees

• This has a height of 4 and is a full binary tree at 
level 3. 

• But, at level 4, the leaves are filled in from left to 
right! 

• From this definition, we realize that a full binary 
tree is also considered to be a complete binary 
tree. 

• However, a complete binary tree does not 
necessarily mean it is full!



Implementing Binary Trees

• Just like other ADTs, 

– we can implement a binary tree using pointers or 

arrays. 

– A pointer based implementation example:

struct node {

data value;

node * left_child;

node * right_child;

};



Binary Search Trees

• In what situations would the data being “stored” 

in the node...

– be represented by a pointer to the data?

struct node {

data * ptr_value;

– when more than a single data structure needs to 

reference the same tree (e.g., two binary search trees 

referencing the same data but organized on two 

different keys!)



Binary Search Trees

• In what situations would the data being 

“stored” in the node...

– be represented by a pointer to a LLL node?

struct tree_node {

LLL_node * head;

– when each node’s data is actually a list of items 

(a general purpose list, stack, queue, or other 

ordered list representation)



Binary Search Trees

• In what situations would the data being “stored” in 

the node...

– be represented by an array of data?

struct tree_node {

data ** array;

– when each node’s data is actually a list of items (a 

general purpose list, stack, queue, or other ordered list 

representation), but where the size and efficiency of this 

data structure is preferred over a LLL



Implementing Binary Trees

class binary_tree {

public:

binary_tree();

~binary_tree();

int insert(const data &);

int remove(const key &);

int retrieve (const key &, 

data [], int & num_matches);

void display();



Implementing Binary Trees

//continued....class interface

private:

node * root;

};

• Notice that instead of using “head” we use “root” 
to establish the “starting point” in the tree

• If the tree is empty, root is NULL.



Implementing Binary Trees
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Implementing Binary Trees

• When we implement binary tree algorithms

– we have a choice of using iteration or recursion and still 

have reasonably efficient results

– remember why we didn’t use recursion for traversing 

through a standard linear linked list?

– now, if the tree is reasonably balanced, we can traverse 

through a tree with a minimal number of recursive calls



Traversal through BSTs

• Remember that a binary tree is either empty or it 

is in the form of a Root with two subtrees. 

– If the Root is empty, then the traversal algorithm 

should take no action (i.e., this is an empty tree -- a 

"degenerate" case). 

– If the Root is not empty, then we need to print the 

information in the root node and start traversing the 

left and right subtrees. 

– When a subtree is empty, then we know to stop 

traversing it. 



Traversal through BSTs

• Given all of this, the recursive traversal algorithm 

is:

Traverse (Root)

If the Tree is not empty then

Visit the node at the Root (maybe display)

Traverse(Left subtree)

Traverse(Right subtree)



Traversal through BSTs

• But, this algorithm is not really complete. 

• When traversing any binary tree, the algorithm 

should have 3 choices of when to process the root: 

– before it traverses both subtrees (like this algorithm), 

– after it traverses the left subtree, 

– or after it traverses both subtrees. 

– Each of these traversal methods has a name: preorder, 

inorder, postorder.



Traversal through BSTs

• You've already seen what the preorder 

traversal algorithm looks like...

– it would traverse the following tree as: 

60,20,10,5,15,40,30,70,65,85

– but what would it be using 

inorder traversal?

– or, post order traversal?

60

20
70

10

5 15 30

40 65 85



Traversal through BSTs

• The inorder traversal algorithm would be:

Traverse (Root)

If the Tree is not empty then

Traverse(Left subtree)

Visit the node at the Root (display)

Traverse(Right subtree)



Traversal through BSTs

• It would traverse the same tree as: 
5,10,15,20,30,40,60,65,70,85;  

• Notice that this type of traversal produces the 
numbers in order. 

• Search trees can be set up so that 

all of the nodes in the left subtree 

are less than the nodes in the 

right subtree.
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Traversal through BSTs

• The postorder traversal is:

If the Tree is not empty then

Traverse(Left subtree)

Traverse(Right subtree)

Visit the node at the Root (maybe display)

• It would traverse the same tree as: 

– 5, 15, 10,30,40,20,65,85,70,60



Traversal through BSTs

• Think about the code to traverse a tree 
inorder using a pointer based 
implementation:

void inorder_print(tree root) {

if (root) {

inorder_print(root->left_child);

cout <<root->value.name);

inorder_print(root->right_child);

}



Traversal through BSTs

• Why do we pass root by value vs. by reference?

void inorder_print(tree root) {

• Why don’t we say??

root = root->left_child;

• As an exercise, try to write a nonrecursive version 

of this!



Using BSTs for Table ADTs

• We can implement our ADT Table operations 
using a nonlinear approach of a binary search 
tree. 

• This provides the best features of a linear 
implementation that we previously talked about 
plus you can insert and delete items without 
having to shift data. 

• With a binary search tree we are able to take 
advantage of dynamic memory allocation. 



Using BSTs for Table ADTs

• Linear implementations of ADT table operations are 
still useful. 

• Remember when we talked about efficiency, it isn't 
good to overanalyze our problems. 

• If the size of the problem is small, it is unlikely that 
there will be enough efficiency gain to implement 
more difficult approaches. 

• In fact, if the size of the table is small using a linear 
implementation makes sense because the code is 
simple to write and read! 



Using BSTs for Table ADTs

• For test operations, we must define a binary search 

tree where for each node -- the search key is greater 

than all search keys in the left subtree and less than 

all search keys in the right subtree. 

– Since this is implicitly a sorted tree when we traverse it 

inorder, we can write efficient algorithms for retrieval, 

insertion, deletion, and traversal. 

– Remember, traversal of linear ADT tables was not a 

straightforward process! 



Using BSTs for Table ADTs

• Let's quickly look at a search algorithm for a binary 

search tree implemented using pointers (i.e., 

implementing our Retrieve ADT Table Operation):

• The following is pseudo code:

int retrieve (tree *root, key &k, data & value){

if (!root) //we have an empty tree

return 0;



Using BSTs for Table ADTs

else if (root->value == k) {

value = root->value;

return 1;

}

else if (k < root->value)
return retrieve(root->left_child, k,data);

else

return retrieve(root->right_child, k, data);

}



For Next Time...

• To prepare for next class

– write C++ code to insert a new data item at a 

leaf in the appropriate sub-tree using the binary 

search tree concept

– think about what you might need to do to then 

remove an item?

– what special cases will we need to consider?

– how might we make a copy of a binary search 

tree?


