
Data Structures

Topic #9



Today’s Agenda

• Continue Discussing Trees

• Examine the algorithm to insert

• Examine the algorithm to remove

• Begin discussing efficiency of tree

• Are there any alternatives?

– 2-3

– 2-3-4 (next time)

– red-black trees (next time)

– AVL (next time)



Tree Insert

• From last time...

– everyone should have prepared an algorithm for 
insert

– remember, insert always inserts data at a leaf

– this is similar, in many regards to inserting data 
at the end of a linear linked list; the good news 
is that we don’t have to special case the 
situation where we are trying to rearrange 
pointers by inserting in the middle



LLL Recursive Insert

• For example, let’s review what it would be like to 
insert into a LLL --- adding at the end all of the 
time:
void insert(node * & head, data & d){

if (!head) {

head = new node;

head->d = d;

head->next = NULL;

}

else insert(head->next, d);

}



LLL Recursive Insert

• Why does this work?

• Why does head need to be passed in? Why can’t 

we just use a data member named head?

• Why does head need to be passed by reference?

• How does it connect up the nodes?

• Why was this inefficient for a linear linked list?



LLL Recursive Insert

• Another way to write this:
node * insert(node * head, data & d){

if (!head) {

head = new node;

head->d = d;

head->next = NULL;

return head;

}

head->next = insert(head->next,d);

return head;

}



LLL Recursive Insert

• Is this approach more or less efficient?

• How do the nodes get connected?

• Does it handle the “special case” where head is 

null to begin with?

• Does it ever dereference a null pointer?

• How about copies being placed on the program 

stack? How does this compare with the previous 
recursive solution?



Tree Recursive Insert

• Now let’s apply what we have learned to 
insert into a binary search tree

• Remember, if the data being inserted is less 
than the root, we want to traverse left

• If the data being inserted is greater than the 
root, we want to traverse right

• If it is the same, pick a consistent approach 
to deal with it (either left or right)



Tree Recursive Insert

void insert(node * & root, data & d){

if (!root) {

root = new node;

root->d = d;

root->left = NULL;

root->right = NULL;

}

else if (root->d > d)

insert(root->left, d);

else insert(root->right, d);

}



Tree Recursive Insert

node * insert(node * root, data & d){

if (!root) {

root = new node;

root->d = d;

root->left = NULL;

root->right = NULL;

}

else if (root->d > d)

root->left = insert(root->left, d);

else root->right=insert(root->right, d);

return root;

}



Tree Recursive Insert

• Do both of these approaches work?

• Which is most efficient?

• How does this compare in terms of efficiency 

with the linear linked list approach?

• What type of client interface should we provide?

– insert (data &);



Tree Recursive Insert

• What you should have concluded is that the 
efficiency of this approach depends greatly on the 
“shape” of the binary search tree

• For example, what if you entered in 1000 names 
all in sorted order?

– what shape would your BST be?

• What if, instead, the data was entered in random 
order?

– which is better and why?



Tree Removal

• Now let’s discuss removing nodes from a 

binary search tree

• We will find this is not as simple, because 

we cannot restrict the removal to just 

working at the leaf

• There are a number of special cases we 

need to consider...can you think of them?



Tree Removal: Special Cases

• Tree is empty (never forget this one!)

• The data to be removed is not in the tree

• The node containing the data has no children 
(i.e., it is a leaf)

• The node containing the data has one child 
(i.e., it is an internal node with a single child 
that can be “inherited”)

• The node has two children



Tree Removal: Special Cases

• To remove a leaf 

– we simply change the Left or Right pointer in its parent 

to NULL. 

• When there is one child, 

– we end up letting the parent of the node to be deleted 

adopt the child! 

– It ends up not making a difference if the child was a left 

or a right child to the node being deleted.



Tree Removal: Special Cases
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Tree Removal: Special Cases

• Removing a node with 2 children

– is the most difficult. 

– Both children cannot be "adopted" by the parent 
of the node to be deleted...this would be invalid 
for a binary search tree. 

– The parent has room for only one of the children 
to replace the node being deleted. 

– So, we must take on a different strategy. 



Tree Removal: Special Cases

• Removing a node with 2 children

– One way to do this is to not delete the node; 

instead replace the data in this node with another 

node's data...it can come from immediately after 

or before the search key being deleted.

– How can a node with a key matching this 

description be found? 

• Simple. 



Tree Removal: Special Cases

• Removing a node with 2 children

– Remember that traversing a tree INORDER causes us 

to traverse our keys in the proper sorted order. 

– So, by traversing the binary search tree in order, 

starting at the to-be-deleted node (i.e., the to-be-

replaced node)...we can find the search key to replace 

the deleted node by traversing the next node 

INORDER. 

– It is the next node searched and is called the inorder 

successor.



Tree Removal: Special Cases

• Removing a node with 2 children

– Since we know that the node to be deleted has 

two children, it is now clear that the inorder 

successor is the leftmost node of the "deleted 

nodes" right subtree. 

– Once it is found, you copy the value of the 

item into the node you wanted to delete and 

remove the node found to replace this one --

since it will never have two children.



Tree Removal: Special Cases

• Removing a node with 2 children

– However, there is a special case

– If the right child has no left children, then the right child 

becomes the inorder successor

• Should this be done recursively or iteratively?

– it is common to “find the node who’s data matches the 

data to be removed” using recursion

– but, finding the inorder successor should be done 

iteratively, because we simply “loop” until the left 

pointer is null.



Tree Removal: Special Cases

• Anything else?

– Yes, as you loop looking for the inorder successor, it is 

important to either use the “look ahead” approach or 

keep track of a previous pointer

– Why? Well, the parent to the inorder successor’s left 

child pointer must be changed to point to the inorder 

successor’s right child! 

– yep, that is right. The inorder successor may have a 

child...just not to the left!!!!!

– Remember, using a previous pointer is more efficient 

than a look ahead approach



Tree Removal: Special Cases
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Tree Efficiency

• We already know that the maximum height of a 
binary tree with N nodes is a height of N. 

– And, an N-node tree with a height of N is LLL

• It is interesting to consider how many nodes a tree 
might have given a certain height. 

– If the height is 3, then there can be anywhere between 3 
and 7 nodes in the tree. 

– Trees with more than 7 nodes will require that the height 
be greater than 3. A full binary tree of height h  -- should 
have 2h-1 nodes in that tree



Tree Efficiency

• Look at a diagram ... counting the nodes in a 

full binary tree

– A full binary tree of height at 

• Level 1: # of nodes = 21-1  = 1

• Level 2: # of nodes = 22-1 = 3

• Level 3: # of nodes = 23-1 = 7



Tree Efficiency

• In fact, the height of binary trees can be 
mathematically predicted

• Given that we need to store N nodes in a binary 
tree, the maximum height is N

• The minimum height is:

– log2N + 1

• Given a height of a tree, H, the minimum and 
maximum number of nodes would be:

– min: H max: 2H-1



Tree Efficiency

• The distance of a node from the root

– determines how efficiently it can be located

– the shorter we can make the tree, the easier it is 

to locate any desired node in the tree

• To determine if a tree is balanced

– we can calculate its balance factor

– which is the difference in heights between its 

left and right subtrees

– Balance = HL - HR



Tree Efficiency

• A tree is balanced

– if its balance factor is zero and its subtrees are 

also balanced

– but, since this definition occurs so seldom, an 

alternate definition is more generally applied:

– a binary tree is balanced if the height of its 

subtrees differs by no more than one (i.e., the 

balance factors can be -1, 0, or 1) and its 

subtrees are also balanced.



Tree Efficiency

• Using balanced search trees, we can achieve a 
high degree of efficiency for implementing 
our ADT Table operations. 

• This efficiency depends on the balance of the 
tree. 

• We will find that balanced trees can be 
searched with efficiency comparable to the 
binary search.



Tree Efficiency

• With a binary search tree, 

– the actual performance of Retrieve, Insert, and 
Delete actually depends on the tree's height. 
Why? 

– Because we must follow a path from the root 
of the tree down to the node that contains the 
desired item. 

– At each node along the path, we must compare 
the key to the value in the node to determine 
which branch to follow. 



Tree Efficiency

• With a binary search tree, 

– Because the maximum number of nodes that can 

be on any path is equal to the height of the tree, 

we know that the maximum number of 

comparisons that the table operations can require 

is also equal to the height.
10

30

40

20

50

60

70

40

20

3010 50

60

70



Tree Efficiency

• Trees that have a linear shape behave no 
better than a linked list. 

• Therefore, it is best to use variations of the 
basic binary search tree together with 
algorithms that can prevent the shape of the 
tree form degenerating. 

• Four variations  are the 2-3 tree, 2-3-4 tree, 
red-black tree and the AVL tree.

• The first two are “perfectly balanced” trees



2-3 Trees

• 2-3 trees permit the number of children of an 

internal node to vary between two and three. 

• This feature allows us to "absorb" insertions and 

deletions without destroying the tree's shape. 

– We can therefore search a 2-3 tree almost as efficiently 

as you can search a minimum-height binary search 

tree...and it is far easier to maintain a 2-3 tree than it is 

to guarantee a binary search tree having minimum 

height.



2-3 Trees

• Every node in a 2-3 tree is either a leaf, or has 
either 2 or 3 children. 

– So, there can be a left and right subtree for each 
node...or a left, middle, and right subtree.

• To use a 2-3 tree for implementing our ADT table 
operations 

– we need to create the tree such that the data items are 
ordered. The ordering of items in a 2-3 search tree is 
similar to that of a binary search tree. In fact, you will 
see that to retrieve -- our pseudo code is very similar to 
that of a binary search tree.



2-3 Trees

• The big difference is that nodes can contain 
more than one set of data. 

• If a node is a leaf, it may contain either one or 
two data items! 

• If a node has two children, it must only contain 
1 data item. 

• But, if a node has three children, it must 
contain 2 data items.



2-3 Trees
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2-3 Trees

• For "nodes" that contain only one data item

– there can be either no children or 2 children:

– In this case, the value of the key at the "node" must 

be greater than the value of each key in the left 

subtree and smaller than the value of each key in 

the right subtree. 

– The left and right subtrees must each be a 2-3 tree.

node

left right



2-3 Trees

• For "nodes" that contain two data items

– there can be either no children or 3 children:

– In this case, the value of the smaller key at the 
"node" must be greater than the value of each 
key in the left subtree and smaller than the 
value of each key in the middle subtree. 

– The value of the larger key at the "node" must 
be greater than the value of each key in the 
middle subtree and smaller than the value of 
each key in the right subtree. 

node

left rightmiddle



2-3 Trees
• With insertions, since the nodes of a 2-3 tree 

can have either 2 or 3 children and can 

contain 1 or two data values --

– we can make insertions while maintaining a tree 

that has a balanced shape. That is the goal!

– try to insert 39 and 40 into the following tree:
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2-3 Trees

• Notice, we still insert at a leaf 

– but now when we reach the last node in a path 
that node can simply absorb the new data if it 
has only 1 piece of data in it

– but, what if there are two pieces of data?

– the process involves finding the middle data 
item between the two in the node and the new 
item, splitting the node, and pushing up to the 
parent the middle data item to be inserted

– this process is very recursive



2-3 Trees

• For example, now, insert 38. 

• Again, we would search the tree to see 
where the search will terminate if we had 
tried to find 38 in the tree...this would be at 
node <39 40>. 

• Immediately we know that nodes contain 1 
or 2 data items...but NOT THREE! 

• So, we can't simply insert this new item 
into the node. 



2-3 Trees

• Instead, we find the smallest (38), middle (39) and 

largest (40) data items at this node. 

• You can move the middle value (39) up to the 

node's parent and separate the remaining values 

(38,40) into two nodes attached to the parent. 

• Notice that since we moved the middle value to 

the parent -- we have correctly separated the 

values of its children. See the results:
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2-3 Trees

• Now, insert 37. 

• This is easy because it belongs in a leaf that 

currently contains only 1 data value (38). The 

result is:

• Now, insert 36. 
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2-3 Trees

• Inserting 36...

– We find that this number belongs in node <37 
38>. 

• But, once again we realize that we can't 
have 3 values at a node...so we locate the 
smallest (36), middle (37), and largest (38) 
values. 

• We then move the middle value (37) up to 
the parent and attach to the parent two 
nodes (the smallest and the largest).



2-3 Trees

• However, notice that we are not finished. We 

have now tried to move 37 to the parent --

– trying to give it 3 data items (think recursion!!) --

and trying to give it 4 children! 

• As we did before, we divide the node into the 

smallest (30), middle (37), and largest (39) 

values...and move the middle value up to the 

node's parent. 
30

10 4020 38

39

37

36



2-3 Trees

• So, here is the insertion algorithm. 

• To insert a value into a 2-3 tree we first must locate 
the leaf which the search for such a value would 
terminate. 

• If the leaf only contains 1 data value, we insert the 
new value into the leaf and we are done.

• However, if the leaf contains two data values, we 
must split it into two nodes (this is called splitting a 
leaf).



2-3 Trees

• The left node gets the smallest value and the 
right node gets the largest value. 

• The middle value is moved up to the leaf's 
parent. 

• The new left and right nodes are now made 
children of the parent.

• If the parent only had 1 data value to begin 
with, we are done.



2-3 Trees

• But, if the parent had 2 data values, then the 

process of splitting a leaf would incorrectly make 

the parent have 3 data values and 4 children! 

– So, we must split the parent (this is called splitting an 

internal node). 

– You split the parent just like we split the leaf...except 

that you must also take care of the parent's four children. 



2-3 Trees

• You split the parent into two nodes. 

– You give the smallest data item to the left node and the 

largest data item to the right node. 

– You attach the parent's two leftmost children to this new 

left node and the two rightmost children to the new right 

node. 

– You move the parent's middle data value to it's parent..and 

attaching the left and right newly created nodes to it as its 

two new children.

– and so on.



2-3 Trees

• This process continues...splitting 

nodes...moving values up recursively until a 

node is reached that only has 1 data value 

before the insertion. 

• The height of a 2-3 tree only grows from the 

top. 



2-3 Trees

• An increase in the height will occur if every 
node on the path from the root of the tree to the 
leaf where we tried to insert an item contains 
two values. 

– In this case, the recursive process of splitting a node 
and moving a value up to the node's parent will 
eventually reach the root. 

– This means we will need to split the root. You split 
the root into two new nodes and create a new node 
that contains the middle value. This new node is the 
new root of the tree. 


