Copy Constructors
« Shallow Copy:

— The data members of one object are copied into the data
members of another object without taking any dynamic
memory pointed to by those data members into
consideration. (“memberwise copy’)

* Deep Copy:

— Any dynamic memory pointed to by the data members is
duplicated and the contents of that memory is copied (via
copy constructors and assignment operators -- when
overloaded)

Copy Constructors

In every class, the compiler automatically supplies both a
copy constructor and an assignment operator if we don't
explicitly provide them.

Both of these member functions perform copy operations by
performing a memberwise copy from one object to another.
In situations where pointers are not members of a class,
memberwise copy Is an adequate operation for copying
objects.

However, It Is not adequate when data members point to
memory dynamically allocated within the class.

Copy Constructors

* Problems occur with shallow copying when we:

— Initialize an object with the value of another
object: name sl; name s2(sl);

— pass an object by value to a function or when we
return by value:

name function_proto (name)
— assign one object to another:
sl = s2;

Copy Constructors

 |f name had a dynamically allocated array of characters (i.e.,
one of the data members is a pointer to a char),

— the following shallow copy Is disastrous!

name smith("Sue Smith");//one arg constructor used

name clone(smith); [/ default copy constructor used
smith clone
ptr - S |- ptr
u
length=190 length=1]
S

=l l~]2 |»

Copy Constructors

» To resolve the pass by value and the initialization issues, we
must write a copy constructor whenever dynamic member is
allocated on an object-by-object basis.

* They have the form:

class_name(const class_name &class_object);

* Notice the name of the “function” 1s the same name as the
class, and has no return type

« The argument’s data type 1s that of the class, passed as a
constant reference (think about what would happen if this was passed by value?!)

Copy Constructors

/Iname.h interface

class name {
public:
nameichar* =""; //default constructor
name(const name &); //copy constructor
~name(); /ldestructor
name &operator=(name &); //assignment op
private:

char* ptr; //pointer to name _
int Iength //length of name including nul char

#include "name.h" /Iname.c implementation
name::name(char* name_ptr) { //constructor

length = strlenfname ptr); //get name lengt

ptr = new char[length+1]; //dynamically a ocate

strcpy(ptr, name_ptr); //lcopy name into new space

name::name(const name &obj) { //copy constructor
length = ob!]len gth; /lget length
ptr = new char[leng th+1/] //dynamlcally allocate
}strcpy(ptr obj.ptr); /copy nhame into new space

Copy Constructors

« Now, when we use the following constructors for
Initialization, the two objects no longer share memory but
have their own allocated

name smith("Sue Smith");//one arg constructor used

name clone(smith); / / default copy constructor used
smith clone
ptr | S S |- ptr
u u
length=[9D length=1]
e e

e o A M ER 1
rd =2 E S ER

Copy Constructors

« Copy constructors are also used whenever passing an object

of a class by value: (get_name returns a ptr to a char for the current
object)

int main() { _ _
name smith("Sue Smith"); //constructor with arg used

/lcall function by value & display from object returned
cout <<function(smith).get_name() <<endl;
return (0);

name function(name obj) {
cout <<obj.get_name() <<endl,
return (obj);

Copy Constructors

smith

S |- I ptr |

 Using a copy constructor [«
avoids objects “sharing”

|length=ﬂ0

(0]

memory -- but causes thig-s program stack
behavior n
. return address
- - h <4— call by value
« This should convince us - [== E orr]
avoid pass by value - Lengtho})
wher_1ever possibl_e -- when e [Ty [ey vae
passing or returning o] P ——
objects of a class! -
h
I\O 1

' A Il G ER L

Copy Constructors

 Using the reference operator instead, we change the function
to be: (the function call remains the same)

name &function(name &obj) {
cout <<obj.get_name() <<endl;
return (objg;

smith program stack

S < p t - oo o
u return address
length=[Lp
reference |+— call by reference

reference |ta— return by reference

@

=18 |

