
Copy Constructors
• Shallow Copy:

– The data members of one object are copied into the data

members of another object without taking any dynamic

memory pointed to by those data members into

consideration. (“memberwise copy”)

• Deep Copy:

– Any dynamic memory pointed to by the data members is

duplicated and the contents of that memory is copied (via

copy constructors and assignment operators -- when

overloaded)

Copy Constructors
• In every class, the compiler automatically supplies both a

copy constructor and an assignment operator if we don't

explicitly provide them.

• Both of these member functions perform copy operations by

performing a memberwise copy from one object to another.

• In situations where pointers are not members of a class,

memberwise copy is an adequate operation for copying

objects.

• However, it is not adequate when data members point to

memory dynamically allocated within the class.

Copy Constructors
• Problems occur with shallow copying when we:

– initialize an object with the value of another

object: name s1; name s2(s1);

– pass an object by value to a function or when we

return by value:

name function_proto (name)

– assign one object to another:

s1 = s2;

Copy Constructors
• If name had a dynamically allocated array of characters (i.e.,

one of the data members is a pointer to a char),

– the following shallow copy is disastrous!

smith

ptr

length=10

clone

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

n a m e sm it h ("Su e Sm it h "); / / on e a r g con st r u ct or u se d

n a m e clon e (sm it h); / / d e fa u lt cop y con st r u ct or u se d

Copy Constructors
• To resolve the pass by value and the initialization issues, we

must write a copy constructor whenever dynamic member is

allocated on an object-by-object basis.

• They have the form:

class_name(const class_name &class_object);

• Notice the name of the “function” is the same name as the

class, and has no return type

• The argument’s data type is that of the class, passed as a

constant reference (think about what would happen if this was passed by value?!)

Copy Constructors
//name.h interface
class name {
public:
name(char* = ""); //default constructor
name(const name &); //copy constructor
~name(); //destructor
name &operator=(name &); //assignment op

private:
char* ptr; //pointer to name
int length; //length of name including nul char

};

#include "name.h" //name.c implementation
name::name(char* name_ptr) { //constructor
length = strlen(name_ptr); //get name length
ptr = new char[length+1]; //dynamically allocate
strcpy(ptr, name_ptr); //copy name into new space

}
name::name(const name &obj) { //copy constructor
length = obj.length; //get length
ptr = new char[length+1]; //dynamically allocate
strcpy(ptr, obj.ptr); //copy name into new space

}

Copy Constructors
• Now, when we use the following constructors for

initialization, the two objects no longer share memory but

have their own allocated

n a m e sm it h ("Su e Sm it h "); / / on e a r g con st r u ct or u se d

n a m e clon e (sm it h); / / d e fa u lt cop y con st r u ct or u se d

smith

ptr

length=10

clone

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

'\0'

S

u

e

S

m

i

t

h

Copy Constructors
• Copy constructors are also used whenever passing an object

of a class by value: (get_name returns a ptr to a char for the current

object)

int main() {
name smith("Sue Smith"); //constructor with arg used

//call function by value & display from object returned
cout <<function(smith).get_name() <<endl;
return (0);

}

name function(name obj) {
cout <<obj.get_name() <<endl;
return (obj);

}

Copy Constructors

• Using a copy constructor

avoids objects “sharing”

memory -- but causes this

behavior

• This should convince us to

avoid pass by value

whenever possible -- when

passing or returning

objects of a class!

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

program stack

ptr

length=10

ptr

length=10

return address

• • •

• • •

smith

call by value

return by value

'\0'

S

u

e

S

m

i

t

h

'\0'

S

u

e

S

m

i

t

h

Copy Constructors

• Using the reference operator instead, we change the function

to be: (the function call remains the same)

name &function(name &obj) {
cout <<obj.get_name() <<endl;
return (obj);

}

ptr

length=10

'\0'

S

u

e

S

m

i

t

h

program stack

return address

• • •

• • •

smith

call by reference

return by reference

reference

reference

