Introduction to C++

Data Abstraction w/
Classes

Topic #2

C5202 2-1

Lecture #1 plus Review

m Abstract Data Types
7 Introduction to...Object Models
7 Introduction to...Data Abstraction
72 Using Data Abstraction in C++ ...an
introduction to the class

m Members of a Class
72 The class interface, using the class, the class
interface versus implementation
7 Classes versus Structures
72 Constructors, Destructors
72 Dynamic Memory and Linked Lists

CS5202 2-2

Programming Paradigms

m The most important aspect of C++ is its
ability to support many different
programming paradigms

72 procedural abstraction
72 modular abstraction
7 data abstraction

7 object oriented programming (this is
discussed later, once we learn about the
concept of inheritance)

CS5202 2-3

Procedural Abstraction

m This is where you build a “fence”
around program segments, preventing
some parts of the program from
“seeing” how tasks are being
accomplished.

m Any use of globals causes side effects
that may not be predictable, reducing
the viability of procedural abstraction

CS202 2-4

Modular Abstraction

m With modular abstraction, we build a
“screen” surrounding the internal
structure of our program prohibiting
programmers from accessing the data
except through specified functions.

m Many times data structures (e.g.,
structures) common to a module are
placed in a header files along with
prototypes (allows external references)

CS5202 2-5

Modular Abstraction

m The corresponding functions that
manipulate the data are then placed in
an implementation file.

m Modules (files) can be compiled
separately, allowing users access only
to the object (.0) files

m We progress one small step toward
OOP by thinking about the actions that
need to take place on data...

CS5202 2-6

Modular Abstraction

m We implement modular abstraction by
separating out various
functions/structures/classes into
multiple .c and .h files.

m c files contain the implementation of
our functions

m .h files contain the prototypes, class and
structure definitions.

CS202 2-7

Modular Abstraction

m We then include the .h files in modules
that need access to the prototypes,
structures, or class declarations:

72 #include “myfile.h”
7 (Notice the double quotes!)

m We then compile programs (on Unix) by:
72 CC main.c mytfile.c
7 (Notice no .h file is listed on the above line)

CS5202 2-8

Data Abstraction

m Data Abstraction is one of the most
powerful programming paradigms

m |t allows us to create our own user
defined data types (using the class
construct) and

7 then define variables (i.e., objects) of those
new data types.

CS202 2-9

Data Abstraction

m With data abstraction we think about
what operations can be performed on a
particular type of data and not how it
does it

m Here we are one step closer to object
oriented programming

5202 2-10

Data Abstraction

m Data abstraction is used as a tool to
increase the modularity of a program

m |t is used to build walls between a
program and its data structures

72 what is a data structure?

7 talk about some examples of data
structures

m We use it to build new abstract data

types

5202 2-11

Data Abstraction

m An abstract data type (ADT) is a data
type that we create

7 consists of data and operations that can be
performed on that data

m Think about a char type

7 it consists of 1 byte of memory and
operations such as assignment, input,
output, arithmetic operations can be
performed on the data

C5202 2-12

Data Abstraction

m An abstract data type is any type you
want to add to the language over and
above the fundamental types

m For example, you might want to add a
new type called: list
72 which maintains a list of data

7 the data structure might be an array of
structures

72 operations might be to add to, remove,
display all, display some items in the list

CS5202 2-13

Data Abstraction

m Once defined, we can create lists
without worrying about how the data is
stored

m We “hide” the data structure used for
the data within the data type -- so it is
transparent to the program using the

data type

m We call the program using this new
data type: the client program (or client)

CS5202 2-14

Data Abstraction

m Once we have defined what data and
operations make sense for a new data
type, we can define them using the class
construct in C++

m Once you have defined a class, you can
create as many instances of that class as
you want

m Fach “instance” of the class is
considered to be an “object” (variable)

5202 2-15

Data Abstraction

Think of a class as similar to a data type

72 and an object as a variable

m And, just as we can have zero or more

variables of any data type...

72 we can have zero or more objects of a class!

m Then, we can perform operations on an

object in the same way that we can
access members of a struct...

CS5202 2-16

What Is a Class?

B Remember, we used a structure to group
different types of data together under a
common name

B \With a class, we can go the next step an
actually define a new data type

B [n reality, structures and classes are 100%
the same except for the detault conditions

72 everything you can do with a class you can
do with a structure!

CS202 2-17

What Is a Class?

M First, let's talk about some terminology
2 Think of a class as the same as a data type

72 Think of an object as the same as a variable

m An “object” is an instance of a class

7 Just like a “variable” is an instance of a
specific data type

m We can zero or more variables (or objects)
In our programs

CS5202 2-18

When do we used Classes?

B | recommend using structures when you want
to group different types of data together

72 and, to use a class when we are interested in
building a new type of data into the
language itself

7 to do this, I always recommend forming that
data type such that it behaves in a
consistently to how the fundamental data
types work

5202 2-19

But, What is a Data Type?

B \We've been working with fundamental data
types this term, such as ints, floats, chars...

B \Whenever we define variables of these types,
72 memory is allocated to hold the data

7 a set of operations can now be performed on
that data

7 different data types have different sets of
operations that make sense (the mod
operator doesn’t make sense for floats...)

5202 2-20

Defining new Data Types...

B Therefore, when we define a new data type
with the class construct

72 we need to specify how much memory
should be set aside for each variable (or
object) of this type

72 and, we need to specity which operations
make sense for this type of data (and then
implement them!!)

72 and, what operators makes sense (do be
discussed with operator overloading)

5202 2-21

Defining a Class...

B Once we have decided on how the new type of
data should behave, we are ready to define a
class:

class data_type name {
public:
//operations go here
private:
//memory is reserved here

C5202 2-22

For ExamEle, here is a Class Interface

class string {
public:
string();
Int copy(char []);
Int length();
Int display();
private:
char str[20];
Int len;

5202 2-23

Then, the Class ImEIementation

string::string() {
str[0]="\0’; len = 0;
}
Int string::copy(char s []) [
if (strlen(s) < 20)
strcpy (str, S);

else {
for (int 1 = 0; i< 20; ++1)
str[i] = s[i];
str[20]=0’;
len = strlen(str); return len; }

C5202 2-24

More of the Class ImEIementation

Int string::length() {
return len;

}

Int string::display() {
cout <<str;
return len;

CS5202 2-25

Defining Objects of this Class

m Notice how similar defining objects of class is to
defining variables of any data type:

string my_str; VS. Int i;
m Defining an object causes the “constructor” to
be invoked; a constructor is the same named

function as the class (string) and is used to
initialize the memory set aside for this object

m Think about how much memory is set aside?
m What initial values should it take on?

C5202 2-26

Using Objects of this Class

m Think about how you can use those objects

my_str.copy(“hi!”);
cout << my_str.length();

m \We are limited to using only those operations that are
defined within the public section of the class interface

m The only “built-in” operation that can be used with
objects of a class is the assignment operation, which
does a memberwise copy (as we learned with
structures)

CS202 2-27

Using Objects of this Class

m Notice how similar the use of these operations
is to the cin.get function.....

cin.get(ch);
m This should be a clue. cin therefore is an object of the
Istream class.

m The dot is the member access operator; it allows us to
access a particular public member function defined
within the istream class.

m The function get is therefore defined within the public
section of the istream class

CS5202 2-28

Limitations...

m But, there are limitations!

m [f our goal is to really be able to use my string
objects in a way consistent with the
fundamental data types,

7 then I would expect to be able to read strings
using the extraction operator

72 and to display strings by directly using the
insertion operator

72 and to concatenate strings using +

5202 2-29

Limitations...

m With the class as it is defined, none of these
things can be done...

7 the only operations that can be performed
are those specified within the public section
of the class interface, and a memberwise
copy with the assignment operator

72 No other operations are known

m Therefore, to be consistent, we must revise our
class to use operator overloading

5202 2-30

For ExamEle, here is a Class Interface

class string {
public:
string();
Int length();
friend ofstream & operator <<
(ofstream &, const string &);
friend ifstream & operator >>
(ifstream &, string &);
private:
char str[20];
Int len;
};

5202 2-31

List Example

m For a list of videos, we might start with
a struct defining what a video is:

struct video {

C5202 2-32

char title[100];

char category[5];

Int quantity;
I3

-

V

We will re-visit this example using

\

dynamic memory once we understand

the mechanics of classes

)

List Example

m For a list of videos data type:

class list {

public:
list();
int add (const video &);
int remove (char title[]);
int display_all();

private:
video my_listfCONST _SIZE]; //for now...

Int num_of videos;

5202 2-33

List Example

m For a client to create a list object:

main() {
list home_videos; //has an array of 100 videos
list kids_shows; /[another 100 videos here...

video out_of site;
cin.get(out_of_site.title,100,\n’);
cin.ignore(100,\n’);

home_videos.add(out_of site); //luse operation

C5202 2-34

Introduction to C++

Data Hiding
and

Member Functions

5202 2-35

Data Abstraction in C++

m Terminology

m Data Hiding

m Class Constructors

m Defining and using functions in classes

m Where to place the class interface and
implementation of the member
functions

5202 2-36

“class” Terminology

m Class
7 think data type

m Object

7 instance of a class, e.g., variable

m Members

7 like structures, the data and functions
declared in a class

7 called “data members” and “member
functions”

CS5202 2-37

“class” Terminology

m A class could be a list, a string, a counter,
a clock, a bank account, etc.

7 discuss a simple counter class on the board

m An object is as real as a variable, and gets
allocated and deallocated just like
variables

7 discuss the similarities of:
Nt i; list |;

5202 2-38

“class” Terminology

m For the list of videos data type we used

classlist{ <---the datatype!!!

public:
list(); <--- the constructor
?nt add (const vide_o &); 3 member fLTn_cw
iInt remove (char title[]); /
int display_all();

private:
video my_list{CONST_SIZE]; Wﬁs

Int num_of videos;
}; <--- notice like structures we need a semicolon

5202 2-39

“class” Terminology

m [f we examine the previous class,

7 notice that classes are really very similar to
structures

7 a class is simply a generalized structure

7 in fact, even though we may not have used
structures in this way...

Structures and Classes are 100% identical
except for their default conditions...

m by default, all members in a structure are available for
use by clients (e.g., main programs); they are public

5202 2-40

“class” Terminology

m We have seen the use of structures in a
more simple context,

- as we examined with the video struct.
m [t had three members (data members)
7 called title, category, and quantity.

m They are “public” by default,

7 so all functions that have objects of type
video can directly access members by:

video object;

object.title object.category object.quantity
CS202 2-41

“class” Terminology

m This limited use of a structure was
appropriate, because

7 it served the purpose of grouping different
types of data together as a single unit

7 so, anytime we want to access a particular
video -- we get all of the information
pertaining to the video all at once

C5202 2-42

Structure Example

m Remember, anything you can doin a
struct you can do in a class.

— It is up to your personal style how many
structures versus classes you use to solve a
problem.

m Benefit: Using structures for simple
“egroupings” is compatible with C
struct video {
char title[100];
char category[5];

Int quantity;
I3

CS5202 2-43

“class” Terminology

m To accomplish data hiding and
encapsulation

72 we usually turn towards classes

m What is data hiding?

7 It is the ability to protect data from
unauthorized use

72 Notice, with the video structure, any code
that has an object of the structure can access
or modity the title or other members

C5202 2-44

Data Hiding

m With data hiding

7 accessing the data is restricted to authorized
functions

2 “clients” (e.g., main program) can’t muck
with the data directly

7 this is done by placing the data members in
the private section

72 and, placing member functions to access &
modify that data in the public section

C5202 2-45

Data Hiding

m S0, the public section

7 includes the data and operations that are
visible, accessible, and useable by all of the
clients that have objects of this class

7 this means that the information in the public
section is “transparent”; therefore, all of the
data and operations are accessible outside
the scope of this class

72 by default, nothing in a class is public!

C5202 2-46

Data Hiding

The private section

7 includes the data and operations that are not
visible to any other class or client

7 this means that the information in the private
section is “opaque” and therefore is
inaccessible outside the scope of this class

7 the client has no direct access to the data and
must use the public member functions

7 this is where you should place all data to
ensure the memory’s integrity

CS202 2-47

Data Hiding

m The good news is that

72 member functions defined in the public
section can use, return, or modify the
contents of any of the data members, directly

7 it is best to assume that member functions
are the only way to work with private data

— (there are “friends” but don’t use them this term)

72 Think of the member functions and private
data as working together as a team

CS5202 2-48

“class” Terminology

m [et's see how “display_all” can access the data

members:

class list {
public: notice it is public
int display_all() {
for (int iI=0; i<num_of videos; ++i)
cout <<my_list[i].title <<'\t’
<<my_list[i].category
<<\t' <<my_list[i].quantity <<endl;

}

private:
video my_listf CONST_SIZE];
int num_of videos;
3
CS202 2-49

Data Hiding

m Notice, that the display_all function can
access the private my_list and
num_of_videos members, directly

72 without an object in front of them!!!

7 this is because the client calls the display_all
function through an object

~ object.display_all();

7 so the object is implicitly available once we
enter “class scope”

5202 2-50

Where to place....

m In reality, the previous example was
misleading. We don’t place the
implementation of functions with this
this class interface

m Instead, we place them in the class
implementation, and separate this into its
own file

5202 2-51

Class Interface (.h)

m Class Interface: list.h

class list {
public:
int display_all()

private:
video my_listf CONST_SIZE];
int num_of_videos;

h
m list.h can contain:

m prototype statements
m structure declarations and definitions
m class interfaces and class declarations

m include other files
CS202 2-52

Class Implementation

m Class Implementation list.c

#include “list.n” netiee-the double quotes
int list::display_all() {
for (int i=0; i<num_of videos; ++i)
cout <<my_list[i].title <<'\t’
<<my_list[i].category
<<\t' <<my _list[i].quantity <<endl;
}
72 Notice, the code is the same

7 But, the function is prefaced with the class name and the scope
resolution operator!

7 This places the function in class scope even though it is implemented
in another file

7 Including the list.h file is a “must”

5202 2-53

Constructors

m Remember that when you define a local
variable in C++, the memory is not
automatically initialized for you

m This could be a problem with classes and
objects

m [f we define an object of our list class, we really
need the “num_of videos” data member to
have the value zero

m Uninitialized just wouldn’t work!

C5202 2-54

Constructors

m [uckily, with a constructor we can write a
function to initialize our data members

72 and have it implicitly be invoked whenever
a client creates an object of the class

m The constructor is a strange function, as
it has the same name as the class, and no
return type (at all...not even void).

C5202 2-55

Constructor

m The list constructor was: (list.h)

class list {
public:
list(); <--- the constructor

¥

m The implementation is: (list.c)
list::list(){
num_of videos = 0O;

}

C5202 2-56

Constructor

m The constructor is implicitly invoked
when an object of the class is formed:

int main() {

list fun_videos; implicitly calls the
constructor

list all_videos[10]; implicitly calls the

constructor 10 times for
each of the 10 objects!!

CS5202 2-57

Dynamic Memory w/ Classes

m But, what if we didn’t want to waste
memory for the title (100 characters
may be way too big (Big, with Tom
Hanks)

m 50, let’s change our video structure to
include a dynamically allocated array:

struct video {
char * title;
char category[5];
Int quantity;

CS5202 2-58 };

Dynamic Memory w/ Classes

m | et’s write a class that now allocates
this list of videos dynamically, at run
time

m This way, we can wait until we run our

program to find out how much memory
should be allocated for our video array

5202 2-59

Dynamic Memory w/ Classes

m What changes in this case are the data

members:

class list {
public:
list();
int add (const video &);
int remove (char title[]);
int display_all();

private:
video *my_list: Replace the array

int video_list_size; —— with these

Int num_of videos;

%

5202 2-60

Default Constructor

m Now, let’s think about the
implementation.

m First, what should the constructor do?

7 initialize the data members
list::list() {
my _list = NULL,;
video_list_size = 0O;
num_of videos = 0;

5202 2-61

Another Constructor

m Remember function overloading? We
can have the same named function
occur (in the same scope) if the
argument lists are unique.

m So, we can have another constructor
take in a value as an argument of the
number of videos

7 and go ahead and allocate the memory, so
that subsequent functions can use the array

C5202 2-62

2nd Constructor

list::list(int size) {
my _list = new video [size],
video list_size = size;
num_of videos = 0;

Notice, unlike arrays of characters, we don't
need to add one for the terminating nul!

5202 2-63

Clients creating objects

m The client can cause this 2nd
constructor to be invoked by defining
objects with initial values

list fun_videos(20); //size is 20

If a size isn’t supplied, then no memory is
allocated and nothing can be stored in the
array....

C5202 2-64

Default Arguments

m To fix this problem, we can merge the
two constructors and replace them with
a single constructor:
list::list(int size=100) {
my _list = new video [size],
video list_size = size;
num_of videos = 0;

}

(Remember, to change the prototype for the
constructor in the class interface)

C5202 2-65

Destructor

m Then, we can deallocate the memory
when the lifetime of a list object is over

m When is that?

m [Luckily, when the client’s object of the
list class lifetime is over (at the end of

the block in which it is defined) -- the
destructor is implicitly invoked

C5202 2-66

Destructor

m So, all we have to do is write a destructor
to deallocate our dynamic memory.

list::~list() {
delete [my_list;
my_list = NULL,
}

(Notice the ~ in front of the function name)
(It can take NO arguments and has NO return type)
(This too must be in the class interface....)

CS5202 2-67

Review of Classes

m What is the difference between a class
and a struct

m What is a data member?

m Where should a data member be placed
in a class? (what section)

m What is a member function?

m Where should member functions be
placed, if clients should use them?

CS5202 2-68

Review of Classes

m What is the difference between a
member function and a regular-old C++
function?

m What is the purpose of the constructor?

m Why is it important to implement a
constructor?

m What is the difference between a class
and an object?

5202 2-69

Review of Classes

m Show an example of how a client
program defines an object of a list class

m How then would the client program call
the constructor? (trick question!)

m How then would the client program call
the display_all function?

m Why are parens needed?

5202 2-70

Review of Classes

m Write a simple class interface (called
number) that has the following members:

7 an integer private data member (containing
a value)

7 a constructor

7 a set member function, that takes an integer
as an argument and returns nothing

7 a display member function

5202 2-71

Review of Classes

m Now, let’s try our hand at
implementing these functions

7 a constructor

7 a set member function, that takes an
integer as an argument and returns
nothing

7 a display member function

C5202 2-72

Review of Classes

m What happens if we forgot to put the
keyword public in the previous class
interface?

m Why is it necessary to place the class
name, followed by the scope resolution
operator (::) when we implement a
member function outside of a class?

5202 2-73

