
CS202 2- 1

Introduction to C++

Data Abstraction w/

Classes

Topic #2

CS202 2- 2

Lecture #1 plus Review

 Abstract Data Types
 Introduction to...Object Models
 Introduction to...Data Abstraction
 Using Data Abstraction in C++ ...an

introduction to the class
 Members of a Class

 The class interface, using the class, the class
interface versus implementation

 Classes versus Structures
 Constructors, Destructors
 Dynamic Memory and Linked Lists

CS202 2- 3

Programming Paradigms

 The most important aspect of C++ is its
ability to support many different
programming paradigms

 procedural abstraction

 modular abstraction

 data abstraction

 object oriented programming (this is
discussed later, once we learn about the
concept of inheritance)

CS202 2- 4

Procedural Abstraction

 This is where you build a “fence”
around program segments, preventing
some parts of the program from
“seeing” how tasks are being
accomplished.

 Any use of globals causes side effects
that may not be predictable, reducing
the viability of procedural abstraction

CS202 2- 5

Modular Abstraction

 With modular abstraction, we build a
“screen” surrounding the internal
structure of our program prohibiting
programmers from accessing the data
except through specified functions.

 Many times data structures (e.g.,
structures) common to a module are
placed in a header files along with
prototypes (allows external references)

CS202 2- 6

Modular Abstraction

 The corresponding functions that
manipulate the data are then placed in
an implementation file.

 Modules (files) can be compiled
separately, allowing users access only
to the object (.o) files

 We progress one small step toward
OOP by thinking about the actions that
need to take place on data...

CS202 2- 7

Modular Abstraction

 We implement modular abstraction by
separating out various
functions/structures/classes into
multiple .c and .h files.

 .c files contain the implementation of
our functions

 .h files contain the prototypes, class and
structure definitions.

CS202 2- 8

Modular Abstraction

 We then include the .h files in modules
that need access to the prototypes,
structures, or class declarations:

 #include “myfile.h”

 (Notice the double quotes!)

 We then compile programs (on UNIX) by:

 CC main.c myfile.c

 (Notice no .h file is listed on the above line)

CS202 2- 9

Data Abstraction

 Data Abstraction is one of the most
powerful programming paradigms

 It allows us to create our own user
defined data types (using the class
construct) and

 then define variables (i.e., objects) of those
new data types.

CS202 2- 10

Data Abstraction

 With data abstraction we think about
what operations can be performed on a
particular type of data and not how it
does it

 Here we are one step closer to object
oriented programming

CS202 2- 11

Data Abstraction

 Data abstraction is used as a tool to
increase the modularity of a program

 It is used to build walls between a
program and its data structures

 what is a data structure?

 talk about some examples of data
structures

 We use it to build new abstract data
types

CS202 2- 12

Data Abstraction

 An abstract data type (ADT) is a data
type that we create

 consists of data and operations that can be
performed on that data

 Think about a char type

 it consists of 1 byte of memory and
operations such as assignment, input,
output, arithmetic operations can be
performed on the data

CS202 2- 13

Data Abstraction

 An abstract data type is any type you
want to add to the language over and
above the fundamental types

 For example, you might want to add a
new type called: list

 which maintains a list of data

 the data structure might be an array of
structures

 operations might be to add to, remove,
display all, display some items in the list

CS202 2- 14

Data Abstraction

 Once defined, we can create lists
without worrying about how the data is
stored

 We “hide” the data structure used for
the data within the data type -- so it is
transparent to the program using the
data type

 We call the program using this new
data type: the client program (or client)

CS202 2- 15

Data Abstraction

 Once we have defined what data and
operations make sense for a new data
type, we can define them using the class
construct in C++

 Once you have defined a class, you can
create as many instances of that class as
you want

 Each “instance” of the class is
considered to be an “object” (variable)

CS202 2- 16

Data Abstraction

 Think of a class as similar to a data type

 and an object as a variable

 And, just as we can have zero or more
variables of any data type...

 we can have zero or more objects of a class!

 Then, we can perform operations on an
object in the same way that we can
access members of a struct...

CS202 2- 17

What is a Class?

 Remember, we used a structure to group

different types of data together under a

common name

With a class, we can go the next step an

actually define a new data type

In reality, structures and classes are 100%
the same except for the default conditions

 everything you can do with a class you can
do with a structure!

CS202 2- 18

What is a Class?

 First, let‟s talk about some terminology

 Think of a class as the same as a data type

 Think of an object as the same as a variable

 An “object” is an instance of a class

 Just like a “variable” is an instance of a
specific data type

 We can zero or more variables (or objects)
in our programs

CS202 2- 19

When do we used Classes?

 I recommend using structures when you want

to group different types of data together

 and, to use a class when we are interested in
building a new type of data into the
language itself

 to do this, I always recommend forming that
data type such that it behaves in a
consistently to how the fundamental data
types work

CS202 2- 20

But, What is a Data Type?

We‟ve been working with fundamental data

types this term, such as ints, floats, chars...

Whenever we define variables of these types,

 memory is allocated to hold the data

 a set of operations can now be performed on
that data

 different data types have different sets of
operations that make sense (the mod
operator doesn’t make sense for floats...)

CS202 2- 21

Defining new Data Types...

 Therefore, when we define a new data type

with the class construct

 we need to specify how much memory
should be set aside for each variable (or
object) of this type

 and, we need to specify which operations
make sense for this type of data (and then
implement them!!)

 and, what operators makes sense (do be
discussed with operator overloading)

CS202 2- 22

Defining a Class...

Once we have decided on how the new type of

data should behave, we are ready to define a

class:

class data_type_name {

public:

//operations go here

private:

//memory is reserved here

};

CS202 2- 23

For Example, here is a Class Interface

class string {

public:

string();

int copy(char []);

int length();

int display();

private:

char str[20];

int len;

};

CS202 2- 24

Then, the Class Implementation

string::string() {

str[0]=„\0‟; len = 0;

}

int string::copy(char s []) [

if (strlen(s) < 20)

strcpy (str, s);

else {

for (int i = 0; i< 20; ++i)

str[i] = s[i];

str[20]=„\0‟;

len = strlen(str); return len; }

CS202 2- 25

More of the Class Implementation

int string::length() {

return len;

}

int string::display() {

cout <<str;

return len;

}

CS202 2- 26

Defining Objects of this Class

 Notice how similar defining objects of class is to
defining variables of any data type:

string my_str; vs. int i;

 Defining an object causes the “constructor” to
be invoked; a constructor is the same named
function as the class (string) and is used to
initialize the memory set aside for this object

 Think about how much memory is set aside?

 What initial values should it take on?

CS202 2- 27

Using Objects of this Class

 Think about how you can use those objects

my_str.copy(“hi!”);

cout << my_str.length();

 We are limited to using only those operations that are

defined within the public section of the class interface

 The only “built-in” operation that can be used with

objects of a class is the assignment operation, which

does a memberwise copy (as we learned with

structures)

CS202 2- 28

Using Objects of this Class

 Notice how similar the use of these operations
is to the cin.get function.....

cin.get(ch);

 This should be a clue. cin therefore is an object of the

istream class.

 The dot is the member access operator; it allows us to

access a particular public member function defined

within the istream class.

 The function get is therefore defined within the public

section of the istream class

CS202 2- 29

Limitations...

 But, there are limitations!

 If our goal is to really be able to use my string
objects in a way consistent with the
fundamental data types,

 then I would expect to be able to read strings
using the extraction operator

 and to display strings by directly using the
insertion operator

 and to concatenate strings using +

CS202 2- 30

Limitations...

 With the class as it is defined, none of these
things can be done...

 the only operations that can be performed
are those specified within the public section
of the class interface, and a memberwise
copy with the assignment operator

 No other operations are known

 Therefore, to be consistent, we must revise our

class to use operator overloading

CS202 2- 31

For Example, here is a Class Interface

class string {

public:

string();

int length();

friend ofstream & operator <<

(ofstream &, const string &);

friend ifstream & operator >>

(ifstream &, string &);

private:

char str[20];

int len;

};

CS202 2- 32

List Example

 For a list of videos, we might start with
a struct defining what a video is:

struct video {

char title[100];

char category[5];

int quantity;

};

We will re-visit this example using
dynamic memory once we understand
the mechanics of classes

CS202 2- 33

List Example

 For a list of videos data type:
class list {

public:

list();

int add (const video &);

int remove (char title[]);

int display_all();

private:

video my_list[CONST_SIZE]; //for now...

int num_of_videos;

};

CS202 2- 34

List Example

 For a client to create a list object:
main() {

list home_videos; //has an array of 100 videos

list kids_shows; //another 100 videos here...

•••

video out_of_site;

cin.get(out_of_site.title,100,‟\n‟);

cin.ignore(100,‟\n‟);

•••

home_videos.add(out_of_site); //use operation

CS202 2- 35

Data Hiding

and

Member Functions

Introduction to C++

CS202 2- 36

Data Abstraction in C++

 Terminology

 Data Hiding

 Class Constructors

 Defining and using functions in classes

 Where to place the class interface and
implementation of the member
functions

CS202 2- 37

“class” Terminology

 Class

 think data type

 Object

 instance of a class, e.g., variable

 Members

 like structures, the data and functions
declared in a class

 called “data members” and “member
functions”

CS202 2- 38

“class” Terminology

 A class could be a list, a string, a counter,
a clock, a bank account, etc.

 discuss a simple counter class on the board

 An object is as real as a variable, and gets
allocated and deallocated just like
variables

 discuss the similarities of:

int i; list j;

CS202 2- 39

“class” Terminology

 For the list of videos data type we used

class list { <--- the data type!!!

public:

list(); <--- the constructor

int add (const video &); 3 member functions

int remove (char title[]);

int display_all();

private:

video my_list[CONST_SIZE]; data members

int num_of_videos;

}; <--- notice like structures we need a semicolon

CS202 2- 40

“class” Terminology

 If we examine the previous class,

 notice that classes are really very similar to
structures

 a class is simply a generalized structure

 in fact, even though we may not have used
structures in this way...

Structures and Classes are 100% identical
except for their default conditions...

 by default, all members in a structure are available for
use by clients (e.g., main programs); they are public

CS202 2- 41

“class” Terminology

 We have seen the use of structures in a
more simple context,

– as we examined with the video struct.

 It had three members (data members)

 called title, category, and quantity.

 They are “public” by default,

 so all functions that have objects of type
video can directly access members by:

video object;

object.title object.category object.quantity

CS202 2- 42

“class” Terminology

 This limited use of a structure was
appropriate, because

 it served the purpose of grouping different
types of data together as a single unit

 so, anytime we want to access a particular
video -- we get all of the information
pertaining to the video all at once

CS202 2- 43

Structure Example

 Remember, anything you can do in a
struct you can do in a class.

– It is up to your personal style how many
structures versus classes you use to solve a
problem.

 Benefit: Using structures for simple
“groupings” is compatible with C
struct video {

char title[100];

char category[5];

int quantity;

};

CS202 2- 44

“class” Terminology

 To accomplish data hiding and
encapsulation

 we usually turn towards classes

 What is data hiding?

 It is the ability to protect data from
unauthorized use

 Notice, with the video structure, any code
that has an object of the structure can access
or modify the title or other members

CS202 2- 45

Data Hiding

 With data hiding

 accessing the data is restricted to authorized
functions

 “clients” (e.g., main program) can’t muck
with the data directly

 this is done by placing the data members in
the private section

 and, placing member functions to access &
modify that data in the public section

CS202 2- 46

Data Hiding

 So, the public section

 includes the data and operations that are
visible, accessible, and useable by all of the
clients that have objects of this class

 this means that the information in the public
section is “transparent”; therefore, all of the
data and operations are accessible outside
the scope of this class

 by default, nothing in a class is public!

CS202 2- 47

Data Hiding

 The private section

 includes the data and operations that are not
visible to any other class or client

 this means that the information in the private
section is “opaque” and therefore is
inaccessible outside the scope of this class

 the client has no direct access to the data and
must use the public member functions

 this is where you should place all data to
ensure the memory’s integrity

CS202 2- 48

Data Hiding

 The good news is that

 member functions defined in the public
section can use, return, or modify the
contents of any of the data members, directly

 it is best to assume that member functions
are the only way to work with private data

– (there are “friends” but don’t use them this term)

 Think of the member functions and private
data as working together as a team

CS202 2- 49

“class” Terminology

 Let’s see how “display_all” can access the data
members:
class list {

public: notice it is public

int display_all() {

for (int i=0; i<num_of_videos; ++i)

cout <<my_list[i].title <<„\t‟

<<my_list[i].category

<<„\t‟ <<my_list[i].quantity <<endl;

}

•••
private:

video my_list[CONST_SIZE];

int num_of_videos;

};

CS202 2- 50

Data Hiding

 Notice, that the display_all function can
access the private my_list and
num_of_videos members, directly

 without an object in front of them!!!

 this is because the client calls the display_all
function through an object

– object.display_all();

 so the object is implicitly available once we
enter “class scope”

CS202 2- 51

Where to place....

 In reality, the previous example was
misleading. We don’t place the
implementation of functions with this
this class interface

 Instead, we place them in the class
implementation, and separate this into its
own file

CS202 2- 52

Class Interface (.h)

 Class Interface: list.h
class list {

public:

int display_all()

•••
private:

video my_list[CONST_SIZE];

int num_of_videos;

};

 list.h can contain:
 prototype statements

 structure declarations and definitions

 class interfaces and class declarations

 include other files

CS202 2- 53

Class Implementation

 Class Implementation list.c
#include “list.h” notice the double quotes

int list::display_all() {

for (int i=0; i<num_of_videos; ++i)

cout <<my_list[i].title <<„\t‟

<<my_list[i].category

<<„\t‟ <<my_list[i].quantity <<endl;

}

 Notice, the code is the same

 But, the function is prefaced with the class name and the scope
resolution operator!

 This places the function in class scope even though it is implemented
in another file

 Including the list.h file is a “must”

CS202 2- 54

Constructors

 Remember that when you define a local
variable in C++, the memory is not
automatically initialized for you

 This could be a problem with classes and
objects

 If we define an object of our list class, we really
need the “num_of_videos” data member to
have the value zero

 Uninitialized just wouldn’t work!

CS202 2- 55

Constructors

 Luckily, with a constructor we can write a
function to initialize our data members

 and have it implicitly be invoked whenever
a client creates an object of the class

 The constructor is a strange function, as
it has the same name as the class, and no
return type (at all...not even void).

CS202 2- 56

Constructor

 The list constructor was: (list.h)
class list {

public:

list(); <--- the constructor

•••

};

 The implementation is: (list.c)
list::list(){

num_of_videos = 0;

}

CS202 2- 57

Constructor

 The constructor is implicitly invoked
when an object of the class is formed:

int main() {

list fun_videos; implicitly calls the

constructor

list all_videos[10]; implicitly calls the

constructor 10 times for

each of the 10 objects!!

CS202 2- 58

Dynamic Memory w/ Classes

 But, what if we didn’t want to waste
memory for the title (100 characters
may be way too big (Big, with Tom
Hanks)

 So, let’s change our video structure to
include a dynamically allocated array:

struct video {

char * title;

char category[5];

int quantity;

};

CS202 2- 59

Dynamic Memory w/ Classes

 Let’s write a class that now allocates
this list of videos dynamically, at run
time

 This way, we can wait until we run our
program to find out how much memory
should be allocated for our video array

CS202 2- 60

Dynamic Memory w/ Classes

 What changes in this case are the data
members:
class list {

public:

list();

int add (const video &);

int remove (char title[]);

int display_all();

private:

video *my_list;

int video_list_size;

int num_of_videos;

};

Replace the array
with these

CS202 2- 61

Default Constructor

 Now, let’s think about the
implementation.

 First, what should the constructor do?

 initialize the data members

list::list() {

my_list = NULL;

video_list_size = 0;

num_of_videos = 0;

}

CS202 2- 62

Another Constructor

 Remember function overloading? We
can have the same named function
occur (in the same scope) if the
argument lists are unique.

 So, we can have another constructor
take in a value as an argument of the
number of videos

 and go ahead and allocate the memory, so
that subsequent functions can use the array

CS202 2- 63

2nd Constructor

list::list(int size) {

my_list = new video [size];

video_list_size = size;

num_of_videos = 0;

}

Notice, unlike arrays of characters, we don’t
need to add one for the terminating nul!

CS202 2- 64

Clients creating objects

 The client can cause this 2nd
constructor to be invoked by defining
objects with initial values

list fun_videos(20); //size is 20

If a size isn’t supplied, then no memory is
allocated and nothing can be stored in the
array....

CS202 2- 65

Default Arguments

 To fix this problem, we can merge the
two constructors and replace them with
a single constructor:

list::list(int size=100) {

my_list = new video [size];

video_list_size = size;

num_of_videos = 0;

}

(Remember, to change the prototype for the

constructor in the class interface)

CS202 2- 66

Destructor

 Then, we can deallocate the memory
when the lifetime of a list object is over

 When is that?

 Luckily, when the client’s object of the
list class lifetime is over (at the end of
the block in which it is defined) -- the
destructor is implicitly invoked

CS202 2- 67

Destructor

 So, all we have to do is write a destructor
to deallocate our dynamic memory.

list::~list() {

delete [] my_list;

my_list = NULL;

•••
}

(Notice the ~ in front of the function name)

(It can take NO arguments and has NO return type)

(This too must be in the class interface....)

CS202 2- 68

Review of Classes

 What is the difference between a class
and a struct

 What is a data member?

 Where should a data member be placed
in a class? (what section)

 What is a member function?

 Where should member functions be
placed, if clients should use them?

CS202 2- 69

Review of Classes

 What is the difference between a
member function and a regular-old C++
function?

 What is the purpose of the constructor?

 Why is it important to implement a
constructor?

 What is the difference between a class
and an object?

CS202 2- 70

Review of Classes

 Show an example of how a client
program defines an object of a list class

 How then would the client program call
the constructor? (trick question!)

 How then would the client program call
the display_all function?

 Why are parens needed?

CS202 2- 71

Review of Classes

 Write a simple class interface (called
number) that has the following members:

 an integer private data member (containing
a value)

 a constructor

 a set member function, that takes an integer
as an argument and returns nothing

 a display member function

CS202 2- 72

Review of Classes

 Now, let’s try our hand at
implementing these functions

 a constructor

 a set member function, that takes an
integer as an argument and returns
nothing

 a display member function

CS202 2- 73

Review of Classes

 What happens if we forgot to put the
keyword public in the previous class
interface?

 Why is it necessary to place the class
name, followed by the scope resolution
operator (::) when we implement a
member function outside of a class?

