
CS202 4- 1

Introduction to C++

Dynamic Binding

and User Defined Type

Conversions

Topic #4

CS202 4- 2

Lectures #7, 8

Dynamic Binding
 Virtual Functions
 Abstract Base Classes
 Pointers to Base Class Objects
 How this relates to Pointers to Functions

User Defined Type Conversions
 Type Conversion with User Defined Types
 Casting, Functional Notation, Static Cast, Dynamic

Cast
 RTTI (Run Time Type Identification)3

CS202 4- 3

Static Binding

 Static binding occurs when an object is associated with
a member function based on the static type of the
object.

 The static type of an object is the type of its class or the
type of its pointer or reference.

 A member function statically bound to an object can be
either a member of its class or an inherited member of a
direct or indirect base class.

 Since static binding occurs at compile time, it is also
called compile time binding.

CS202 4- 4

Static Binding

 As we saw in the previous lecture, a publicly derived
class represents an "is a" relationship.

 This means that whenever we need a direct or indirect
base class object, we can use a derived class object in its
place because a derived class object

is a base class object.

account

checking

student

account::statement()
name[]
balance

savings::statement()
interest

savings

student object

savings object

student::statement()
school[]

checking::statement()
charges

account::statement()
name[]
balance

CS202 4- 5

Static Binding

 Using this account class hierarchy, whenever we need
an account object we can use a checking, student, or
savings object in its place.

 This is because every checking, student, and savings
object contains an account object.

 This is the essential characteristic of a hierarchy.

 Notice that it does not work the other way around.

 We cannot use an account object when we need a
checking, student, or savings object because an account
object does not have the necessary data members or
member functions.

 If we attempt to do that a compile error will result.

CS202 4- 6

Static Binding

student smith("Joe Smith", 5000, "UT");
student s(smith); s.statement();

checking c; c = s; c.statement();

account a; a = s; a.statement();

 When a student object is initialized/assigned to a
checking or account object, we lose the derived parts.

 When we use the statement member function, the
function used is based on the type of the object.

 For the checking object, the checking's statement
member function is used. For the account object, the
account's statement member function is used.

 These are statically bound by the compiler based on the
type of the object.

CS202 4- 7

Static Binding
c h e c k i n g c ;
c = s ;

student::statement()
school[]

account::statement()
name[]
balance

checking::statement()
charges

a c c o u n t a ;
a = s ;

account::statement()
name[]
balance

account::statement()
name[]
balance

checking::statement()
charges

student::statement()
school[]

account::statement()
name[]
balance

checking::statement()
charges

s t u d e n t s ;

s t u d e n t s ;

CS202 4- 8

Static Binding

 Static binding guarantees that we will never associate a
member function of a derived class with an object of a
direct or indirect base class.

 If that were to happen, the member function would
attempt to access data members that do not exist in the
object. That is because a base class object does not have
an "is a" relationship with a derived class object.

 Of course, we can go the other way around. That is, we
can associate a member function of a direct or indirect
base class with an object of a derived class as long as
that member function is accessible (i.e., public).

 That is what inheritance is all about and it works
because we have an "is a" relationship.

CS202 4- 9

Upcasting

 We can assign pointers to derived class objects to point
to base class objects. We can also use derived class
objects to initialize references to base class objects.

 Using this account class hierarchy, whenever we need a
pointer to an account object, we can use a pointer to a
checking, student, or savings object. This is called
upcasting even though no cast operation is necessary.

 This is because every checking, student, and savings
object contains an account object. When we are
pointing to a checking, student, or savings object, we
are also pointing to an account object.

 When we are pointing to an account object, we do not
have access to a checking, student, or savings objects.

CS202 4- 10

Upcasting
void print_account(account* p) { //pointer
p->statement();

}

void print_account(account &r) { //reference
r.statement();

}

int main() {
student smith("Joe Smith", 5000, "UT");
student* ps = &smith; ps->statement();

checking* pc = &smith; pc->statement();

account* pa = &smith; pa->statement();

print_account(&smith); //pass by pointer
print_account(smith); //pass by reference

}

CS202 4- 11

Upcasting

 Notice that when we have a pointer to an account
object and we initialize or assign it to the address of a
student or checking object, that we are still actually
pointing to the student or checking object.

 This is the only time in C++ when it is allowed to
assign a pointer of one type to another without an
explicit cast operation.

 This is because a pointer

to a derived class object

points to a direct or

indirect base class object

as well!

s t u d e n t * p s = & s ;

s t u d e n t s ;

c h e c k i n g * p c = & s ;

a c c o u n t * p a = & s ;

account::statement()
name[]
balance

checking::statement()
charges

student::statement()
school[]

CS202 4- 12

Upcasting w/ Static Binding

 When we use the statement member function with our
account pointer, the actual member function used is the
account's statement member function.

 This is because static binding is in effect.

 The member function bound by the compiler is based
on the static type of the pointer, not the actual or
dynamic type of the object pointed to.

 Thus, even though the complete derived class object is
there, static binding prevents us from using the derived
class' statement member function.

CS202 4- 13

Dynamic Binding

 Dynamic binding occurs when a pointer or reference is
associated with a member function based on the
dynamic type of the object.

 The dynamic type of an object is the type of the object
actually pointed or referred to rather than the static
type of its pointer or reference.

 The member function that is dynamically bound must
override a virtual function declared in a direct or
indirect base class.

 Since dynamic binding occurs at run time, it is also
called run time binding.

CS202 4- 14

Overriding...What is it?

 Hiding alternative functions behind a common
interface is called polymorphism (a Greek term which
means "many forms").

 Polymorphism allows multiple implementations of a
member function to be defined, each implementing
different behavior.

 Member function overloading is one form of
polymorphism. Member function hiding is another.

 One of the most powerful forms of polymorphism is
member function overriding. With overriding,
applications can be independent of derived classes by
using only base class member functions to perform
operations on derived classes.

CS202 4- 15

Overriding...What is it?

 Within the object-oriented programming, function
overriding takes function hiding to the next level.

 Instead of deciding which function to bind to an object
based on its static type at compile time, the decision
about which function to use is based on its dynamic
type and is postponed until run time.

 This is called pure polymorphism.

 Pure polymorphism defines an interface to one or more
virtual member functions in a base class that are
overridden in derived classes.

CS202 4- 16

Overriding...What is it?

 Overriding:

 Defining a function to be virtual in a base
class and then implementing that function in
a derived class using exactly the same
signature and return type.

 The selection of which function to use depends on the
dynamic type of the object when accessed through a
direct or indirect base class pointer or reference at run
time.

CS202 4- 17

Overriding...4 Requirements

 Pure polymorphism requires four things to happen
before it is in effect.

 First, we must have an inheritance hierarchy using
public derivation.

 Second, we must declare a public member function to
be virtual in either a direct or indirect base class.

 Third, an overridden member function implemented in
a derived class must have exactly the same signature
and return type as the virtual function declaration.

 Fourth, the overridden function must be accessed
through a direct or indirect base class pointer or
reference.

CS202 4- 18

Overriding vs. Overloading

 There are two major differences between overloading
and overriding.

 Overloading requires unique signatures
whereas overriding requires the same
signature and return type.

 Second, overloading requires that each
overloaded version of the function be
specified within the same scope whereas
overriding requires each overridden version
be specified within the scope of each derived
class.

CS202 4- 19

Overriding vs. Hiding

 There are two major differences between hiding and
overriding.

 Hiding has no requirements on the
signatures whereas overriding requires
exactly the same signature and return type.

 Second, hiding uses the static type of the
object at compile time to determine which
member function to bind whereas overriding
uses the dynamic type of the object at run
time to determine which member function to
bind.

CS202 4- 20

Syntax of Virtual Functions

 Specifying the keyword virtual for any base class
member function enables dynamic binding for that
function.

 Any derived class can override that function by
defining a function with the same signature and return
type.

 The keyword virtual does not need to be re-specified
within the derived class.

 Once a member function is declared to be virtual in a
base class, all functions with that name, signature, and
return type in any derived class remain virtual and can
be overridden.

CS202 4- 21

Enabling Dynamic Binding

 Whenever we want a function to be dynamically
bound, we should define that function as virtual in a
direct or indirect base class.

 By doing so, we are turning on the dynamic binding
mechanism and allowing member functions to be
selected at run time based on the type of object pointed
or referred to.

 Virtual functions should be used when we want to
provide member functions in our base class that define
an interface for application programs to use.

 The actual implementation of the virtual functions is
either provided by the base class or is overridden and
implemented as appropriate in derived classes.

CS202 4- 22

Rules of Dynamic Binding
 Virtual functions cannot be static member functions.

 Second, the signature and return type must be the same
for all implementations of the virtual function.

 Third, while the function must be defined as a virtual
function within a direct or indirect base class, it need
not be defined in those derived classes where the
inherited behavior does not need to differ.

 And finally, the keyword virtual is only required
within the base class itself; derived class
implementations of the overridden function do not
need to repeat the use of that keyword.

 Once a member function is declared to be virtual, it
remains virtual for all derived classes.

CS202 4- 23

But...back to static binding if...
 If the signature of the overridden function is

not the same as the declaration of the virtual
function, overriding does not occur and the
virtual function is simply hidden.

 In such cases, the virtual function invoked will
be an inherited function from a direct or
indirect base class determined at compile time.

 Or, if the function is invoked through an object
rather than a pointer or a reference, static
binding will take place instead!

CS202 4- 24

Now, using Dynamic Binding
//account.h (Ex1705)
class account {
public:
account(const char* ="none", float=0);
virtual void statement(); //virtual function

private:
char name[32];
float balance;

};

//from main:
student smith("Joe Smith", 5000, "UT");
student* ps = &smith; ps->statement();

checking* pc = &smith; pc->statement();

account* pa = &smith; pa->statement();

print_account(&smith); //pass by pointer
print_account(smith); //pass by reference

CS202 4- 25

 The simple syntactic change of adding the virtual
keyword to the declaration of statement has
significantly changed the output.

 In this example, the member function statement is a
virtual function. It is defined in the base class and is
overridden in the derived classes.

 Notice that the signature and return types are the same.
Also notice that the keyword virtual only occurs in the
base class' definition. It is this declaration that enables
dynamic binding.

 Finally, notice that we call the member function
statement through a pointer or reference.

Now, using Dynamic Binding

CS202 4- 26

 Dynamic binding allows a heterogeneous collection of
objects to be processed in a homogeneous way.

 The true benefit of dynamic binding is achieved when
programs can process different types of objects using a
common interface.

 Applications use only virtual functions defined in the
base class. The application has no knowledge about any
derived class, but can generate statements appropriate
for each type of account, depending on where base
class pointers reference.

 If additional types of accounts are later added to the
class hierarchy, the application can easily generate
statements appropriate to those accounts.

Benefit of Dynamic Binding

CS202 4- 27

Example of Dynamic Binding
class account {
public:
account(const char* ="none", float=0);
virtual void statement(); //virtual function

private:
char name[32]; float balance;

};
void print_statements(account* bank[], int n) {

for(int i=0; i<n; ++i) {
bank[i]->statement(); cout <<endl;

}
}
//from main:
savings i("Jim Jones", 500);
account a("Empty Account", 0);
student s("Kyle smith", 5000, "UT");
checking c("Sue Smith", 1000);
account* bank[4]; bank[0] = &i; bank[1] = &a;
bank[2] = &s; bank[3] = &c;
print_statements(bank, 4);

CS202 4- 28

 Dynamic binding delays until run time the binding of a
member function to a pointer or reference and requires
that the compiler generate code to select the correct
member function at run time instead of compile time.

 Some implementations create an array of member
function pointers for all virtual functions. Each derived
class has its own unique array of pointers. Functions
that are inherited result in pointers to direct or indirect
base class member functions. Functions that are
overridden result in pointers to the derived class
member functions. Each virtual function has the same
index in this table for each derived class. Only one table
exists per class that is shared by all objects of a class.

Dynamic Binding Mechanism

CS202 4- 29

 When a member function is to be bound to a pointer or
reference at run time, the function accessed is obtained
by selecting the correct member function pointer out of
the virtual table pointed to by the current object's
virtual pointer. It doesn't matter what the type of the
object is, its virtual pointer will point to the correct
virtual table of function pointers for that object.

 Note the additional costs of dynamic binding. With
static binding, a member function is directly bound to
an object. With dynamic binding, three additional
levels of indirection may be needed to bind the correct
member function pointer with a pointer or reference to
an object.

Dynamic Binding Mechanism

CS202 4- 30

s a v i n g s i ;

a c c o u n t a ;

s t u d e n t s ;

c h e c k i n g c ;

a c c o u n t * b a n k [4] ;
b a n k [0] = & i ;
b a n k [1] = & a ;
b a n k [2] = & s ;
b a n k [3] = & c ;

school[]

name[]
balance

charges

vptr

name[]
balance

vptr

name[]
balance

charges

vptr

name[]
balance

interest

vptr

savings::vtbl

account::vtbl

student::vtbl

checking::vtbl

savings::statement()

. . .

account::statement()

. . .

student::statement()

. . .

checking::statement()

. . .

First, the pointer to the object
must be dereferenced.
Second, the vptr must be
dereferenced to access the
correct vtbl. Third, the
member function pointer in
the vtbl must be accessed to
call the correct member
function for the object.

CS202 4- 31

 This cost is not as bad as it first seems. Many compilers
do this more efficiently.

 Second, to “simulate” dynamic binding, the application
would be implemented significantly differently. Each
derived class would have to define a value to represent
its type so that the application could query the object at
run time to determine what type it was pointing to.
Then, the application would have to downcast the
pointer from an account object to the correct type in
order to access the correct derived class member
function. This would have to be done each time a
derived class member function needed to be accessed.

Dynamic Binding Mechanism

CS202 4- 32

 Once dynamic binding is enabled, an overridden
member function is bound to a pointer or reference
based on the type of the object pointed to.

 Dynamic binding is not in effect if an object is used
instead of a pointer or reference to an object.

 Dynamic binding is also not in effect if the member
function is qualified with a class name and the scope
resolution operator. In this case, the function bound to
the pointer is the member function defined by the
qualifying class. (pa->account::statement();)

 For example, if we assign the student object to an
account object and then invoke statement, static
binding is in effect and the account function is called:

account a = smith;

Disabling Dynamic Binding

CS202 4- 33

 We can force application programs to always use
pointers to base class objects instead of using pointers
to derived class objects or using objects directly by
making the overridden member functions protected or
private in the derived classes.

 This is a way to force applications to adhere to the
defined interface provided by the base class and to help
ensure that dynamic binding will be used.

 It causes compilation errors to result if the application
attempts to use static binding:

student* ps = &smith;
ps->statement(); //illegal access-protected member
smith.statement(); //illegal access-protected member

Making sure pointers are used

CS202 4- 34

Use of Protected...
class account {
public:
account(const char* ="none", float=0);
virtual void statement();

private:
...

};
class checking : public account {
...

protected:
void statement();

};
class student : public checking {
...
protected:
void statement();

};
app: student smith("Kyle smith", 5000, "UT");

account* pa = &smith;
pa->statement(); //okay

CS202 4- 35

 Dynamic binding can be used with overloaded
operators as well as conversion functions.

 All that is necessary is to declare the overloaded
operators to be virtual in a direct or indirect base class
just like we do for regular member functions.

 Functions and overloaded operators that cannot be
implemented as members can benefit from dynamic
binding by invoking a virtual member function that
actually performs the required operation.

 When this is done, such functions are called virtual
friends.

Overloading w/ Virtual Funct.

CS202 4- 36

 In order to implement a virtual friend, we must
implement a virtual helper member function that
performs the operation that we want and then call it
from the non-member function.

 We must be careful to declare the object for which we
want polymorphic behavior to be a pointer or a
reference in the helper function.

 If the object is passed by value to the non-member
function then dynamic binding cannot be used because
we have an object and not a pointer or reference.

 It is best to make the helper functions protected or
private in the base class and in all derived classes and
then the non-member function a friend of the class.

Virtual Friends

CS202 4- 37

Virtual Friends
class account {
friend std::ostream &operator<<(std::ostream &,account&);
protected:

virtual void statement(std::ostream &);
...
};
class checking : public account {
...
protected:
void statement(std::ostream &); //helper fnct

};
class student : public checking {
...
protected:
void statement(std::ostream &); //helper fnct

};

CS202 4- 38

Virtual Friends
void account::statement(ostream &o) {
o <<"Account Statement" <<endl;
o <<" name = " <<name <<endl;
o <<" balance = " <<balance <<endl;

}
void checking::statement(ostream &o) {
o <<"Checking "; account::statement(o);
o <<" charges = " <<charges <<endl;

}
void student::statement(ostream &o) {
o <<"Student "; checking::statement(o);
o <<" school = " <<school <<endl;

}
ostream &operator<<(ostream &o, account &a) {
a.statement(o); return (o);

}
app: student smith("Kyle smith", 5000, "UT");

account &ra(smith); //reference
account* pa(&smith); //pointer
cout <<ra <<*pa; //both use the “student

CS202 4- 39

 Whenever we have virtual functions, we should always
declare the destructor to be virtual.

 Making the destructor virtual will ensure that the
correct destructor will be called for an object when
pointers to direct or indirect base classes are used.

 If the destructor is not declared to be virtual, then the
destructor is statically bound based on the type of
pointer or reference and the destructor for the actual
object pointed to will not be called when the object is
deallocated.

 In the account class’ public section add:

virtual ~account();

Virtual Destructors

CS202 4- 40

 When using virtual inheritance, virtual functions can be
used in the same way that we learned about previously.

 However, a class derived from two or more base classes
that have a virtual base class in common must override
all virtual functions declared in the common base class
if it is overridden in more than one of its direct base
class branches.

 If virtual functions are not overridden in the derived
class, it is impossible to know which of the virtual
functions to use. It would be impossible to know which
direct base class' virtual function to use! This is because
the virtual function is accessed from the common base
class pointer pointing to a derived class object.

Virtual Inheritance too

CS202 4- 41

 A class derived from two or more base classes that have
a virtual base class in common and where only one of
the base classes has overridden a virtual function from
the common base class is allowed.

 In such situations, the derived class need not provide a
definition for this functions. The virtual function that is
overridden in the one base class will dominate and will
be used.

 This is called the dominance rule.

Virtual Inheritance too

CS202 4- 42

Run Time

Type Ident.

Introduction to C++

CS202 4- 43

 Run Time Type Identification (RTTI) uses type
information stored in objects by the compiler to
determine at run time the actual type of an object
pointed or referred to.

 RTTI can only be used when at least one function has
been declared to be virtual in the class or in a direct or
indirect base class.

 For the full benefits of dynamic binding, applications
must write code independent of the type of object being
pointed or referred to.

 RTTI provides a way for client applications to
determine the type of an object without having to
compromise their use of dynamic binding.

RTTI

CS202 4- 44

 A downcast operation is when a pointer to a direct or
indirect base class is converted to a pointer to a derived
class.

 The static_cast operator syntax is

static_cast<type*>(expr)

where expr is an expression pointing to a direct or
indirect base class object and type is a derived class.

 The result of the cast operation is that expr is converted
to a pointer to the specified type, converting the static
type of one pointer into another.

 As such, it depends on the programmer to ensure that
the conversion is correct. It is inherently unsafe because
no run time type information is used.

static_cast for downcasting

CS202 4- 45

 The dynamic_cast operator relies on information stored
in an object by the compiler whenever a direct or
indirect base class contains a virtual function. This cast
is used when downcasting to determine at run time if
the downcast is valid or not.

 The dynamic_cast operator syntax is

dynamic_cast<type*>(expr)

where expr is an expression pointing to a direct or
indirect base class object and type is a derived class.

 expr is converted to a pointer of the specified type if the
dynamic type of the object pointed to is that type or is a
type derived from that type. Otherwise, the result of
the cast operation is zero.

dynamic_cast for downcasting

CS202 4- 46

Example of a Dynamic Cast
student s;
account* pa = &s;
student* ps;
ps = dynamic_cast<student*>(pa); //result is valid
savings i;
pa = &i;
ps = dynamic_cast<student*>(pa); //result is a zero

 The dynamic_cast operator relies on the dynamic type
information stored in the object pointed to.

 Unlike static_cast, the dynamic_cast operator provides
a safe downcast mechanism by returning a zero pointer
if the object pointed to is not in the hierarchy of the
type being cast to.

 If it is, a valid pointer is returned.

CS202 4- 47

 The typeid operator relies on information stored in an
object by the compiler whenever a direct or indirect
base class contains a virtual function.

 This operator is used at run time to compare the type of
an object with the type of a known class.

 The typeid operator returns a reference to an object of
type type_info. This object contains a compiler
dependent run time representation for a particular
type.

 This object can be compared with the type_info of
known classes to determine the type at run time.

 The header file <typeinfo> must be included to use the
typeid operator.

What type? At Run-Time

CS202 4- 48

Run Time Type Identification
student* ps = new student;
if (typeid(*ps) == typeid(account))
cout <<"*ps is an account object" <<endl;

if (typeid(*ps) == typeid(checking))
cout <<"*ps is a checking object" <<endl;

if (typeid(*ps) == typeid(student))
cout <<"*ps is a student object" <<endl;

if (typeid(*ps) == typeid(savings))
cout <<"*ps is a savings object" <<endl;

 The typeid operator is used to check the type of an
object against a known type whereas the dynamic_cast
operator can be used to check the type of an object
against an entire hierarchy.

CS202 4- 49

 The dynamic_cast operator is able to determine
whether or not an object is a member of a hierarchy.
This can be useful to determine the ancestors of a class.
On the other hand, the typeid operator is only able to
determine if an object is of a particular type or not.

 It is best to avoid using RTTI because it inherently ties
the application to the types of objects that it is
processing. Writing code independent of the type being
pointed or referred to provides cleaner code that will be
easier to maintain.

 Designs that need to use RTTI should act as a warning
signal that a better design using virtual functions may
be possible.

Recommendations w/ RTTI

CS202 4- 50

Abstract

Base Classes

Introduction to C++

CS202 4- 51

 An abstract class is a class that can only be derived
from; no objects can be instantiated it.

 Its purpose is to define an interface and provide a
common base class for derived classes.

 A base class becomes an abstract class by making its
constructor(s) protected or by declaring a virtual
function pure: virtual void statement()=0;

 Derived classes must implement all pure virtual
functions. If a derived class does not implement these
functions, then it becomes an abstract class as well.

 Abstract classes are not required to implement their
pure virtual functions.

Abstract Base Classes

CS202 4- 52

 The purpose of declaring a function to be
pure is to force the derived classes to
implement it.

 A virtual function is a contract with a
derived class indicating the name,
signature, and return type for the
function.

 Making the virtual function pure forces
the contract to be fulfilled.

Abstract Base Classes

CS202 4- 53

User

Defined

Conversions

Introduction to C++

CS202 4- 54

 Implicit conversions occur when mixed type
expressions are evaluated or when the actual
arguments in a function call do not match the formal
arguments of the function prototype.

 First, the compiler tries to apply a trivial conversion.

 If there is no match, then the compiler attempts to
apply a promotion.

 If there is no match, then the compiler attempts to
apply a built-in type conversion.

 If there is no match, then the compiler attempts to
apply a user defined type conversion.

 If there is no match, the compiler generates an error.

Implicit Conversions

CS202 4- 55

 To determine if a user defined type conversion is used,
the compiler checks if a conversion is defined for the
type needed.

 If there is, then the compiler checks that the type
matches the type supplied or that the type supplied can
be converted by applying one of the built-in type
promotions or conversions.

 Only one such built-in type promotion or conversion
will be applied before applying the user defined type
conversion itself.

 Thus, at most one built-in type conversion and at most
one user defined type conversion will ever be implicitly
applied when converting from one type to another.

Implicit Conversions

CS202 4- 56

 Explicit conversions occur when the client explicitly
invokes a cast operation.

 Both implicit and explicit type conversions result in a
temporary object of the type being converted to.

 This temporary object is used in place of the original.

 The value of the original object is not affected.

 When considering execution efficiency, it is important
to reduce or minimize the creation of such temporaries.

 We recommend minimizing user defined conversions
as much as possible by avoiding mixed type
expressions and by supplying arguments to functions
that exactly match the type required by the function
prototypes.

Explicit Conversions

CS202 4- 57

 Constructors taking a single argument define a
conversion from the type of its argument to the type of
its class.

 Such conversion functions can be used either implicitly
or explicitly.

 When used implicitly, at most one implicit built-in
promotion or conversion will be applied to the
argument of the constructor. name(char* = "");

//implicitly convert char* to name

name obj; obj = "sue smith";

User Defined Type Convers.

CS202 4- 58

 Remember, the lifetime of a temporary object is from
the time it is created until the end of the statement in
which it was created.

 In the assignment statement, the temporary object is
destroyed after the temporary is assigned.

 As a formal argument (passed by value), the temporary
object is destroyed after the function is called.

 Therefore, not only are temporary objects formed (and
the constructor implicitly invoked) but the objects are
also destroyed (and the destructors are implicitly
invoked).

User Defined Type Convers.

CS202 4- 59

 If we do not want a constructor taking a single
argument to also define an implicit conversion
function, we can prevent that by preceding the
constructor declaration with the keyword explicit.

 The application is now required to provide explicit type
casts in order to convert a char* to a name object.

 Using a constructor as a conversion function allows us
to convert an object of some other type to an object of a
class. They do not allow us to define a conversion from
a class to some other built-in type or class.

 To do so, we must define a type conversion function.

User Defined Type Convers.

CS202 4- 60

 A conversion function allows us to define a conversion
from an object of a class to another built-in type.

 Conversion functions are also useful when we need to
convert from an object of our class to an object of a class
that we do not have access to or do not want to modify.

 When we do have access to the class and are willing to
modify it, we can always define a constructor taking a
single argument of our class type to perform the
conversion.

operator other_type();

User Defined Type Convers.

CS202 4- 61

 Notice that this conversion function has no return type.
That is because the return type is implicitly specified
(other_type), since that is the type we are converting to.

 The conversion function converts the current object into
the new type and returns the value.

 The conversion function can be called either implicitly
or explicitly.

 The name of the conversion function must be a single
identifier; therefore, for types that are not a single
identifier, a typedef must first be used to create a single
identifier.

User Defined Type Convers.

CS202 4- 62

 Notice that this conversion function has no return type.
That is because the return type is implicitly specified
(other_type), since that is the type we are converting to.

 The conversion function converts the current object into
the new type and returns the value.

 The name of the conversion function must be a single
identifier; therefore, for types that are not a single
identifier, a typedef must first be used. In the class:

typedef const char* pchar; //make single identifier
operator pchar(); //conversion (name to char*)

Implementing:
name::operator pchar() { //conversion function
...
return array; //of type char * being returned

}

User Defined Type Convers.

CS202 4- 63

 In order for the conversion function to be called
explicitly when it is a typedef name, that name must be
in the global namespace and cannot be hidden within
the class.

name obj("sue smith");
const char* p;

//Three examples of explicit conversions:
p = (pchar)obj;
p = pchar(obj);
p = static_cast<pchar>(obj);

User Defined Type Convers.

CS202 4- 64

 With constructors as conversion functions and also
conversion functions, avoid mutual conversions.

 Many times type conversions are specified to minimize
the number of operators overloaded, especially for
symmetric operators where there can be multiple
combinations of types for the two operands. It can
reduce the number of versions of an operator to a
single, non-member.

 However, this can produce subtle changes in the way a
program works. If we were to add a string to char *
user defined conversion function to our string class, all
uses of operator+ containing both char * and string
types would become ambiguous.

User Defined Type Convers.

CS202 4- 65

 Type conversions will not help when operators are
members -- because a member is required to have the
first operand as an object of the class; if it converted to
some other type, the member function will not be
found as a possible candidate function and a compile
error will result or the wrong operator will be used
(such as the built-in operators).

 Also, when user defined conversions to built-in types
have been specified, the predefined operators may end
up being used even when we use an operator with a
user defined type for which an overloaded operator
exists! Overloaded operators are only invoked if at least
one of those operands is a user defined type.

User Defined Type Convers.

