
CS202 5- 1

Advanced C++

Exception Handling

Topic #5

CS202 5- 2

Exception Handling
• Throwing an Exception
• Detecting an Exception
• Catching an Exception
• Examine an Example using Classes and

Operator Overloading

CS202 5- 3

Exception Handling
• C++ allows us to detect error conditions at any point

in a program (the throw point) and then transfer
control and information (the exception) to another
point in the program (the exception handler) for error
processing.

• This process (exception handling) allows functions to
detect error conditions and then defer the processing
or handling of those error conditions to a direct or
indirect caller of those functions.

• Exception handling allows us to separate normal
processing from error processing.

• This, in turn, improves the structure, organization,
and reusability of our software.

CS202 5- 4

Throwing an Exception
 When an error condition is detected, an exception can

be created and control transferred to an exception
handler by executing a throw expression.

 A throw expression consists of the operator throw
optionally followed by an operand of some type.
if (i != 42) //detect error condition
throw i; //throw an exception

 This causes the program to abort whenever an
exception occurs. The abort occurs because the default
in C++ is to abort whenever an exception is thrown
that is not explicitly processed by the program. This is
probably only useful for the simplest programs.

CS202 5- 5

Throwing an Exception

Detect

an Error

?

No Error

Continue

Processing
Error

Throw an

Exception

Function Call

Execute Terminate

Function Call

Execute Abort

Abort

 An exception that is
thrown and is not directly
detected and handled by
the program results in a
call to a run time library
function called terminate.
The default behavior for
terminate is to call abort.

CS202 5- 6

Throwing an Exception
 Fortunately, our program can gain control by

replacing the call to abort with a call to a function that
we provide.

 We pass the address of our function to the library
function set_terminate. The address of the previous
function is returned and the address we pass is saved
in its place.

 Whenever terminate is called, our function will also
be called.

void user_terminate() {...) //user supplied terminate

int main() {
set_terminate(user_terminate); //install user function
...

CS202 5- 7

Throwing an Exception
 There are four rules that apply to the

function that we supply:

1) it must not take any arguments,

2) it must not return data,

3) it must not return; it can only
terminate by calling exit or abort,
and

4) it is not allowed to throw an
exception.

5) the header file <exception> is
needed to use set_terminate.

Detect

an Error

?

No Error

Continue

Processing
Error

Throw an

Exception

Function Call

Execute Terminate

Function Call

Execute User Defined Terminate

Exit

CS202 5- 8

Throwing an Exception
void user_terminate() { //user supplied terminate
cout <<"user terminate function calling exit" <<endl;
exit(1); //abnormal program exit

}

int main() {
int i;
set_terminate(user_terminate); //install user function
cout <<"Enter an integer: ";
cin >>i;

if (i != 42) //detect error condition
throw i; //throw an exception

cout <<"no throw was executed" <<endl;

cout <<"normal program exit; i = " <<i <<endl;
return(0);

}

CS202 5- 9

Detecting an Exception
 To detect specific exceptions, we must specify when

we want exception detection to be active.
 Think of this as "turning on" exception handling for a

particular section of code (the try block).
 A try block is a compound statement preceded by the

try keyword.
 Once the thread of control enters a try block,

exception handling is in effect until the try block is
exited.

 Think of a try block as specifying when we want to
detect exceptions. We can only detect an exception
that is thrown when the thread of control is inside of
a try block.

CS202 5- 10

Detecting an Exception
 Therefore, try blocks establish when exception

handling is in effect.
 If an exception is thrown outside of a try block,

terminate is called.
 When we are in a try block, we are able to select and

handle different types of exceptions. This is called
catching an exception.

 The following demonstrates a try block that "turns
on" exception handling for our entire program:

int main() {
try {
... //program code

}
... //code to handle exceptions
cout <<"normal program exit" <<endl;
return(0); }

CS202 5- 11

Catching an Exception
 When an exception is thrown, we can associate an

operand of some type with the throw operator.
 The type of the operand determines the type of the

exception.
 Control is passed to a block of code (the catch block)

corresponding to that type.
 The value of the operand (the exception) associated

with throw is passed to the catch block (the exception
handler) as a temporary.

throw i; //under some condition throw an exception
//with an integer argument

catch(int x) { //catch integer exceptions
...

}

CS202 5- 12

Catching an Exception
 A catch block has access to the value of the exception,

but cannot modify the original value.
 This is true even if the operand is a reference. Any

change to the operand does not affect the original
value, only the temporary copy.

 The type of a throw expression is void and has no
residual value.

 If we use throw within a try block without an
operand, a catch block is not executed. Instead,
terminate is called.

CS202 5- 13

Catching an Exception

 A catch block immediately
follows the try block and begins
with the catch keyword
followed by the type and formal
argument (in parentheses) that
this catch block is designed to
accept.

 There must be at least one catch
block immediately following
every try block.

Detect

an Error

?

No Error

Continue

Processing

Remainder

of the Try

Block

Error

Throw an

Exception

Execute Catch Block

with Matching

Argument List

Exit Try Block

and Continue Processing

Enter a Try Block

CS202 5- 14

Catching an Exception
int main() {
int i;
cout <<"Enter an integer: ";
cin >>i;

try {
if (i != 42) //detect error condition
throw i; //throw an exception

cout <<"no throw was executed" <<endl;
}

catch(int x) { //catch integer exceptions
cout <<"exception handler called; arg = " <<x <<endl;
i = 42; //set it to correct value

}

cout <<"normal program exit; i = " <<i <<endl;
return(0);

}

CS202 5- 15

Catching an Exception
 First, a catch block is only executed as a result of

throwing an exception within a try block.
 Second, if a throw is executed, control is immediately

passed to the appropriate catch block.
 The statements following the throw are not executed.
 Third, when the catch block is done executing, control

goes to the statement immediately following the try
block and associated sequence of catch blocks in
which the exception was handled; it does not continue
with the statement following the throw.

 Of course, if a catch block contains a return, exit, or
abort, then the program either returns from the
function containing the catch block or exits the
program.

CS202 5- 16

Catching Different Types of

Exceptions
int main() {
int i;
cout <<"Enter an integer: ";
cin >>i;

try {
if (i != 42) //detect error condition
throw i; //throw an exception

cout <<"no throw was executed" <<endl;
}

catch(int x) { //catch integer exceptions
cout <<"exception handler called; arg = " <<x <<endl;
i = 42; //set it to correct value

}

cout <<"normal program exit; i = " <<i <<endl;
return(0);

}

CS202 5- 17

Catching an Exception
 Once a throw is executed, control is immediately

transferred from the try block to the first catch block
in the thread of control whose type matches the type
of operand associated with the throw.

 The catch block is then executed and we either
terminate, return, or continue at the first statement
following the sequence of catch blocks in which the
exception was handled.

 Think of throw as analogous to a function call and
catch as analogous to a function definition. There can
be multiple catch blocks each with a unique "formal
argument" type.

CS202 5- 18

Catching an Exception
 When we throw an exception, it is as if we are using

the throw operator and its associated operand to "call"
a catch block "passing" an argument. The type of the
operand must be an exact match with the type
specified in the associated catch block, except for the
following three cases:
1) the operand (or, actual argument) matches a
constant of the same type, a reference of that type, or a
constant reference of that type,
2) the operand is an array containing elements of
some type that matches a pointer to that type, or
3) the operand is a pointer that matches a pointer to
void.

CS202 5- 19

Catching an Exception
 The operand of the throw operator determines which

catch block is selected by matching its type with the
type of the catch blocks.

 If we use the type void* for a catch block, it should
come after any other catch block specifying a pointer
type.

 This is because the catch blocks are checked in
sequence and the first catch block matching the type
is used.

 Since void* matches all possible pointer types, we
would never be able to access a catch block with a
specific pointer type if a void* catch block preceded
it.

CS202 5- 20

Catching an Exception
 In the previous example, we did not use the value of

the throw operand in the catch blocks so we did not
need to specify an identifier in the catch block's
argument list, just the type.

 If we want to catch any exception independent of the
type, we can use the ellipses (...) as the type of a catch
block.

 If a catch block using ellipses is specified, it must be
the last catch block in the sequence and is guaranteed
to catch exceptions of any type.

 Of course, if a catch block for a particular type
precedes a catch block using the ellipses, then it will
catch an exception of that particular type before the
catch block with the ellipses.

CS202 5- 21

Catching an Exception
try {
if (c != 'x')
throw c; //throw exception of type char

if (i != 42)
throw i; //throw exception of type int

cout <<"no throw was executed" <<endl;
}

catch(char) { //catch char exception
cout <<"char exception handler called" <<endl;

}

catch(...) { //catch all other exceptions
cout <<"universal exception handler called" <<endl;

}

CS202 5- 22

Nested Try Blocks
 Try blocks can be nested, either statically at compile

time or dynamically based on the flow of control.
 When we throw an exception, the catch blocks

associated with the try block containing the throw are
searched for a type matching the exception.

 If no match is found, the catch blocks associated with
the statically or dynamically surrounding try block
(i.e., a try block entered, but not exited) are searched.

 This process continues until either a matching catch
block is found or there are no more try blocks, in
which case the function terminate is called.

CS202 5- 23

Nested Try Blocks

try { //outer try block
cout <<"Enter a character and an integer: ";
cin >>c >>i;

try { //inner try block
if (c != 'x')
throw c; //throw exception of type char

if (i != 42)
throw i; //throw exception of type int

cout <<"no throw was executed" <<endl;
}
catch(char) { //inner catch block
cout <<"char exception handler called" <<endl;

}
cout <<"either char exception or no throw" <<endl;

}
catch(...) { //outer catch block
cout <<"universal exception handler called" <<endl;}

CS202 5- 24

Nested Try Blocks
 When an exception occurs and either: (1) no try block

statically surrounds the throw point or (2) no catch
blocks are found that match the type of exception
thrown when a try block is present, then a process
called stack unwinding begins.

 If we are in a function, any automatic variables and
formal arguments on the stack are destroyed in the
same way as when control returns from a function.

 But, instead of returning control to the calling
function, that function is searched for a dynamically
surrounding try block.

 If found, its associated catch block(s) are checked for
a type matching the exception.

CS202 5- 25

Nested Try Blocks
 If found, control is passed to the catch block matching

the type of the exception.
 If no try block is found or if no catch block with a

type matching the exception is found, this process of
returning from a function and unwinding the stack
continues until a catch block of the appropriate type
is found.

 If none is found, the function terminate is called.
 The catch block itself can throw an exception in two

ways:
1) by throwing an exception with an associated operand

of some type, or
2) by throwing an exception with no operand (called re-

throwing the exception).

CS202 5- 26

Exception Specifications
 In order to completely declare a function, we must

specify the types of exceptions that may be thrown by
that function in addition to the formal argument types
and return type.

 By default, a function can throw any exception.
 We can specify exactly what types of exceptions a

function may throw by listing them in the function
prototype or in the function header when a function
is defined.

 This is called an exception specification.

CS202 5- 27

Exception Specifications
 An exception specification consists of the throw

keyword followed by a list of exception types
enclosed in parentheses.

 The exception specification is the last item in a
function declaration or function header.

 The list may be empty.
 This guarantees that the function will not throw any

exceptions.
 A non empty list guarantees that the function will

only throw exceptions of the type(s) specified in the
list.

 If the exception specification is absent, the function
can throw any type of exception.

CS202 5- 28

Exception Specifications
void a_function() throw(char, int); //exception spec

int main() {
try { //detect exceptions (in main)

a_function();
cout <<"returned from a_function" <<endl;

}
catch(char) { //catch char exceptions

cout <<"char exception handler called" <<endl;
}
catch(int) { //catch int exceptions

cout <<"int exception handler called" <<endl;
}
cout <<"normal program exit" <<endl;
return(0);

}

CS202 5- 29

Exception Specifications
void a_function() throw(char, int) { //exception spec
int i;
char c;
cout <<"Enter a character and an integer: ";
cin >>c >>i;

if (c != 'x')
throw c; //throw char exception

if (i != 42)
throw i; //throw int exception

cout <<"no throw was executed" <<endl;
}

 If a function throws an exception that is not in the
exception specification list, a call to a run time library
function called unexpected is made. The default
behavior for unexpected is to call terminate.

CS202 5- 30

Exception Specifications
 Fortunately, our program can gain control by

replacing the call to terminate with a call to a function
that we provide. We pass the address of our function
to the library function set_unexpected. The following
shows the syntax:

void user_unexpected() { //user supplied function
...

}

int main() {
set_unexpected(user_unexpected); //install user

function

CS202 5- 31

Catching Exceptions with new
 When new cannot allocate the requested memory, it

calls a default callback function from the standard
library called new_handler.

 This function throws an exception of type bad_alloc.
 By registering a callback function, our own can be

called instead of new_handler.
 This can be done by calling the function

set_new_handler.
 This function takes one argument: a pointer to a

function that takes no arguments and returns void.
 It returns a pointer to the previous callback, which is

initially the default (new_handler).

CS202 5- 32

Catching Exceptions with new
void out_of_mem(); //user new handler callback

int main() {
set_new_handler(out_of_mem); //install user new handler
while(true)
int *p = new int[1024]; //gobble up memory till gone

return (0);
}

void out_of_mem() {
cout <<"programmer supplied new handler called" <<endl;
//free up space & return, throw bad_alloc, abort, or exit
exit(1);

}

CS202 5- 33

Exceptions w/ Classes
 Exception handling can enhance the behavior of a

user defined data type (such as adynamic array) by
performing error checking.

 Errors can occur when new allocates memory or when
an index into the array is out of bounds.

 Errors can be handled in two ways, either by
displaying an error message and continuing
processing or by throwing an exception.

CS202 5- 34

Exceptions w/ Classes (version1)

class dyn_a1 {
public:
explicit dyn_a1(INDEX) throw(); //1D array of size i
~dyn_a1() throw(); //destructor
int &operator[](INDEX) throw(); //subscript operator

private:
dyn_a1(const dyn_a1 &); //prohibit copy ctor
dyn_a1 &operator=(const dyn_a1 &); //prohibit assign
INDEX d1; //# of elements in 1D array
int* a0; //base address of all elements
int dummy; //for out of bounds reference

};

CS202 5- 35

Exceptions w/ Classes (version1)

//Implementation of dyn_a1 constructor and destructor

inline dyn_a1::dyn_a1(INDEX i) throw() :
d1(i), //# of 1D array elements
dummy(0) {
a0 = new(nothrow) int[i]; //total # elements for 1D array
if (a0 == 0) { //check if new failed

cerr <<"new failed in class dyn_a1" <<endl;
d1 = 0; //set # elements to zero

}
}
inline dyn_a1::~dyn_a1() throw() {

delete[] a0; //deallocate all array elements
}
//Implementation of subscript operator
inline int &dyn_a1::operator[](INDEX i) throw() {

if (i<0 || i>=d1) { //check if out of bounds
cerr <<"out of bounds at index " <<i <<endl;
return (dummy); //reference to dummy element

}
return (a0[i]); //ith element in 1D array

}

CS202 5- 36

Exceptions w/ Classes (version2)

struct bad_index { //bad index exception type
long index;

};

class dyn_a1 {
public:
explicit dyn_a1(INDEX) throw(bad_alloc); //constructor
~dyn_a1() throw(); //destructor
int &operator[](INDEX) throw(bad_index); //subscript op

private:
dyn_a1(const dyn_a1 &); //prohibit copy ctor
dyn_a1 &operator=(const dyn_a1 &); //prohibit assign
INDEX d1; //# of elements in 1D array
int* a0; //base address of all elements

};

CS202 5- 37

Exceptions w/ Classes (version2)

//Implementation of dyn_a1 constructor and destructor
inline dyn_a1::dyn_a1(INDEX i) throw(bad_alloc) :

d1(0) { //set to 0 in case of exception
a0 = new int[i]; //total # elements for 1D array
d1 = i; //# of 1D array elements

}
inline dyn_a1::~dyn_a1() throw() {
delete[] a0; //deallocate all array elements

}

//Implementation of subscript operator
inline int &dyn_a1::operator[](INDEX i) throw() {
if (i<0 || i>=d1) { //check if out of bounds

bad_index e; //create bad_index object
e.index = i; //save bad index
throw(e); //throw bad_index exception

}
return (a0[i]); //ith element in 1D array

}

CS202 5- 38

Exceptions w/ Classes
 This change requires that the client program catch

and handle the error and determine how to handle it.
 The class no longer performs error processing.
 This approach gives the client program control of how

errors are handled and the type of error messages
provided.

 To detect when new fails, we use the regular form of
new. If new cannot allocate the necessary space, it
automatically throws an exception of type bad_alloc.
If the index is out of bounds, we throw an exception
instead of returning.

 Therefore, we do not need a dummy integer to return.
But, we do need to define a type for the exception that
is thrown (bad_index structure).

CS202 5- 39

In Summary
 Exception handling is difficult to do well.
 The exception handling facilities of C++ provide

mechanisms to separate error detection from error
processing.

 This can significantly improve the organization and
reusability of our software.

 However, it is not a substitute for careful design.
 Designing software must include considering both

normal processing and error processing.
 When exception handling is poorly used, it can create

more problems than it solves by creating a false sense
of security.

 On the other hand, if used properly, it can improve
the robustness, maintainability, and reusability.

