
CS202 7- 1

Introduction to C++

Friends, Nesting, Static

Members, and Templates

Topic #7

CS202 7- 2

Relationship of Objects
• Friends, Nesting
• Static Members

Template Functions and Classes
• Reusing Code
• Template Specializations
• Implicit and Explicit Instantiations
• Partial Specializations
• Discuss Efficiency Implications

CS202 7- 3

Friends

• Remember that with data hiding and encapsulation,
we force clients to manipulate private data through
public member functions. By declaring friends, we
allow non-member functions or member functions of
other classes access to private data.

• A class can declare another class to be a friend.
• When we do this, the first class gives all member

functions of the second class permission to access all
of its protected and private information (not the other
way around; a class cannot declare itself a friend of
another class).

CS202 7- 4

Friend Classes

• By declaring an entire class as a friend, all members
of the friend class have permission to access the
protected and private members of the declaring class.
This grants special privileges to the friend class'
member functions. However, declaring a class to be a
friend does not grant any privileges to functions that
may be called by member functions of the friend
class.

class declaring_class {

friend class class_name1, //class_name1 is a friend
class_name2; //class_name2 is a friend

...
};

CS202 7- 5

Friend Classes

• A class can be declared a friend before the
friend class is defined. This is because the
friend declaration only needs an incomplete
declaration of the friend class. An incomplete
declaration informs the compiler that the
friend class may be defined later.

class declaring_class {
//class_name is not previously declared or defined, so
//an incomplete declaration is used
friend class class_name; //class_name is a friend class
...

};

CS202 7- 6

Friend Classes

• When a class (declaring class) declares another class
(friend class) to be a friend, the friend class' member
functions can invoke the protected or private member
functions or use the protected or private data
members of the declaring class.

• To do so, the friend class must have access to an
object of the declaring class' type.

• This can be done by having an object of the friend
class as a data member or a pointer to an object of the
friend class.

CS202 7- 7

Non-Member Friend Functions

• A non-member function can be declared a friend by
placing the following statement in the declaring class.
The declaration of a friend function takes the form of
a function prototype statement, preceded by the
keyword friend.

• We saw this type of friend with operator overloading.
• Typically, friend functions are designed with formal

arguments, where clients pass either an object, the
address of an object, or a reference to an object as an
argument.

class declaring_class_name {
friend return_type function_name(arg_list);

};

CS202 7- 8

Member Function Friends
• We can declare a member function to be a friend by

placing the following statement in the declaring class.
• The declaration of a friend member function takes the

form of a member function prototype statement,
preceded by the keyword friend.

• Member functions are declared using their class name
followed by the scope resolution operator.

• The friend member function must have an object of
the class to which it is a friend -- from a formal
argument, as a local object in the member function's
implementation, as a data member in the member
function's class, or as a global object.

class declaring_class_name {
friend return_type class_name::function_name(arg_list);
};

CS202 7- 9

Member Function Friends

• But... A member function cannot be declared a friend
before it is first declared as a member of its own class.

• Unlike a friend class, where we can have an
incomplete declaration, friend member function
declarations (in our declaring class) cannot take place
until after the member functions have been declared
(in their own class).

• If two or more classes share the same friend class or
function, those classes share a mutual friend. This
means that more than one class gives a single friend
class or function permission to access their members.

CS202 7- 10

Nesting

• Nesting is quite different than declaring friends.
Friends provide special privileges to members;
whereas, nesting restricts the scope of a class' name
and can reduce the global namespace pollution.

• A class' definition can be placed inside the public,
protected, or private sections of another class. The
purpose of this is to hide the nested class' name
inside another class, restricting access to that name.

• It does not give either the outer class or the nested
class any special privileges to access protected or
private members of either class.

• A nested class does not allow the outer class access to
its hidden members....the name of the nested class is
hidden.

CS202 7- 11

Nesting

• If a class is defined within another class in the public
section, the nested class is available for use the same
as objects defined for the outer class.

• To define objects of a public nested class, the name of
the nested class must be qualified by the outer class'
name (i.e., outer_class::nested_class).

class outer_class {
public:

class nested_class {
public:

nested_class(); //nested class' constructor
...

};

• outer_class::nested_class object; //define an object

CS202 7- 12

Nesting

• If a class is defined within another class in the private
section, the nested class is available for use only by
the member functions of the outer class and by
friends of that class. Clients cannot create objects of
the nested class type.

• In the implementation of a nested class' member
functions, where the interface is separate from the
implementation, an additional class name and scope
resolution operator is required.

//nested class' constructor implementation
outer_class::nested_class::nested_class() {
...

}

CS202 7- 13

Nesting Example

#include "employee.h"
class tree { //binary tree class
public:
class node; //forward reference to node
tree(); //default constructor
tree(const tree &); //copy constructor
~tree(); //destructor
tree & operator = (const tree &); //assignment op
void insert(const employee &); //insert employee
void write() const; //write employee info

private:
node* root; //root node of tree
friend static void copy(node* &, const node*);
friend static void destroy(node*);
friend static tree::node* add(node*, node*);

};

• Notice that the friend declarations must occur after node is
declared to be a private class of tree. Also notice that the
definition must still qualify node as tree::node.

CS202 7- 14

Tree Implementation File
#include "tree.h"
class tree::node { //node for binary tree
public:
node() : //default constructor
left(0),
right(0) {

}
node(const employee &obj) : //one arg constructor
emp(obj),
left(0),
right(0) {

}
employee emp; //employee object
node* left; //left child node
node* right; //right child node

};

CS202 7- 15

Tree Implementation File

static void copy(tree::node* &new_node,
const tree::node* old_node) {

if(old_node) {
new_node = new tree::node(old_node->emp);
copy(new_node->left, old_node->left);
copy(new_node->right, old_node->right);

}
}
tree::tree(const tree &tree) : //copy constructor
root(0) {
copy(root, tree.root);

}

• This solution has allowed the client to create
other node classes to represent other types of
data without running into naming conflicts.

CS202 7- 16

Tree Implementation File

static void destroy(tree::node* node_ptr) {
if(node_ptr) {

destroy(node_ptr->left);
destroy(node_ptr->right);
delete node_ptr;

}
}
tree::~tree() { //destructor
destroy(root);

}

• Since these utility functions are recursive in nature,
each invocation relies on its arguments to determine
both the results of the operation and the depth of
recursion. Therefore, they are prime candidates for
being considered as non-member static functions.

CS202 7- 17

Tree Implementation File

static tree::node* add(tree::node* node_ptr,
tree::node* new_node) {

if (node_ptr) {
if(new_node->emp.get_salary() <

node_ptr->emp.get_salary())
node_ptr->left = add(node_ptr->left, new_node);

else
node_ptr->right = add(node_ptr->right, new_node);

return (node_ptr);
} else
return (new_node);

}
void tree::insert(const employee &emp) { //insert employee
node* new_node = new node(emp);
root = add(root, new_node);

}

CS202 7- 18

Static Member Functions
• By simply making the static utility functions

members, they have direct access to the node class'
public members, even if the node class is defined in
the tree class' private section. This can be done
without declaring our functions as friends.

• Static member functions do not have a this pointer,
just like non-member functions.

class tree {
•••
private:
node* root; //root node of tree
static void copy(node* &, const node*);
static void destroy(node*);
static tree::node* add(node*, node*);
static void traverse(const node*);

CS202 7- 19

Static Member Functions
tree::tree(const tree &tree) : //copy constructor
root(0) {
copy(root, tree.root);

}

//This is the implementation of a static member function
void tree::copy(node* &new_node, const node* old_node) {
if(old_node) {
new_node = new node(old_node->emp);
copy(new_node->left, old_node->left);
copy(new_node->right, old_node->right);

}
}

CS202 7- 20

Static Members
• Shared properties are represented by static class

members. Static class members can be either static
data members or static member functions. These
members can be declared in either the public,
protected, or private sections of a class interface.

• When a member function is declared as static, we are
not limited to using this function through an object of
that class. This function can be used anywhere it is
legal to use the class itself. This is because static
member functions are invoked independent of the
objects and do not contain a this pointer.

• It can be called via: class::function(args)

CS202 7- 21

Static Members
• To specify static member functions, we must declare

the functions to be static in the class definition
(interface file) using the keyword static .

• Then, define those static member functions in the
class implementation file.

• The definition of our static member functions should
look identical to the definition of non-static member
functions.

• The scope of a static member function is the same as
that of a non-static member function.

• Access to a static member function from outside the
class is the same as access to a non-static member
function and depends on whether the member is
declared as public, protected, or private.

CS202 7- 22

Static Data Members
• When we use the keyword static in the declaration a

data member, only one occurrence of that data
member exists for all instances of the class. Such data
members belong to the class and not to an individual
object and are called static data members. Static data
represents class data rather than object data.

• To specify a static data member, we must supply the
declaration inside the class interface and the
definition outside the class interface. Unlike a non-
static data member, a static data member's declaration
does not cause memory to be allocated when an object
is defined.

CS202 7- 23

Static Data Members
//static data member declaration (class interface)
class class_name {

...
static data_type static_data_member;
...

};

• A static data member's definition must be supplied
only once and is usually placed in the class
implementation file. A static data member's
definition must be preceded by the class name and
the scope resolution operator before the static data
member's identifier.

//static data member definition (class implementation)
data_type class_name::static_data_member = initial_value;

CS202 7- 24

Static Data Members
• It is important to realize that memory is allocated for

static data members when we explicitly define those
static data members, not when we declare the static
data members as part of a class definition. Think of
the static data member declarations within a class as
external references to data members defined
elsewhere.

• Clients can access a public static data member by
saying class_name::static_data_member

• It is also possible for clients to access a public static
data member once an object is defined for that class
by saying object_name.static_data_member.

CS202 7- 25

Template

Classes

Introduction to C++

CS202 7- 26

Class Templates
• Class templates allow us to apply the concept of

parametric polymorphism on a class-by-class basis.
• Their purpose is to isolate type dependencies for a

particular class of objects.
• Using class templates, we shift the burden of creating

duplicate classes to handle various combinations of
data types to the compiler.

• Type dependencies can be found by looking for those
types that cause a particular class to differ from
another class responsible for the same kind of
behavior.

CS202 7- 27

Class Templates
• With class templates, we simply write one class and

shift the burden of creating multiple instances of that
class to the compiler.

• The compiler automatically generates as many
instances of that class as is required to meet the
client's demands without unnecessary duplication.

• Specialized (and partially specialized) template
classes can be used to handle special cases that arise.

• The syntax for implementing class templates is
similar to that of defining and declaring classes
themselves. We simply preface the class definition or
declaration with the keyword template followed by a
parameterized list of type dependencies.

CS202 7- 28

Class Templates
• We begin with the keyword template followed by the

class template's formal argument list within angle
brackets (< >). This is followed by the class interface.

• The template formal argument list consists of a
comma separated list containing the identifiers for
each formal argument in the list. There must be at
least one formal argument specified.

• The scope of the formal arguments is that of the class
template itself.

template <class TYPE, TYPE VALUE>
class stack {
 //data members
 //member functions
};

template formal argument list

CS202 7- 29

Class Templates
• The template formal argument list can contain three

different kinds of arguments:

• identifiers that represent type dependencies,

• identifiers that represent values, and i

• dentifiers that represent type dependencies based on
a template class.

• A type dependency allows the identifier listed to be
substituted for the data type specified by the client at
instantiation time. More than one identifier can be
listed, each prefaced by the keyword class or
typename to indicate that this is a type dependency.

CS202 7- 30

Class Templates
• We can specify a non-type identifier in the template

formal argument list, prefaced by its data type.
• A non-type specifier allows the identifier listed to be

substituted for a value specified by the client at
instantiation time.

• template <data_type nontype_identifier>
• The data type of non-type identifiers must be an

integral type, an enumeration type, a pointer to an
object, a reference to an object, a pointer to a function,
a reference to a function, or a pointer to a member.

• They cannot be void or a floating point type.

CS202 7- 31

Class Templates
• Clients must specify the values for non-type

identifiers explicitly inside of angle brackets when
defining objects class templates.

//function template declaration
template <char non_type, class TYPE_ID>
class t_class {
public:
TYPE_ID function(int TYPE_ID);

};
//client code
t_class <'\n',int> obj;

• Using non-type formal arguments allows the client to
specify at compile time some constant expression
when defining an object, which can be used by the
class to initialize constants, determine the size of
statically allocated arrays, or any other initialization.

CS202 7- 32

Class Templates
• A class template's formal argument list may include

other template classes. This means that the type
dependency is based on an instantiation of another
abstraction. When this is the case, the identifier
representing the type dependency is preceded by the
keyword template, the specific type dependencies to
be substituted supplied in angle brackets, and the
keyword class:

• template <template <actual_args> class_id>

• When making use of this features, the template
classes being used as formal arguments must be
defined before the first use that causes an
instantiation of the class template.

CS202 7- 33

Class Templates
• Class templates declared to have default template

formal arguments can be used by the client with
fewer actual arguments.

• Default arguments may be specified for type
dependencies, non-type values, and template class
arguments.

template <class TYPE=int> class list;

• To create an instantiation of a class using all default
values for initialization, empty angle brackets must
be used by the client:

list <> object;

CS202 7- 34

Class Templates
• Member functions that are part of a class template are

themselves template functions. Therefore, we must
preface member functions defined outside of the class
with the template's header.

• Member functions can either be defined inside of a
class template as inline members or separated from
the class' definition.

template <class TYPE1, int sz,template<TYPE1> class
TYPE2>

list & list<TYPE1,sz,TYPE2>::operator = (const list &) {
//function's definition

}

CS202 7- 35

Class Templates
• Template classes can support static data members. A

static data member declared within a class template is
considered to be itself a static data member template.

• With template classes, the compiler automatically
allocates memory for the static members for each
instantiation of the class.

• Each object of a particular template class instantiation
shares the same static data members' memory. But,
objects of different template class instantiations do
not share the same static data members' memory.

CS202 7- 36

Class Templates
• Such static data members are declared within the

class definition and are defined outside the class,
possibly in the class implementation file.

template <class TYPE>
class stack {

static int data;

}
template <class TYPE>

int stack<TYPE>::data = 100;

CS202 7- 37

Class Templates
• When defining an object, clients must specify the data

types and values used for substitution with the type
and non-type dependencies.

• For example, if a class template has one type
dependency and one non-type:

• class_name <data_types, values> object;
• Only instances used by the client cause code to be

generated for any particular compilation.
• If the identifiers representing the types expected

match exactly and if the non-type template arguments
have the identical values as a previous instantiation,
the template class is not re-instantiated.

CS202 7- 38

Class Templates
• A class template will be implicitly instantiated when

it is referenced in a context that requires a completely
defined type.

• class_name <int> object causes an implicit
instantiation.

• Because objects are not formed when we say
class_name <int> * ptr; therefore, the class does not
need to be defined and an integer instantiation of this
class is not generated.

• However, when the pointer is used in a way that
requires the pointer type to be defined (such as
saying *ptr), then an instantiation will be generated at
that time.

CS202 7- 39

Class Templates
• If we define data members that are themselves

template classes, the classes are not implicitly
instantiated until those members are first used.

• In the following class, the list_object data member's
class is not implicitly instantiated until the point at
which data member is first used.

• On the down side, unless explicit instantiation
(explained in the next section) is requested, errors can
only be found by explicitly using all member
functions for each use expected. This applies to syntax
errors as well as run time errors.

CS202 7- 40

Class Templates
template <class TYPE, int sz>
class stack {
public:
stack();
int push(const TYPE & data);
TYPE & pop();
private:
//this does not instantiated the list class
list <int, 100, stack> list_object;
};

template <class TYPE, int sz>
int stack<TYPE,sz>::push(const TYPE & data) {
//if this is the first usage of the list_object member,
//then the list class is instantiated
list_object <<data;
...

CS202 7- 41

Class Templates
• Clients can cause explicit instantiations to take place

by placing the keyword template in front of a class
name when defining objects.

• Explicit instantiations can be used to improve the
performance of our compiles and links.

• It can be used to support better code generation and
faster and more predictable compile and link times.

• The drawback is that a template class can only be
explicitly instantiated once, for a particular set of
template actual arguments.

CS202 7- 42

Class Templates
• By explicitly instantiating a class we also cause all of

its member functions and static data members to also
be explicitly instantiated unless they have previously
been explicitly instantiated themselves.

• We can also explicitly instantiate just select member
functions of a class template if all member functions
are not needed.

• Explicit instantiations of a class are placed in the same
namespace where the class template is defined, which
is the same if the class were implicitly instantiated.

• But, default template arguments cannot be used in an
explicit instantiation.

CS202 7- 43

Class Templates
• And, the class template must be declared prior to

explicitly instantiating such a class.
//class template declaration
template <class TYPE, int sz> class stack;

template class stack<int,100>; //explicit instantiation

• When we use a class identifier as the second operand
of the direct or indirect member access operators (the .
and -> operators) or after the scope resolution
operator, we must precede the class' identifier with
the keyword template.

list_object->template node<int> * ptr = new node<int>;

//the following is illegal if node is a class template
list_object->node<int> * ptr = new node<int>;

CS202 7- 44

Specializations
• Supporting special cases is particularly important

when dealing with class templates.
• For some types, we may find that certain member

functions need partial specialization.
• For other types, we may find that additional data

members are required.
• To support special cases, we can implement specific

instantiations of our member functions and classes to
customize the functionality for a given set of data
types and values.

CS202 7- 45

Specializations
• To specialize a member function, we must define the

specialized version of the function. A partial
specialization specifies what it expects as the
template's actual arguments following the class
identifier. These arguments must be specified in the
order that corresponds to the formal template
argument list.

• Not all arguments must be specialized; in these
situations, the identifiers specified in the formal
template argument list may be used instead of
specific types and/or values. When all arguments are
specialized, we have an explicit specialization; in this
case, the template's formal argument list is empty
(e.g., template <>).

CS202 7- 46

Class Templates
template <class TYPE> class stack {
private:
TYPE * stack_array;
const int stack_size;
int stack_index;
public:
stack (int size=100): stack_size(size), stack_index(0) { stack_array =

new TYPE[size]; } ...
};
template <class TYPE> void stack<TYPE>::push(TYPE item) {
if (stack_index < stack_size) {
stack_array[stack_index] = item;
++stack_index; } }

//An explicit specialization
template <> void stack <char *>::push(char * item) {
if (stack_index < stack_size) {
stack_array[stack_index] = new char[strlen(item)+1];
strcpy(stack_array[stack_index], item);
++stack_index; } }

CS202 7- 47

Specializations
• Partial specialization of a class template is the

mechanism that we can use to cause one
implementation of a class to have different behavior
than another.

• This is primarily useful when a class requires
different behavior depending on the data types used
by the client.

• We must define the specialized version of the class
after the class template is defined or declared (called
the primary template).

• All members must be completely defined for that
version. This means that all member functions must
be defined for a specialized class template, even in
the case where the functionality is unchanged.

CS202 7- 48

Class Templates
//primary class template
template <class TYPE1, int sz, template<TYPE1> class TYPE2>

class list {...}
//partial specialization
template <class TYPE1, int sz, template<TYPE1> class TYPE2>

class list <TYPE1 *,sz,TYPE2> {...}
//partial specialization
template <int sz, template<TYPE1> class TYPE2>

class list<list, sz,TYPE2<list>>{...}

//partial specialization
template <template<TYPE1> class TYPE2>

class list<list,100,TYPE2<list>>{...}

//explicit specialization
template <> class list<list,100,list<list>>{...}

CS202 7- 49

Class Templates
template <class TYPE> class stack {
private:
TYPE * stack_array;
const int stack_size;
int stack_index;
public:
stack (int size=100): stack_size(size), stack_index(0) { stack_array =

new TYPE[size]; }
void push(TYPE item);
TYPE pop(void);

};
template <class TYPE> class stack <char *> {
private:
char ** stack_array;
int stack_index;
public:
stack(int size=100): stack_index(0){
stack_array = new char *[size]; } ...

CS202 7- 50

Using Separate Files
• Member functions can be defined as inline in the

same file as the class's interface using the inline
keyword or defined in a separate file.

• When we define the member functions of our class
templates in a separate implementation file, we
define the class' interface in a header file in the same
way that we would do for a non-template class.

• To do so requires that we define or declare our
member function templates with the export keyword.

• This tells the compiler that the functions can be used
in other "translation units" and may be compiled
separately

CS202 7- 51

Using Separate Files
• There are some restrictions.
• Templates defined in an unnamed namespace cannot

be exported.
• But, an exported template only needs to be declared

in the file in which it is instantiated.
• Declaring member functions of a class template as

exported means that its members can be exported and
used in other files.

• If the keyword export was not used, the definition of
the function must be within the scope of where we
define the objects. This would require that we include
the implementation file in our header file and
ultimately in client code as well (e.g., t_class.h could
include t_class.cpp)

CS202 7- 52

Using Separate Files
#include "t_class.h"
main() {
t_class<int, float> obj; //defining an object

}

//t_class.h
//declarations of the function template(s)
template<class TYPE_ID1, class TYPE_ID2>
class t_class {
public:
t_class();
t_class(const t_class &);
~t_class();
void t_member(TYPE_ID1, TYPE_ID2);

private:
TYPE_ID1 data_1;
TYPE_ID2* ptr_2;

};

CS202 7- 53

Using Separate Files
//t_class.cpp
//implementation of the member function
export template<class TYPE_ID1, class TYPE_ID2>
void t_member(TYPE_ID1 arg_1, TYPE_ID2 arg_2) {...}

export template<class TYPE_ID1, class TYPE_ID2>
t_class() {...}

export template<class TYPE_ID1, class TYPE_ID2>
t_class(const t_class & source) {...}

export template<class TYPE_ID1, class TYPE_ID2>
~t_class() {...}

CS202 7- 54

Caution
• One of the most serious drawbacks of class templates

is the danger of generating an instance of the class
that is incorrect because of type conflicts.

• Except by writing specialized template classes to take
care of such cases, there is no way to protect the client
from using the class incorrectly, causing erroneous
instances of the class to be generated.

• Be very careful when writing class templates to
ensure that all possible combinations will create
correct classes.

CS202 7- 55

Caution
• Realize that when we write a class template we may

not know the types that will be used by the client.
• Therefore, we recommend using type dependencies

only once within the class's formal argument list.
• Also, make sure to handle the use of both built-in and

pointer types.
• And, when we implement our own user defined

types, realize the importance of overloading operators
in a consistent fashion -- so that if template classes are
used with those new data types, the operators used by
the member functions will behave as expected and
will not cause syntax errors when used...

CS202 7- 56

Template

Functions

Introduction to C++

CS202 7- 57

Function Templates
• We begin with the keyword template followed by the

template's formal argument list inside of angle
brackets (< >).

• This is followed by the function's header (i.e., the
function's return type, name, and argument list).

• The signature of a function template is the function's
signature, its return type, along with the template's
formal argument list.

template <class TYPE_ID1, class TYPE_ID2>
TYPE_ID1 function_name (TYPE_ID2 formal_arg);

Template formal argument list

Function formal argument list

CS202 7- 58

Function Templates
//Prototype:
template <class TYPE1, class TYPE2>
void array_copy(TYPE1 dest[], TYPE2 source[], int size);
//A later definition:
template <class TYPE1, class TYPE2>
void array_copy(TYPE1 dest[], TYPE2 source[], int size) {
for(int i=0; i < size; ++i)
dest[i] = source[i];

}

//The client can call this function using:
int int_array1[100], int_array2[100], int_array3[20];
float real_array[100];
char char_array[20];
array_copy(int_array1, int_array2, 100);
array_copy(int_array3, int_array1, 20);
array_copy(real_array, int_array1, 100);
array_copy(int_array1, char_array, 20);

CS202 7- 59

Function Templates
• Type dependencies are deduced by the compiler by

matching the actual arguments in a call with the
formal argument in the function template formal
argument list.

• Type dependencies may also be explicitly specified in
the function call, adding flexibility in how we specify
our formal arguments.

• By explicitly specifying type dependencies, the return
type can be a type distinct from the types in the
function's formal argument list.

• function_identifier <data type list> (actual arguments)

CS202 7- 60

Function Templates
• We can explicitly specify both types, or just the first

type. However, it is not possible to explicitly specify
the type for the second type without specifying the
type for the first type as well.

array_copy<int [], int []>(int_array1, int_array2, 100);
array_copy<float []>(real_array, int_array1, 100);

• We can have the return type also be based on a type
dependency by specifying an additional type in our
template's formal argument list. Because a return type
cannot be deduced, clients must specify that type
explicitly when calling the function.

CS202 7- 61

Function Templates
template <class TYPE1, class TYPE2, class TYPE3>
TYPE1 array_copy(TYPE2 dest[], TYPE3 source[], int size) {
for(int i=0; i < size; ++i)
dest[i] = source[i];

}

//client program
char a[100];
char b[20];
cin.getline(b, 20, '\n');

//explicitly specify type dependency for only first type
int result;
result = array_copy<int> (a,b,strlen(b));

CS202 7- 62

Function Templates
• A specialized template function is a function that we

implement with the same signature as a template
function instantiation.

• The specialization must be defined after the
definition of the function template, but before the
first use of the specialization.

• The definition of the specialized template function
must be preceded by the template keyword and
followed by an empty set of angle brackets (<>) (i.e.,
template<>).

• The specialization will then be used instead of a
version that the compiler could instantiate.

CS202 7- 63

Function Templates
• The most specialized functions are those who's

arguments can be applied to a generalized function
template or some other specialization.

• When calling a function, the most specialized
function is used, if one is available that matches the
actual argument list.

• This means that specialization takes precedence
followed by generalized function templates.

• If a regular C++ function with the same name and
signature as a specialized template function is
declared before the definition of the function
template, that declaration is hidden by the template
or any specialized template function that follows.

CS202 7- 64

Function Templates
template <class TYPE1, class TYPE2> //function template
void array_copy(TYPE1 dest[], TYPE2 source[], int size) {
for(int i=0; i < size; ++i)
dest[i] = source[i];

}
template<> void array_copy(char* dest[], char* source[], int size) {
for(int i=0; i < size; ++i) {
dest[i] = new char[strlen(source[i]) + 1];
strcpy(dest[i], source[i]);

}
}
//This specialized function is called when:
char saying1[] = "Hello World";
char saying2[] = "This is a great day!";
char* s1[2] = {saying1, saying2};
char* s2[2];
array_copy(s2, s1, 2);

CS202 7- 65

Using Separate Files
• It is possible to define our function templates in a

separate implementation file and simply declare that
those functions exist in the software that uses them.
To do so requires that we define or declare our
function templates with the export keyword.

• When export is not used, the template function must
be defined in every file that implicitly or explicitly
instantiates that template function.

• Functions exported and declared to be inline are just
taken to be inline and are not exported.

//t_func.h declarations of the function template(s)

template<class TYPE_ID1, class TYPE_ID2>
void t_funct(TYPE_ID1, TYPE_ID2);
//t_func.cpp implementation of the function template(s)
export template<class TYPE_ID1, class TYPE_ID2>
void t_funct(TYPE_ID1 arg_1, TYPE_ID2 arg_2) {...}

CS202 7- 66

Using Separate Files
• So when should we use export and when should we

simply include our function template
implementations in our client code?

• When we have large functions or when their are many
type dependencies or specializations, it is often easier
to debug our code by using separate compilation
units and use the exporting process.

• On the other hand, if we have small function
templates, few type dependencies, and limited (to no)
specialized templates, then there may be no
advantage to compiling them separately.

CS202 7- 67

Function Templates
template <class TYPE> //qsort.h
inline void swap(TYPE v[], int i, int j) {
TYPE temp;
temp = v[i];
v[i] = v[j];
v[j] = temp;

}
template <class TYPE>
void qsort(TYPE v[], int left, int right) {
if (left < right) {
swap(v, left, (left+right)/2);
int last = left;
for (int i=left+1; i <= right; ++i)
if (v[i] < v[left])
swap(v, ++last, i);

swap(v, left, last);
qsort(v, left, last-1);
qsort(v, last+1, right);

} }

CS202 7- 68

Function Templates
//main.cpp
#include <iostream>
using namespace std;
#include "qsort.h"
int ia[]={46, 28, 35, 44, 15, 22, 19 };
double da[]={46.5, 28.9, 35.1, 44.6, 15.3, 22.8, 19.4};

int main() {
const int isize=sizeof(ia)/sizeof(int);
const int dsize=sizeof(da)/sizeof(double);
qsort(ia, 0, isize-1); // integer qsort
for(int i=0; i < isize; ++i)
cout << ia[i] << endl;

qsort(da, 0, dsize-1); // double qsort
for(i=0; i < dsize; ++i)
cout << da[i] << endl;

return (0);
}

CS202 7- 69

Caution
• One of the most serious drawbacks of function

templates is the danger of generating an instance of
the function that is incorrect because of type conflicts.

• Except by writing specialized template functions to
take care of such cases, there is no way to protect the
client from using the function incorrectly, causing
erroneous instances of the function to be generated.

• Be very careful when writing function templates to
ensure that all possible combinations will create
correct functions.

CS202 7- 70

Caution
• Realize that when we write a function template we

may not know the types that will be used by the
client.

• Therefore, we recommend using type dependencies
only once within the function's formal argument list.

• Also, make sure to handle the use of both built-in and
pointer types.

• This may mean that we provide overloaded
generalized function templates or template function
specializations.

