
CS202 Java-1

CS202 Introduction to Java

 Introduction to Java

• Philosophy and approach

• Similarities between C++ and Java

• Differences between C++ and Java

• Examine classes, data types, operations,

functions and their arguments, arrays,

inheritance, and dynamic binding

CS202 Java-2

CS202 Introduction to Java

 Like C++, Java is a hybrid language
• Which means the syntax is not strictly limited to OOP constructs,

although it is assumed that you want to do OOP using Java (e.g.,
exception handling is not an OOP feature)

• The benefit is that the initial programming effort should be simpler to
learn and use than many other OOP languages

 One of Java‟s primary goals is to make programming less error
prone; for example, Java meets this goal

• by performing bounds checking

• by not having explicit pointers

• by providing automatic garbage collection

 Much of the foundation of C and C++ has been taken as a
foundation in Java, with modifications. This is good news for us!
• On the other hand, unlike C++, Java does not maintain compatibility

with the other languages, so you will find larger variations when
moving from C or C++ to Java.

CS202 Java-3

CS202 Introduction to Java

 In Java, we treat everything as an object
• We can have objects of primitive types (like int, float, char)

or objects of class types.

• Objects of primitive types can be created in the same way
that we do in C++ (e.g., int object;)

• Objects of class types cannot be created this way.
• First, we must create identifiers for objects that we desire –

these are actually references to objects

• Then, we must allocate memory on the heap for instances

• So, when we say: List obj; we have created only a
reference not an object. If you want to send a message to
obj (i.e., call a member function), you will get an error
because obj isn‟t actually pointing to anything: List obj =
new List();

• So, for a string object we could say:
• String s = “CS202!”; or

• String s = new String(“CS202!”);

CS202 Java-4

CS202 Introduction to Java

 When we create a reference, we want to connect it to a
new object

 String s = new String (“CS202!”); //or

 List obj = new List(); //default constructor…
• We do this with the new keyword

• This allocates memory for a new string and provides an
initial value for the character string

• And, like in C++ this causes the constructor for the class
type to be implicitly invoked

• New places the objects on the heap (which is not as flexible
as allowing objects to be allocoated on the stack)

• It is not possible to request local objects of a class or to
pass objects of a class by value to a function (or as the
return value). This is because we are always working with a
reference to the object – which is what gets passed (by
value)

CS202 Java-5

Classes in Java

 Everything we do in Java is part of a class
• This means that none of our functions can be “global” like they can be

in C or C++

 Classes in Java specify types, as they do in C++ and allow us
to create abstractions
• Classes must be specified as public, or not.

• Only public classes are available for the outside world to create
objects of

• If the keyword public doesn‟t precede a class, then it is “friendly” and
only classes from within this file or package (a group of files) can
create objects Every package (or file to begin with) has a public class

 Inside of a class, Java supports public, protected, and private
access (or nothing – which means “friendly” access)
• But unlike C++, it requires that they be specified in front of each

member rather than specifying categories!

• This means that everything has some kind of access specified for it.

CS202 Java-6

Class Access Visibility

 Unlike C++, a class can be specified as public, or not. A public
class within a library specifies which class(es) are available to a
client programmer
• The public keyword just has to be placed somewhere before the

opening brace ({) of the class body

• There can be only one public class per compilation unit

• They must be the same name as the file

• Without the public qualifier, a class becomes “friendly”, available to
the other classes in the library to which it belongs

• Classes cannot be private or protected.

• If you don‟t want anyone access to a class, then make the
constructors private!

CS202 Java-7

Members of a Class

 Like C++, classes in Java can have member functions (called
methods) and data members
• These look the same as in C++ except for the access control specifier and

• The implementation of the member functions is provided (in most cases) in the
class itself – not elsewhere

 Each member can be specified as public, private, or protected.

 If a member has no access control (public, private or protected), they
are treated as “friendly”
• the default means “friendly”: all other classes in the current package have

access but all classes outside of this package are private

• This allows us to make data members and member functions semi “global” – the
scope is somewhat broader than C++ static global but restricted from actually
be global in nature.

• It allows us to create a library (a package) and allow related classes to access
members directly

• This helps us to organize classes together in a meaningful way

CS202 Java-8

Class Access Specifiers

 What is the meaning in Java of public, private, and protected?

 As is expected, public means that the member following is
public to everyone using this library

 Private is not available – only other methods within the class
can access that member
• Helper methods should be private

 Protected members are available within this class and a derived
class (same as C++)

 Recommendation: limit your use of the default friendly access
• (Please note, a derived class may not be able to access its parent‟s

“friendly” members if they are not in the same package! This is
because it is possible to inherit from a class that is not in the same
package.)

Member Accessibility

External access public protected (default) private

package

Same package yes yes yes no

Derived class in yes yes no no

another package (inheritance

only)

User code yes no no no

CS202 Java-10

Similarities to C++

 You will find much of the syntax similar to C++

• (primitive types, compound blocks, loops (all), built-in

operators (most), switch, if-else),

• static data members,

• casting for primitive types,

• scope of your loop control variables in a for,

• allowing definitions of a variable to occur where you

need them,

• use of the ++ and – operators,

• Break and continue

CS202 Java-11

Similarities to C++

 Other similarities between Java and C++:

• Two types of comments (// and /* */)

• Support for function overloading (unlike C)

• Static member functions (equivalent to C‟s global

functions)

• Global functions are not permitted in Java

• They don‟t have a this pointer

• They can‟t call a non-static member function without an

object of the class

• Don‟t overuse them if you are doing OOP!

CS202 Java-12

CS202 Introduction to Java

 Minor Differences

• You cannot define the same named variable in different –

inner vs outer blocks (unlike C++ allows identifiers in an inner

block to hide those in an outer scope

• Primitive types in Java are guaranteed to have an initial value

(i.e., not garbage!)

• Java determines the size of each primitive type (they don‟t

change from one machine architecture to another – unlike C

and C++)

• All numeric types are signed – they do not support the

unsigned type.

• No semicolon is required at the end of a class definition

CS202 Java-13

CS202 Introduction to Java

 Minor Differences

• No const – instead we use “final” to represent memory that cannot
be changed

• final int I = 10; //a constant value

• final list object = new list(); //reference is constant – so it can‟t
reference another object! However, the object itself can be modified

• This means that class objects in fact can‟t be constant!

• Final doesn‟t require that the value of the variable/object be known
at compile time final list obj; //says it is a “blank” final
reference

• Blank finals must be initialized in the constructor where the blank
final is a member

• Arguments can also be “final” by placing the keyword in the
argument list – which means the method cannot change the
argument reference

CS202 Java-14

CS202 Introduction to Java

 Minor Differences
• Although data members are initialized automatically (and so are

arrays, variables of primitive types used in a function (i.e., local
variables) are not automatically initialized (e.g., int var;)

• You are responsible for assigning an appropriate value to your
local variables

• If you forget, you will get an error message indicating that the
variable may not be initialized.

• Also…ints are not bools in Java, you can‟t use an int as part of a
conditional expression like we are used to. So saying (while (x=y))
can‟t happen!

• Because the result of the expression is not a boolean and the compiler
expects a boolean and won‟t convert from an int

• So, unlike C++ you will get an error if you make this mistake!

CS202 Java-15

CS202 Introduction to Java

 Minor Differences

• Remember the comma operator in C++?

• In Java it can only be used in for loops to allow for multiple
increment steps

• There is no operator overloading

• Which means you cannot compare strings with > >= etc.

• You cannot assign objects to do a complete copy (=)

• You cannot read and write using >> or <<

• You cannot cast class types!

• To convert you must use special methods (i.e., function calls)

• But, you can assign data members values – directly:

class list {

int I = 100;

video v = new video();

CS202 Java-16

Java Identifiers

 A Java identifier must start with a letter or
underscore or dollar sign, and be followed
by zero or more letters (A-Z, a-z), digits (0-
9), underscores, or dollar signs.

VALID

age_of_dog taxRateY2K

HourlyEmployee ageOfDog

NOT VALID (Why?)

age# 2000TaxRate Age-Of-Dog

CS202 Java-17

What is an Identifier?

 An identifier names a class, a method
(subprogram), a field (a variable or a
named constant), or a package in a Java
application

 Java is a case-sensitive language;
uppercase and lowercase letters are
different

 Using meaningful identifiers is a good
programming practice

CS202 Java-18

51 Java Reserved Words

abstract boolean break byte case

catch char class const continue

default do double else extends

false final finally float for

goto if implements import instanceof

int interface long native new

null package private protected public

return short static strictfp super

switch synchronized this throw throws

transient true try void volatile

while
Reserved words cannot be used as identifiers.

CS202 Java-19

Simplest Java class

class DoNothing

{

}

HEADING

BODY

CS202 Java-20

Java Data Types

reference

array interface class

primitive

integral boolean

byte char short int long

floating point

float double

CS202 Java-21

What’s in a class heading?

public class PrintName

ACCESS MODIFIER class IDENTIFIER

CS202 Java-22

Variable Declaration

Modifiers TypeName Identifier , Identifier . . . ;

Constant Declaration

Modifiers final TypeName Identifier = LiteralValue;

Syntax for Declarations

CS202 Java-23

Operators?

 Almost all operators work only with primitives (not class types)
• And the operators are those that you know (except there is no sizeof operator)

 =, == and != work on all objects of any type (even class types!!!!)
• But, if you use them with a reference to an object – you are just manipulating

the references.

• = causes two object references to point to the same object (feels like shallow
copy!)

• == and != compares two references to see if they are pointing to the same
object (or not)!

• And, since there is no operator overloading – we can‟t change this to do a deep
copy!

• This is because Java allows us to use references truly as aliases. You can
cause a deep copy to happen simply (?) by coping each of the members directly
that are part of a class or calling a member function to do this

 The String class also supports + and +=

CS202 Java-24

Operators? Equals() method

 If you want to do a deep comparison

• you “must” (can?) call a method (equals())

that exists for all objects of class type.

• Of course, the default behavior of equals() is

to just compare the references

• So you “must” (should) override the equals()

so that it actually compares the memory

contents of the object

• I recommend you always override this!

CS202 Java-25

What about Arrays?

 Arrays are available in Java,
• But unlike C and C++, one of Java‟s primary goals is

safety.

• So, a Java array is guaranteed to be initialized and it
cannot be accessed outside of its range

• Range checking requires a small amount of memory
overhead on each array as well as index verification at
run time.

• And, as shown on the previous slide, argument
passing with arrays are considerably different (look
where the [] go!)

CS202 Java-26

Arrays of Objects

 When you create an array of objects
• You are really creating an array of references

• Which are automatically initialized to null

• Java interprets a null as being a reference which isn‟t
pointing to an object

• You must assign an object to each reference before
you use it!

• And, if you try to use a reference while it is still null,
you will get a run-time error reported

• Plus, Java provides for range checking – so that
arrays cannot be accessed outside of range

CS202 Java-27

Arrays are defined…

 int [] array_name; int array_name [];

 You don‟t specify the size of an array because no space is
allocated for the elements at this point

 All we have is a reference to an array
• (like in C++ where the name of the array is the starting address of the

first element, now in Java the name of the array is a reference)

 To allocate memory we must specify an initialization expression
(which unlike C++ can happen anywhere in your code
• int [] array_name = {1,2,3,4,5}; //starting with element zero

• A reference can then be used to also access this array:

• int [] reference;

• reference = array_name;

 We can also allocate arrays on the heap
• reference = new int [size];

 All arrays have an implicit member that specifies how many
elements there are (its length)

CS202 Java-28

Arrays of class type…

 All arrays of class types must be defined using new (with
an exception of the String class….)
• list [] array = new list[size];

 But, such arrays are actually arrays of references to our
objects – not instances!
• (like an array of pointers in C++)

 If you forget to allocate objects for the elements, you will
get an exception

 List [] array = new list[] {new list(1), new list (2), new
list(3)};

 Or, do this explicitly with a loop

 Unlike C and C++, Java allows the return type of
functions to be an array

Arrays

 Arrays are data structures consisting of related data items

all of the same type

 An array type is a reference type; contiguous memory

locations are allocated for an array, beginning at the base

address

 The base address is stored in the array variable

 A particular element in the array is accessed by using the

array name together with the position of the desired

element in square brackets; the position is called the index

or subscript

double[] salesAmt;

salesAmt = new double[6];

salesAmt [0]

salesAmt [1]

salesAmt [2]

salesAmt [3]

salesAmt [4]

salesAmt [5]

salesAmt

Array Definitions

 Array A collection of homogenous elements, given a single

name

 Length A variable associated with the array that contains the

number of locations allocated to the array

 Subscript (or index) A variable or constant used to access a

position in the array: The first array element always has

subscript 0, the second has subscript 1, and the last has

subscript length-1

 When allocated, the elements are automatically initialized to the

default value of the data type: 0 for primitive numeric types,
false for boolean types, or null for references types.

Another Example

 Declare and instantiate an array called temps to

hold 5 individual double values.

double[] temps = new double[5];

// declares and allocates memory

temps[0] temps[1] temps[2] temps[3] temps[4]

number of elements in the array

indexes or subscripts

0.0 0.0 0.0 0.0 0.0

DataType[] ArrayName;

ArrayName = new DataType [IntExpression];

Declaring and Allocating an Array

// declares array

// allocates array

 Operator new is used to allocate the specified number of

memory locations needed for array DataType

SYNTAX FORMS

DataType[] ArrayName = new DataType [IntExpression];

Assigning values to array elements

double[] temps = new double[5]; // Creates array

int m = 4;

temps[2] = 98.6;

temps[3] = 101.2;

temps[0] = 99.4;

temps[m] = temps[3] / 2.0;

temps[1] = temps[3] - 1.2;

// What value is assigned?

temps[0] temps[1] temps[2] temps[3] temps[4]

99.4 ? 98.6 101.2 50.6

What values are assigned?

double[] temps = new double[5]; // Allocates

array

int m;

for (m = 0; m < temps.length; m++)

temps[m] = 100.0 + m * 0.2;

What is length?

temps[0] temps[1] temps[2] temps[3] temps[4]

? ? ? ? ?

Now what values are printed?

final int ARRAY_SIZE = 5; // Named constant

double[] temps;

temps = new double[ARRAY_SIZE];

int m;

.

for (m = temps.length-1; m >= 0; m--)

System.out.println(“temps[“ + m + “] = ” + temps[m]);

temps[0] temps[1] temps[2] temps[3] temps[4]

100.0 100.2 100.4 100.6 100.8

Initializer List

int[] ages = {40, 13, 20, 19, 36};

for (int i = 0; i < ages.length; i++)

System.out.println(“ages[“ + i + “] = ” +

ages[i]);

ages[0] ages[1] ages[2] ages[3] ages[4]

40 13 20 19 36

Passing Arrays as Arguments

 In Java an array is a reference type. The

address of the first item in the array (the base

address) is passed to a method with an array

parameter

 The name of the array is a reference variable

that contains the base address of the array

elements

 The array name dot length returns the number

of locations allocated

public static double average(int[] grades)

// Calculates and returns the average grade in

an

// array of grades.

// Assumption: All array slots have valid data.

{

int total = 0;

for (int i = 0; i < grades.length; i++)

total = total + grades[i];

return (double) total / (double)

grades.length;

}

Passing an Array as Arguments

Memory allocated for array

temp[0] temp[1] temp[2] temp[3] temp[4] temp[30]

50 65 70 62 68

int[] temps = new int[31];

// Array holds 31 temperatures

Parallel arrays

 Parallel arrays Two or more arrays that have the same

index range, and whose elements contain related

information, possibly of different data types

final int SIZE = 50;

int[] idNumber = new int[SIZE];

float[] hourlyWage = new float[SIZE];

final int SIZE = 50 ;

int [] idNumber = new int [SIZE] ; // parallel arrays

hold

float [] hourlyWage = new float [SIZE] ; // related

information

idNumber [0] 4562 hourlyWage [0] 9.68

idNumber [1] 1235 hourlyWage [1] 45.75

idNumber [2] 6278 hourlyWage [2] 12.71

. . . .

. . . .

. . . .

idNumber [48] 8754 hourlyWage [48] 67.96

idNumber [49] 2460 hourlyWage [49] 8.97

idNumber
hourlyWage

CS202 Java-43

Partial Array Processing

 length is the number of slots assigned to

the array

 What if the array doesn’t have valid data

in each of these slots?

 Keep a counter of how many slots have

valid data and use this counter when

processing the array

More about Array Indexes

 Array indexes can be any integral expression of type char,

short, byte, or int

 It is the programmer‟s responsibility to make sure that an

array index does not go out of bounds. The index must be

within the range 0 through the array‟s length minus 1

 Using an index value outside this range throws an
ArrayIndexOutOfBoundsException; prevent this error by

using public instance variable length

String[] groceryItems = new String[10];

[0] “cat food”

[1] “rice”

. .

. .

. .

[8] “spinach”

[9] “butter”

groceryItems

String[] groceryItems = new String[10];

[0] “cat food”

[1] “rice”

. .

. .

. .

[8] “spinach”

[9] “butter”

groceryItems Expression Class/Type

groceryItems Array

groceryItems[0] String

groceryItems[0].charAt(0) char

Date[] bigEvents = new Date[10];

[0]

[1]

.

.

.

[9]

bigEvents Expression Class/Type

bigEvents Array

bigEvents[0] Date

bigEvents[0].month String

bigEvents[0].day int

bigEvents[0].year int

bigEvents[0].month.charAt(0) char

Date

.

.

.

Date

.

.

.

Date

.

.

.

CS202 Java-48

Garbage Collection and Objects

 Another difference with Java is that

• You never need to destroy an object!!!!!!!

• Java simplifies the need to manage the lifetime of our

objects and manages the cleanup work implicitly!

• When you create an object using new, it actually

exists past the end of the block in which it was defined

(although the reference to it ends)

• This is because Java has a garbage collector

CS202 Java-49

Garbage Collection and Objects

 Remember the problems of returning local objects in C++
where the lifetime has ended?
• We don‟t have this type of problem in Java because objects created

with new exist for as long as we need them and we don‟t have to
worry about destroying them

• Java has a garbage collector, which looks at all of the objects created
with new and determines which ones are not being referenced
anymore – then it can release the memory for those objects at that
point so the memory can be used for new objects.

• Please keep in mind that although the garbage collector can release
the memory when no more references point to the memory, it may not
if the memory is not needed elsewhere

• On the other hand, this means that you never need to worry about
reclaiming memory yourself

• Simply create objects, and when you no longer need them they will go
away by themselves whenever necessary

• There are no memory leaks!

CS202 Java-50

Garbage Collectors: Efficiency?

 Why doesn‟t C++ have garbage collection?
• There is price to it: run time overhead

 C++ allows objects of a class to be created on the stack, not available
in Java for class objects
• These are automatically cleaned up

• Providing the most efficient way of allocating storage

 Allocating memory on the heap using new is more expensive
• We have done it in 163/202 to get experience

• But, in fact it shouldn‟t be exclusively used!

• And, it requires that we allocate and deallocate our memory in C++

• But, in Java, this memory need not be deallocated

 The main issue with garbage collection is that you never really known
when it is going to start up or how long it will take
• This means there is an inconsistency in the rate of execution

• Which can be important for some real-time software problems

CS202 Java-51

Clarifying References

 Let‟s clarify our creation of objects in Java
• Instances of a primitive type (int, float, etc.) are not

references and don‟t need to be created using new

• In fact, we can‟t create them using new (except for the
case of an array of primitive types)

• When we create an object of a user defined type (i.e.,
a class type) we are in fact creating references which
means new must be used to actually allocate memory
for the instance of the type expected

• We can then use references to an object using the (.)
between the object reference and the member name:
• Objectreference.member

CS202 Java-52

Types in Java

 Just like C++, we use the keyword class to mean that we are
creating a new type
• class Mytype {…} creates a new data type

 And, creating objects of this type is done using new:
• Mytype object = new Mytype();

 Like C++, our classes have data members (fields) and member
functions (methods)

 Just like objects outside of a class, data members can be of a
primitive type or can be references to another user defined
class type (requiring the use of new to actually create an
instance of them)

 Unlike C++, primitive types can be initialized directly at the point
of definition in the class and references can be initialized to
connect to objects in the class as well

CS202 Java-53

Primitive Wrapper Classes

 To get a primitive type on the heap,

• you have to use a wrapper class:

• (Boolean, Character, Byte, Short, Integer,

Long, Float, Double, Void)

• Character Reference = new Character(„z‟);

• But, since there is no operator overloading

• We must use methods instead of operators when

working with them

CS202 Java-54

Three Categories of Data

 Instance data is the internal representation of a
specific object. It records the object’s state.

 Class data is accessible to all objects of a class.

 Local data is specific to a given call of a method.

CS202 Java-55

Categories of Responsibilities

 Constructor An operation that creates a new instance

of a class

 Copy constructor An operation that creates a new

instance by copying an existing instance, possibly

altering its state in the process

 Transformer An operation that changes the state of an

object

 Observer An operation that allows us to observe the

state of an object without changing it

 Iterator An operation that allows us to process all the

components of an object one at a time

CS202 Java-56

Instance Data

Instance data is the internal representation of a specific
object.

public class Name
{
// Instance variables

String first;

String middle;

String last;

. . .

}

CS202 Java-57

Class Data

 Class data is accessible to all objects of a class.

 Fields declared as static belong to the class rather than

to a specific instance.

public class Name

{

// Class constant

static final String PUNCT = “, ”;

. . .

}

CS202 Java-58

Local Data

 Local data is specific to a given call of a method.

 Memory for this data is allocated when the

method is called and deallocated when the

method returns.

public int compareTo(Name otherName)

{

int result; // Local variable

. . .

return result;

}

CS202 Java-59

Functions (ahhh Methods!)

 Functions in Java are called methods (OOP terminology) and can only
be defined as part of a class
• Luckily, they have the same format we are used to – with return types, argument

lists, bodies and return abilities

 Formal arguments have a data type followed by the argument‟s
identifier
• Unlike C++, you do not get to select whether they are passed by value or by

reference.

• Technically, you could argue that everything is passed by value.

• Primitive types are passed by value on the stack (you have no choice) and

• Object references are also passed by value on the stack (keep in mind this is
the reference not the object), which “feels” like pass by reference

• Again, for user defined types, they are actually references automatically (no –
you don‟t put the & or the * in Java in your argument lists!)

CS202 Java-60

Functions (ahhh Methods!)

 For example:
int my_func(String s) {

return s.length();

}

• The length method returns the number of characters in the
string

• s is actually a reference to the calling routine‟s string object

• void is available in Java as it is in C++ to return nothing from
the function

• While object references are placed on the stack when a
function is called – the objects to which they refer are not
(never). There is no support of a “pass by value” concept
with objects of a class.

• Therefore, we will never perform a deep copy as part of a
function call

CS202 Java-61

Method Declaration

Modifiers void Identifier (ParameterList)

{

Statement

. . .

}

Method Declaration Syntax

CS202 Java-62

Methods

 Method heading and block

void setName(String arg1, String arg2)

{

first = arg1;

second = arg2;

}

 Method call (invocation)

Name myName;

myName.setName(“Nell”, “Dale”);

CS202 Java-63

Some Definitions

 Instance field A field that exists in ever
instance of a class
String first;

String second;

 Instances method A method that exists in
every instance of a class
void setName(String arg1, String arg2);

myName.setName(“Chip”, “Weems”);

String yourName;

yourName.setName(“Mark”, “Headington”);

CS202 Java-64

More Definitions

 Class method A method that belongs to a class

rather than it object instances; has modifier

static
Date.setDefaultFormat(Date.MONTH_DAY_YEAR);

 Class field A field that belongs to a class rather

than its object instances; has modifier static

Will cover class fields in later chapters

CS202 Java-65

More Definitions

 Constructor method Special method with
the same name as the class that is used
with new when a class is instantiated
public Name(String frst, String lst)

{

first = frst;

last = lst;

}

Name name;

name = new Name(“John”, “Dewey”);

Note: argument cannot be the same as field

CS202 Java-66

Void Methods

 Void method Does not return a value

System.out.print(“Hello”);

System.out.println(“Good bye”);

name.setName(“Porky”, “Pig”);

object method arguments

CS202 Java-67

Value-Returning Methods

 Value-returning method Returns a value to

the calling program
String first; String last;

Name name;

System.out.print(“Enter first name: “);

first = inData.readLine();

System.out.print(“Enter last name: “);

last = inData.readLine();

name.setName(first, last);

CS202 Java-68

Value-returning example

public String firstLastFormat()

{

return first + “ “ + last;

}

System.out.print(name.firstLastFormat());

object method object method

Argument to print method is string returned from
firstLastFormat method

CS202 Java-69

The This “Reference”

 When memory for an object is allocated, a
reference to that object is created and called
the “this” reference

 Like C++, it is the first implicit argument to
each method

 Unlike C++, it is not a pointer but rather a
reference!
• list func() { return this; }

• Which means we do not need to dereference it

• It allows member concatenation:

• Obj.func().func().func(); //etc.

CS202 Java-70

Constructors

 Like C++, constructors are implicitly invoked

 They allow us to initialize data members to other values than their zero
equivalent

 Note, unlike C++ data members are automatically initialized prior to a
constructor invokation (to their zero equivalent) --- even if you provide a
constructor

 The default constructor has no arguments

 If you write a constructor with arguments, then the default constructor is not
provided automatically and you cannot create objects without arguments
specified

class list {
list () { ///blablabla}

list (int arg) { //blablabla }

//we create objects via;
list l = new list(10); //uses the int arg version

 Yes, you can overload multiple constructors just so the argument lists are
unique

CS202 Java-71

Differences with Constructors

 When you write multiple constructors, sometimes we like
to have the contructors call another function to actually
get the work done (to minimize duplication of code)

 In C++ we do this by writing named member functions

 In Java we do this by having one constructor call another
constructor with a special usage of the this pointer!

• This can only happen once within a constructor

• It must be the first thing a constructor does

list (int i) { //first constructor which does the real work}

list (int i, int j) {this(i); //calls the constructor with an int }

CS202 Java-72

No Destructors!?

 Since Java provides garbage collection
• There are no destructors

• But…have you ever had a destructor do something other
than memory deallocation?

• If you need this – you must write a named function and call
it explicitly!! (maybe called : void cleanup()?)

 If for some reason you do need some kind of garbage
collection done that the garbage collector doesn‟t know
about (like C or C++ memory allocation is being used-not
recommended!)
• You can write a method called “finalize()” which the garbage

collector will implicitly call if it is provided prior to releasing
memory –

• and then on the next garbage collection pass it will reclaim
the object‟s memory

CS202 Java-73

finalize() is not a destructor!

 But! This is not a destructor.

 Java objects do not always get garbage collected –

 The garbage collector is only run after all references to an
object have been released and memory is insufficient (or
running low). It may just automatically return the memory
to the operator system after execution!
• So, use finalize() for releasing memory that the garbage

collector cannot predict, but you may need to explicitly
cause the garbage collector to be exeucted: System.gc()

 Bottom line, finalize() cannot be relied upon.

 Even functions that look like they should cause finalize to
be used are problematic and at times buggy. Its
invokation is not guaranteed!

CS202 Java-74

Inheritance

 Since one of our primary goals with Java is to

perform OOP

• We always create inheritance hierarchies!

• In fact, every class, unless otherwise requested, is

derived from Java‟s standard root class Object

• To derive a class from a base class in Java means

that you are “extending” it

class list { //members}

public class ordered_list extends list {

//more members – replacing old, adding new }

CS202 Java-75

Accessing Base Class Members

 If a derived class has the same named
member as the base class
• It can be accessed by using the super keyword.

• If we have a “cleanup” type function to be executed at
the end of an object‟s lifetime, it would need to use the
super keyword to invoke it‟s base class‟s (I
recommend that you first cleanup your derived class
prior to invoking the base class‟ cleanup

public class ordered_list extends list {
public void member() {

super.member(); //calls base class member

}

}

CS202 Java-76

Is there Hiding? Yes and No

 Hiding exists like it does for C++ for data

members (fields)

 But, a derived class member function with the

same name as a base class member function will

not hide the base class‟ member!

 This means that funciton overloading in Java

works between classes in a hierarchy

• Which is what we “wished” happened in C++!

CS202 Java-77

Constructors in Hierarchies

 Default constructors for base classes are implicitly invoked from
the derived class‟ constructor
• As with C++, from the base class “outward”

 However, when we have constructors with arguments, this gets
more complex (but of course is handled differently than C++!)
• In Java, we must explicitly write the calls to the base class constructor

using the super keyword, followed by the appropriate arguments:

• This must be the first thing that is done in your derived class
constructor

• Luckily, Java will complain if you don‟t do this! Unlike C++.

public class ordered_list extends list {
ordered_list(int i) {

super(i); //causes base class constructor with an int to be called

CS202 Java-78

If you have a finalize()…

 Within a hierarchy, if you need finalize()
in a derived class and base class
• It is important to remember to call the base

class‟ version of finalize()

• Otherwise, the base class finalization will not
happen!

//In the derived class

protected void finalize() {

super.finalize();

}

CS202 Java-79

A Java Application

 Must contain a method called main()

 Execution always begins with the first
statement in method main()

 Any other methods in your program are

subprograms and are not executed until

they are sent a message

CS202 Java-80

Where do we get started? main

 Unlike C++,
• stand alone programs must have at least one class

• it must have the same name as the file and

• within that class must be a method called main!

public static void main(String[] args)

 The public keyword means that the member function (method) is
available to the outside world

 The static keyword means that this is a static member function which
does not need a object of its class inorder to be invoked

 The argument is required (whether or not it is used) which holds the
command line arguments.

 In C++ the command line arguments are optional as part of main
• int main (int argc, char * argv[]);

• Where argv is a “ragged array” in C and C++ (an array of arrays of characters)

• In Java args is an array of string object references

CS202 Java-81

Main in which class?

 Now that we have a hierarchy, where

does main go?

 Well, you can put it in each class so that

you can independently test

 The appropriate main is invoked based

on which class name is used on the

command line

I

CS202 Java-82

Final Methods – a special case

 Final Methods?
• Means that any inheriting class cannot change its

meaning

• It means that the method cannot be overridden

• Allows for any calls to this method to be inline for
better efficiency

• Turns off dynamic binding

• All private members are implicitly “final”
• Because if you can‟t access a private method so you

couldn‟t override it!

public final void func() { //body of the function}

CS202 Java-83

CS202 Introduction to Java

 Final Classes?

• Means that no classes can be derived from this

class (or inherit from this class)

• For security reasons you do not want any

subclassing…

• Or, you want to make it as efficient as possible

• Therefore, all methods are implicitly final

CS202 Java-84

More Definitions

 Override When an instance method in a
derived class has the same form of heading as
an instance method in its superclass, the
method in the derived class overrides
(redefines) the method in the superclass

 Hide When a field in a derived class has the
same name as one in its superclass or a class
method has the same form of heading as a
class method in its superclass, the field or
class hide the corresponding component in the
superclass

Say again?

CS202 Java-85

An example

public class Example

{

char letter;

public static String lineIs();

…

}

public class ExtExample extends Example

{

char letter;

public static String lineIs();

…

}

Hiding or overriding?

CS202 Java-86

Another Example

public class Example

{

char letter;

public String lineIs();

…

}

public class ExtExample extends Example

{

String letter;

public String lineIs();

…

}

Hiding or overriding?

CS202 Java-87

Class Syntax

Derived Class Syntax

ClassModifier class Identifier extends ClassName

{

ClassDeclaration

. . .

}

Overriding vs. Hiding

 We override an instance method of a superclass by

providing an instance method in a derived class with the

same form of heading

 We hide a data field of a superclass by providing a field

in a derived class with the same name

Polymorphism

 Polymorphism is the ability of a language to

have duplicate method names in an

inheritance hierarchy and to decide which

method is appropriate to call depending on the

class of the object to which the method is

applied.

CS202 Java-90

Dynamic Binding

 All methods are bound in Java using run-
time dynamic binding
• Unless the method (or class) is “final”

• So, we can use upcasting as we did in C++ to
produce desired dynamic binding effects:

list obj = new ordered_list();

• Here, an ordered list object is created and the
reference is assigned to a list reference

obj.display(); //won‟t call List‟s display but rather
ordered_lists!

CS202 Java-91

Dynamic Binding

 Java, like C++, has some rules to get dynamic
binding to work for us
• The methods must be defined in the base class (to

which we use a reference to) and they must be
anything BUT private (public, protected, or “friendly”
are all ok)

• We must invoke the function thru a reference to the
base class, but have it refer to an object of the proper
class to which we are interested

• The argument lists, function names, and return types
must be identical

• The only difference is we don‟t need the “virtual”
keyword (that was C++)

CS202 Java-92

Overriding or Overloading?

 When you derive from a base class and

implement a method that is in the base

class

• If the arguments and return type are the same

you are overriding it

• If the arguments are different, you are

overloading!

• This is very hard to debug since no other

mechanism establishes dynamic binding

CS202 Java-93

Abstract Base Classes

 Abstract base classes can help with this issue

• Because if the methods from them are ever directly called
you will find out immediately that something is wrong

• The intent, as with C++, is to create a common interface

• So that the derived classes can express their uniqueness!

• All derived class methods that match the signature of the
base class will be called using dynamic binding

• This is created by making one or more abstract methods in
the base class:

abstract void func(); //with no body

CS202 Java-94

Abstract Base Classes

 If a class has just one of these abstract methods, the
class must be qualified as “abstract”, otherwise you get
an error:

abstract class list{

public abstract void display();

}

 To inherit from an abstract class (and you want objects to
exist of your class),

• you must implement all of the functions that are abstract in
the base class

 An abstract class without any abstract methods

• means that you just can‟t create any objects of that class!

CS202 Java-95

Interfaces in Java

 The interface keyword creates a completely abstract class
• One that provides for no implementation

• Makes it “pure”

• It allows us to specify the method names, argumetn lists, and
return types – but no bodies

• It can include data members, but they are always implicitly static
and final

• It provides a “form” rather than an implemented class

• Use the “interface” keyword instead of the class keyword

• All of the members are automatically “public” even if you don‟t use
the keyword. They are never “friendly” and cannot be protected or
private!

CS202 Java-96

“Implements” in Java

 The implements keyword allows classes to
“derive” from a completely abstract class or to
“implement” the code for a pure abstract class

 The implementation becomes an ordinary
class which can be extended in the regular
way

 Except that members must all be defined as
public
interface list { void display(); }

class ordered_list implements list {
Public void display();}

CS202 Java-97

Multiple Inheritance!

 Since an interface has no memory and has not
implementation,
• There is nothing that prevents us from having classes

implement more than one interface!

• If you inherit from a non-interface, you can inherit from
only one

• The “extended” class comes first and the
implementation of interfaces must come second, in a
class doing both:

class ordered_list extends list

implements one, two, three { ….}

CS202 Java-98

What to use? So many choices!

 Even if you are not using multiple inheritance

• Interfaces are preferable to abstract classes which in

turn are preferable to concrete classes when thinking

about a common base class

• As we discussed in C++, if you are doing dynamic

binding, it is best if all methods are dynamically bound

– otherwise you will get stuck with having to know the

data type you are dealing with at run time (RTTI)

• An interface ensures that this is the case

Shadowing

 Shadowing A scope rule specifying that a local

identifier declaration blocks access to an identifier

declared with the same name outside the block

containing the local declaration

 A shadowed class member can be accessed by using

keyword this together with the class member

CS202 Java-100

Input and Output

 To perform I/O in Java requires invoking a

method as part of the System class

• out is a static PrintStream object

• Because it is static, you do not need to reference it

through an object of class System (but can reference it

via the class name instead)

• The println method displays the information followed

by a newline

• System.out.println(“stuff”);

CS202 Java-101

Reference Types: A Review

title

book

String title ;

String book ;

title = “Problem Solving”;

book = title ;

2003

“Problem Solving”

Memory Location 2003

2003

 A variable of reference type stores the address

of the location where the object can be found.

Class SavingsAccount

getNumber

getBalance

.

.

.

withdraw

getName

deposit

SavingsAccount

Private data:

number 423511

name 2003

balance 537.65

activation 3000

“Nell Dale”

month

day

year

13

“June”

2003

2003

3000

Shallow Copy

.

.

.

SavingsAccount Private data:

number 423511

name 2003

balance 537.65

activation 3000

.

.

.

SavingsAccount Private data:

number 423511

name 2003

balance 537.65

activation 3000

“Nell Dale”

month

day

year

13

“June”

2003

2003

3000

shallow copy

Shallow Copy vs. Deep Copy

 Shallow copy All class data fields,

including references are copied; any

objects referred to by data fields are not

copied

 Deep copy All class data fields are

copied, and all objects referred to are

copied

What’s the difference?

 A shallow copy shares nested objects

with the original class object

 A deep copy makes its own copy of

nested objects at different locations

than in the original class object

CS202 Java-106

Separate deep copy

deep copy

.

.

.

SavingsAccount

Private data:

number 423511

name 2003

balance 537.65

activation 3000

“Nell Dale”

month

day

year

13

“June”

2003

2003

3000

.

.

.

SavingsAccount
Private data:

number 423511

name 6000

balance 537.65

activation 4000

“Nell Dale”

month

day

year

13

“June”

2003

6000

4000

Copy Constructor: Different…

 A copy constructor is a constructor that creates a deep

copy of an object that can be used for other purposes,

such as creating a new instance of an immutable

object from an old one

public SavingsAccount(SavingsAccount oldAcct,

String changeOfAddress)

{

. . . // create deep copy of oldAcct

}

// call

account = new Savings Account(oldAcct, newAddress);

CS202 Java-108

Java String Class

 A string is a sequence of characters

enclosed in double quotes.

 string sample values

“Today and tomorrow”

“His age is 23.”

“A” (a one character string)

 The empty string contains no characters and

is written as “”

CS202 Java-109

Actions of Java’s String class

 String operations include

• joining one string to another

(concatenation)

• converting number values to strings

• converting strings to number values

• comparing 2 strings

CS202 Java-110

 Why is String uppercase and char

lower case?

•char is a built in type

•String is a class that is provided

• Class names begin with uppercase by

convention

CS202 Java-111

Variable = Expression;

First, Expression on right is evaluated.

Then the resulting value is stored in the memory

location of Variable on left.

NOTE: The value assigned to Variable must be of

the same type as Variable.

Assignment Statement Syntax

CS202 Java-112

String concatenation (+)

 Concatenation uses the + operator.

 A built-in type value can be concatenated

with a string because Java automatically

converts the built-in type value for you to a

string first.

CS202 Java-113

Concatenation Example

final int DATE = 2003;

final String phrase1 = “Programming and Problem “;

final String phrase2 = “Solving in Java “;

String bookTitle;

bookTitle = phrase1 + phrase2;

System.out.println(bookTitle + “ has copyright “ + DATE);

CS202 Java-114

System.out.print (StringValue);

System.out.println (StringValue);

Using Java output device

METHOD CALL SYNTAX

These examples yield the same output.

System.out.print(“The answer is, ”);

System.out.println(“Yes and No.”);

System.out.println(“The answer is, Yes and No.”);

CS202 Java-115

Java Input Devices

 More complex than Output Devices

 Must set one up from a more primitive

device

InputStreamReader inStream;

inStream = new InputStreamReader(System.in);

// declare device inData

BufferedReader inData;

inData = new BufferedReader(inStream)

CS202 Java-116

Using a Java Input Device

// Get device in one statement

inData = new BuffredReader(new

InputStreamReader(System.in));

String oneLine;

// Store one line of text into oneLine

oneLine = inData.readLine();

Where does the text come from?

CS202 Java-117

Interactive Input

 readLine is a value-returning method in

class BufferedReader

 readLine goes to the System.in

window and inputs what the user types

 How does the user know what to type?

 The program (you) tell the user using
System.out

CS202 Java-118

Interactive Output continued

BufferedReader inData;

inData = new BufferedReader(new

InputStreamReader(System.in));

String name;

System.out.print(“Enter name: ”);

name = inData.readLine();

Name contains what the user typed in response to the
prompt

CS202 Java-119

Inputting Numeric Values

 If readLine inputs strings, how can

we input numbers?

 We convert the strings to the

numbers they represent.

“69.34” becomes 69.34

“12354” becomes 12354

 Yes, but how?

CS202 Java-120

Predefined Numeric Classes

Built-in Type Class

int Integer

long Long

float Float

double Double

parseInt, parseLong, parseFloat,

parseDouble

are class methods for translating strings
to numeric values

CS202 Java-121

Converting Strings to Numbers

int intNumber;

System.out.println(“Enter an integer: “);

intNumber =

Integer.parseInt(inData.readLine());

class method Buffered- method

Reader

object

argument to parseInt method

CS202 Java-122

Converting a String to a Double Value

double price ;

price = Double.parseDouble(inData.readLine());

string converted to double value

String object

CS202 Java-123

// **

// PrintName prints a name in two different formats

// **

public class PrintName

{

public static void main (String[] args)

{

BufferedReader inData;

String first; // Person’s first name

String last; // Person’s last name

String firstLast; // Name in first-last format

String lastFirst; // Name in last-first format

inData = new BufferedReader(new

InputStreamReader(System.in));

Java Program

CS202 Java-124

Java program continued

System.out.print(“Enter first name: “);

first = inData.readLine();

System.out.print(“Enter last name: “);

last = inData.readLine();

firstLast = first + “ “ + last;

System.out.println(“Name in first-last format is ”

+ firstLast);

lastFirst = last + “, “ + first;

System.out.println(“Name in last-first format is ”

+ lastFirst);

}

}

CS202 Java-125

Additional String Methods

 Method length returns an int value that

is the number of characters in the string

String name = “Donald Duck”;

numChars;

numChars = name.length();

instance method

length is an instance method

CS202 Java-126

String Methods Continued

 Method indexOf searches a string to find a

particular substring, and returns an int value that is

the beginning position for the first occurrence of that

substring within the string

 Character positions begin at 0 (not 1)

 The substring argument can be a literal String, a

String expression, or a char value

 If the substring could not be not found, method

indexOf returns value -1

CS202 Java-127

String Methods Continued

 Method substring returns a substring of a string,

but does not change the string itsel

 The first parameter is an int that specifies a

starting position within the string

 The second parameter is an int that is 1 more than

the ending position of the substring

 Remember: positions of characters within a string

are numbered starting from 0, not from 1.

CS202 Java-128

What value is returned?

// Using methods length, indexOf, substring

String stateName = “Mississippi”;

stateName.length(); ?

stateName.indexOf(“is”); ?

stateName.substring(0, 4); ?

stateName.substring(4, 6); ?

stateName.substring(9, 11); ?

CS202 Java-129

Relational operators w/Strings?

Remember that strings are

reference types

myString = “Today”;

yourString = “Today”;

myString == yourSring

returns what?

String methods

Method Parameter Returns Operation Performed

Name Type

equals String boolean

compareTo String int

Tests for equality of string

contents.

Returns 0 if equal, a

positive integer if the

string in the parameter

comes before the string

associated with the

method and a negative

integer if the parameter

comes after it.

CS202 Java-131

String myState;

String yourState;

myState = “Texas”;

yourState = “Maryland”;

EXPRESSION VALUE

myState.equals(yourState) false

0<myState.compareTo(yourState) true

myState.equals(“Texas”) true

0>myState.compareTo(“texas”) true

More String Methods

Method Parameter Returns Operation Performed

Name Type

toLowerCase none String

toUpperCase none String

Returns a new identical

string, except the

characters are all

lowercase.

Returns a new identical

string, except the

characters are all

uppercase.

CS202 Java-133

String Method compareTo

 When comparing objects with ==, the result is

true only if both references refer to the same

object in memory

 String method compareTo uses a dictionary type

comparison of strings and returns

• 0 if they have the same letters in the same order

• a negative number if the instance string is less

than the string passed as a parameter

• a positive number if the instance string is greater

than the string that is passed

CS202 Java-134

Values of each expression

String s1 = new String(“today”);

String s2 = new String(“yesterday”);

String s3 = new String(“today”);

String s4 = new String(“Today”);

s1.compareTo(s2) -5

s1 == s3 false

s1.compareTo(s3) 0

s1.compareTo(s4) 32

CS202 Java-135

if (creditsEarned >= 90)

System.out.println(“Senior Status”);

else if (creditsEarned >= 60)

System.out.println(“Junior Status”);

else if (creditsEarned >= 30)

System.out.println(“Sophomore Status”);

else

System.out.println(“Freshman Status”);

Example of If statements

(same use of {}, if and else)

CS202 Java-136

A sentinel-controlled loop

 Requires a “priming read”

 “Priming read” means you read one

data value (or set of data values)

before entering the while loop

 Process data value(s) and then read

next value(s) at end of loop

CS202 Java-137

// Sentinel is negative blood pressure.

int thisBP; int total; int count;

count = 1; // Initialize

total = 0;

// Priming read

thisBP = Integer.parseInt(dataFile.readLine());

while (thisBP > 0) // Test expression

{

total = total + thisBP;

count++; // Update

thisBP = Integer.parseInt(dataFile.readLine());

}

System.out.println(“The total = “ + total);

CS202 Java-138

An end-of-file controlled loop

 depends on fact that readLine

returns null if there is no more

data

CS202 Java-139

// Read and sum until end of line

int thisBP; int total; int count;

count = 1; // Initialize

total = 0; String line;

line = dataFile.readLine();

while (line != null) // Test expression

{

thisBP = Integer.parseInt(line);

total = total + thisBP;

count++; // Update

line = dataFile.readLine();

}

System.out.println(“The total = “ + total);

CS202 Java-140

Flag-controlled loops

 Use meaningful name for the flag

 Initialize flag (to true or false)

 Test the flag in the loop test

expression

 Change the value of the flag in loop

body when the appropriate condition

occurs

CS202 Java-141

A flag-controlled loop

 Count and sum the first 10 odd

numbers in a data file

 Initialize flag notDone to true

 Use while(notDone) for loop test

 Change flag to false when 10 odd

numbers have been read or if EOF is

reached first

CS202 Java-142

count = 0;

sum = 0;

notDone = true;

while (notDone)

{

line = dataFile.readLine(); // Get a line

if (line != null) // Got a line?

{

number = Integer.parseInt(line);

if (number % 2 == 1) // Is number odd?

{

count++;

sum = sum + number;

notDone = (count < 10);

}

}

else // Reached EOF unexpectedly

{

errorFile.println(“EOF reached before ten odd values.”)

notDone = false; // Change flag value

}

}

CS202 Java-143

Exception Handling

 Handling errors is always a difficult problem
• Many times we ignore error handling

• Think back to your 162 project where this was important? What did it
do to your design?

• A major problem with most error handling schemes is that they rely on
the programmer‟s vigilance and an agreed upon convention ahead of
time – which may not be enforced by the language

 Exception handling in Java is handled directly as part of the
language
• And, you are forced to use it to get anywhere

• If you don‟t write your code to properly handle exceptions, you will get
error messages!

• This consistency makes error handling easier

 Side note: Error handling is not an object oreiented feature!

CS202 Java-144

Exceptions

 An exception is an unusual situation that

occurs when the program is running.

 Exception Management

• Define the error condition

• Enclose code containing possible error (try).

• Alert the system if error occurs (throw).

• Handle error if it is thrown (catch).

CS202 Java-145

Three Part Exception Handling

 Defining the exception

Extend type Exception and supply a pair of

constructors that call super

 Raising(generating) the exception

Use of the throw statement

 Handling the exception

Forward the exception or use try-catch-finally

statement to catch and handle the exception.

CS202 Java-146

filename = fileField.getText();

try

{

outFile = new PrintWeriter(new FileWriter(filename));

}

catch(IOException except)

{

errorLabel.setText(“Unable to open file ” + filename);

fileField.setText(“”);

}

try-catch with Built-In Exception

CS202 Java-147

try

{

. . . // Statements that might contain an error

throw new DataException(“bad data”);

}

catch(DataException except)

{

System.out.println(except.getMessage());

}

What is Class DataException?

try-catch with Exception Class

CS202 Java-148

Class DataException

public class DataException extends Exception

{

public DataException()

{

super();

}

public DataException(String message)

{

super(message);

}

}

CS202 Java-149

Execution of try-catch

No

statements throw

an exception

Statement

following entire try-catch

statement

A

statement throws

an exception

Exception

Handler

Statements to deal with exception are executed

Control moves

directly to exception

handler

Precedence

Operator Associativity

() Left to right

unary: ++ -- ! + - (cast) Right to left

* / % Left to right

+ - Left to right

< <= > >= Left to right

== != & Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

? : Right to left

= += -= *= /= Right to left

CS202 Java-151

class List

isFull

length

resetList

isThere

delete

isEmpty

insert

getNextItem

Private data:

numItems

listItems

listItems [0]

[1]

[2]

[listItems.length-1]

currentPos

List

List(int)

CS202 Java-152

// class List

public class List

{

// Data fields

protected String[] listItems;

// Array to hold list items

protected int numItems;

// Number of items currently in list

protected int currentPos;

// State variable for iteration

. . .

}

152

class List

CS202 Java-153

Unsorted and Sorted Lists

UNSORTED LIST

Elements are placed

into the list in

no particular order

with respect to their

content

SORTED LIST

List elements are in

an order that is

sorted by the

content of their

keys -- either

numerically or

alphabetically

CS202 Java-154

Methods for Class List

public List() // Default Constructor

// Result: List instantiated for 100 items

{ numItems = 0;

listItems = new String[100];

currentPos = 0;

}

public List(int maxItems) // Constructor

// Result: List instantiated for maxItems items

{ numItems = 0;

listItems = new String[maxItems];

currentPos = 0;

}

CS202 Java-155

Observer Methods

public boolean isEmpty()

// Returns true if no components; false otherwise

{

return (numItems == 0)

}

public int length()

// Returns the number of components in the list

{

return numItems;

}

CS202 Java-156

Observer Methods Contd.

public boolean isFull()

// Returns true if no more room; false otherwise

{

return (numItems == listItems.length);

}

CS202 Java-157

public void insert(String item)

// Result: If the list is not full, puts item in

// the last position in the list; otherwise list

// is unchanged.

{

if (!isFull())

{

listItems[numItems] = item;

numItems++;

}

}

157

Transformer Method Insert

CS202 Java-158

Before Inserting 64 into an Unsorted List

numItems 3

listItems [0] 15

[1] 39

[2] -90

[3]

.

.

.

[listItems.length-1]

The item will

be placed into

the numItems location,

and numItems will be

incremented.

158

item 64

CS202 Java-159

After Inserting 64 into an Unsorted List

numItems 4

listItems [0] 15

[1] 39

[2] -90

[3] 64
.

.

.

[listItems.length-1]

159

item 64

CS202 Java-160

public boolean isThere(String item)

// Returns true if item is in the list; false otherwise

{

int index = 0;

while (index < numItems &&

listItems[index].compareTo(item) != 0)

index++;

return (index < numItems);

}

160

Observer Method isThere

CS202 Java-161

Transformer Method Delete

 Find the position of the element to be

deleted from the list

 Eliminate the item being deleted by

shifting up all the following list

elements

 Decrement numItems

CS202 Java-162

public void delete(String item)

// Result: Removes item from the list if it is

// there; otherwise list is unchanged.

{

int index = 0;

boolean found = false;

while (index < numItems && !found)

{

if (listItems[index].compareTo(item) == 0)

found = true;

else
index++;

}

162

CS202 Java-163

// If item found, shift remainder of list up

if (found)

{

for (int count = index; count < numItems - 1;

count++)

listItems[count] = listItems[count + 1];

numItems--;

}

}

CS202 Java-164

public void resetList()

// Initialize iterator by setting currentPos to 0

{

currentPos = 0;

}

public String getNextItem()

// Returns current item; increments currentPos circularly

// Assumption: No transformers invoked since last call

{

String next = listItems[currentPos];

if (currentPos == numItems - 1)

currentPos = 0;

else

currentPos++;

return next;

}
164

Iterator Methods

CS202 Java-165

Straight Selection Sort

 Examines the entire list to select the smallest element;

places that element where it belongs (with array index 0)

 Examines the remaining list to select the smallest element

from it; places that element where it belongs (array index 1)

 Continues process until only 2 items remain in unsorted

portion

 Examines the last 2 remaining list elements to select the

smallest one; place that element where it belongs in the
array (index numItems-2, leaving the last item in its proper

place as well.

CS202 Java-166

Selection Sort Algorithm

FOR passCount going from 0 through numItems - 2

Find minimum value in listItems [passCount] . .

listItems[numItems-1]

Swap minimum value with listItems [passCount]

listItems [0] 40 25

listItems [1] 100 100

listItems [2] 60 60

listItems [3] 25 40

listItems [4] 80 80

pass = 0

CS202 Java-167

Selection Sort Code

public void selectSort()

// Sorts array into ascending

{ String temp; int passCount; int sIndex;

int minIndex; // index of minimum so far

for(passCount = 0; passCount < numItems-1; passCount++)
{ minIndex = passCount;

// find index of smallest remaining

for(sIndex = passCount + 1; sIndex < numItems; sIndex++)

if(listItems[sIndex].compareTo(listItems[minIndex])<0)

minIndex = sIndex;

temp = listItems[minIndex]; // swap

listItems[minIndex] = listItems[passCount];

listItems[passCount] = temp;

}

}

CS202 Java-168

public void insert(String item)

// If the list is not full, puts item in its proper

// place; otherwise list is unchanged.

// Assumption: item is not already in the list.

{ if (! isFull())

{// find proper location for new element

int index = numItems - 1;

while (index >= 0 &&

item.compareTo(listItems[index]) < 0)
{

listItems[index + 1] = listItems[index];

index--;
}

listItems[index +1] = item; // insert item

numItems++; }

}

CS202 Java-169

List

ListWithSort SortedList

List class hierarchy

CS202 Java-170

List

ListWithSort

SortedList

Abstract List Class Hierarchy

UnsortedList

CS202 Java-171

public boolean isThere(String item)

// Assumption: List items are in ascending order

// Returns true if item is in the list; false otherwise

{ int first = 0; int last = numItems - 1;

int middle; boolean found = false;

while (last >= first && !found)

{ middle = (first + last) / 2;

if (item.compareTo(listItems[middle]) == 0)

found = true; // Item has been found

else if (item.compareTo(listItems[middle] < 0)

last = middle - 1; // Look in first half

else first = middle + 1; // Look in second half

}

return found;

}

CS202 Java-172

Comparable Interface

 Is part of the standard Java class library

 Any class that implements the Comparable

interface must implement method compareTo

 String implements the Comparable interface

CS202 Java-173
Thinking in C ©2000 MindView, Inc. 173

Let’s build a stack class

public class Stack {

private int[] data;

private int ptr;

public Stack(int size) {

data = new int[size];

ptr = 0;

}

public void push(int x) {

if (ptr < data.length)

data[ptr++] = x;

}

CS202 Java-174
Thinking in C ©2000 MindView, Inc. 174

public int pop() {

if (ptr > 0)

return data[--ptr];

else

return Integer.MIN_VALUE;

}

public int top() {

if (ptr > 0)

return data[ptr-1];

else

return Integer.MIN_VALUE;

}

public int size() {

return ptr;

}

CS202 Java-175
Thinking in C ©2000 MindView, Inc. 175

 public static void main(String[] args) {

 Stack stk = new Stack(5);

 for (int i = 0; i < 5; ++i)

 stk.push(i);

 while (stk.size() > 0)

 System.out.print(stk.pop() + " ");

 System.out.println();

 }

 }



 $ javac Stack.java

 $ java Stack

 4 3 2 1 0

 $

CS202 Java-176

Initializing Static Members

 This is very different from C++

 Remember, there is only one instance of a static data
member no matter how many objects there are of the
class

 We initialize them in a “static block”

class list {

static int max_lists;

static {

max_lists = 100;

}

A static block is executed only once: the first time you make an
object of the class or access a static member.

CS202 Java-177

Libraries

 To use a library we must import it:
import java.util.*;

• This brings in the entire utility library

• And, it manages the namespace since it only brings in those classes that are requested

 When we have multiple source files, each file should have a public class that is
the same name as the file (including capitalization but excluding the file
extension)

 Multiple files can create a “package”

 If you place
• package list_library;

• As the first non-commented line in your file – you are saying that this compilation unit is part
of a larger library that you are building

• SO, there need not be a public class in each file since we are part of a larger unit.

• And, then such packages can be imported!

• If there are collisions in the libraries and packages that you import, then Java will require
you to explicitly specify the “classpath” from which the class exists

