WG3:HBA-007

H2-2003-309
August, 2003

ISO

International Organization for Standardization

ANSI

American National Standards Institute

ANSI TC NCITS H2
ISO/IEC JTC 1/SC 32/WG 3

Database

Title: (ISO-ANSI Working Draft) Object Language Bindings (SQL/OLB)
Author: Jim Melton (Editor)

References:

1)

2)

3)

4)

5)

6)

7)

8)

WG3:HBA-002 = H2-2003-304 = 5WD-01-Framework-2003-09, WD 9075-1 (SQL/ Framework),
September, 2003

WG3:HBA-003 = H2-2003-305 = 5WD-02-Foundation-2003-09, WD 9075-2 (SQL / Foundation),
September, 2003

WG3:HBA-004 = H2-2003-306 = 5WD-03-CLI-2003-09, WD 9075-3 (SQL/CLI), September, 2003

WG3:HBA-005 = H2-2003-307 = 5WD-04-PSM-2003-09, WD 9075-4 (SQL/PSM), September,
2003

WG3:HBA-006 = H2-2003-308 = 5WD-09-MED-2003-09, WD 9075-9 (SQL/MED), September,
2003

WG3:HBA-007 = H2-2003-309 = 5WD-10-OLB-2003-09, WD 9075-10 (SQL/OLB), September,
2003

WG3:HBA-008 = H2-2003-310 = 5WD-11-Schemata-2003-09, WD 9075-11 (SQL /Schemata),
September, 2003

WG3:HBA-009 = H2-2003-311 = 5WD-13-JRT-2003-09, WD 9075-13 (SQL/JRT), September,
2003

9) WG3:HBA-010 = H2-2003-312 = 5WD-14-XML-2003-09, WD 9075-14 (SQL/XML), September,
2003

ISO/IEC JTC 1/SC 32

Date: 2003-07-25

ISO/IEC 9075-10:2003 (E)

ISO/IEC JTC 1/SC 32/WG 3

United States of America (ANSI)

Information technology — Database languages — SQL — Part 10: Object

Language Bindings (SQL/OLB)

Technologies de l'information— Langages de base de données — SQL — Partie 10: Liaison de Langage Object

(SQL/OLB)

Document type: International standard
Document subtype:

Document stage: (4) Approval
Document language: English

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under
the applicable laws of the user’s country, neither this ISO draft nor any extract from it may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic, photocopying, recording, or otherwise,
without prior written permission being secured.

Requests for permission to reproduce should be addressed to ISO at the address below or ISO’s member body
in the country of the requester.

Copyright Manager

ISO Central Secretariat

1 rue de Varembé

1211 Geneva 20 Switzerland
tel. +41 22 749 0111

fax +41 22 734 1079
internet: iso@iso.ch

Reproduction may be subject to royalty payments or a licensing agreement.

Violaters may be prosecuted.

Contents Page

0 L= V1T (o S XiX
INErOTUCTI ON. . . e e e XX
O o 0 0 1 = 1
2 NOIMALIVE [O BNCES. . . o ottt e e e e e e e e 3
21 JTC L andards. oot e 3
2.2 Other international standards.ttt e 3
3 Definitions, Notations, and CONVENTIONS.ottt et e e e ettt 5
31 D NIt ONS. . . 5
311 Definitions provided in Part 10. o 5
3.2 N Ot ON. . Lt 6
33 CONV BN 0N, .« ottt ettt e e e e e e 7
331 USE Of BBIMIS. . . oot e e e 7
3311 L@ 107 (1 0 7
332 Specification of trandator-generated Classes.o i 8
N O] o 0) = 11
41 10T oo o 11
4.2 Embedded SymtaX. oot e 11
4.3 SOL CONSITUCES. . . ottt e e e e e 12
44 CharaCter SHNGS. . . . e ettt e e e e e e e e e e e e e e 12
441 UNICOOE SUPPOIT. .« o e ottt e et e e e e e e e e e e e e e e e e e e e 12
442 L0147 = o (= S £ 13
45 HOSt Variables. . ..o 13
4.6 HOSE BX DI ESSI ONS. . . o vttt ettt e e e e e e e e 13
4.7 SO T ClaAUSES. .« v ottt ettt e e e 14
48 Database CONNECLION CONEEXL.ttt e et e e e e e e et e e e et e e 14
49 Default connection CONLEXT. oot e et e e et e e e 15
4.10 Schema checking using exemplar SChemas. e 15
411 Using multiple SQLJ contexts and CONNECLIONS.ottt e e 16
412 Dynamic SQL and JDBC/SQLJ Connection interoperability.o 16
412.1 Creating an SQLJ ConnectionContext fromaJDBC connection. . ..o ennnn. 16
4122 Obtaining a JDBC connection from an SQLJ ConnectionContext., 17
4123 ConNeCtion Sharing.ot 17
4124 Connection resource ManagemeNt.o u .ttt ettt et e e e e e 17
413 SQL execution control and StatUS.o oo ot 18
414 O AEOrS. . . . ottt e 19
415 Input and output assigNability.ot e 20

©ISO/IEC 2003 — All rights reserved Contents iii

1 SO/l EC 9075-10:2003 (E)

4.16 Calls to stored procedures and fUNCLIONS. e 31
417 Multiple JDBC ResultSet objects from stored procedure calls. 31
4171 Resource management with multiple results. i 32
4.18 JDBC/SQLJ ResultSet interoperability. 32
418.1 Creating an SQLJ iterator from aJDBC ResultSet object. i i 32
4182 Obtaining a JDBC ResultSet object from an SQLJiterator object. i 33
4183 Obtaining a JDBC ResultSet object from an untyped iterator object. 33
4184 Iterator and JDBC ResultSet resource management.ottt e e 33
419 Multi-threading CONSIAEratioNS.ottt e e e e e e 34
4.20 User-defined data types.o oot 34
421 BalCh UPQatEs. . ..o e 35
4211 Batchable statements and batch compatibility. e 35
4212 Statement batChing AP, e 36
4.21.3 Execution status and Update COUNLS.ttt ittt et e et et e e e e 36
4214 Program semanticS and eXCEPLIONS. oottt et e 37
4215 Batch cancellation and disabling.t e 38
4.21.6 Specification of abatching limit. e 38
4.22 SQLIIaNgUage ElemMENtS. oottt e e e 39
4221 SCUISOP MAIMES. . . ottt t e et et e e e e e e e e e e e e e e e e e et e et 39
4222 SQL schema, data, and transaction statements.ot e 40
4223 <SQL dynamiC Satement™.ottt e e 40
4224 <SOL CONNECHION QA BBt >, . . oottt et et e et e et e e e 40
4225 <host variable definition>. 40
4226 <embedded exception declaration>. e 41
4227 <SQL diagnostiCs Stalement™. e 41
4.22.8 CUrSOr AeClaration.ottt e 41
4229 Input parametersto SQL StatementsS.ttt e 42
4.22.10 Extracting column values from SQLJItErators.ottt e 42
42211 <OpeN StateMENt™ AN CUISOIS. . .« vttt ettt e ettt et e ettt e e e et et ettt 42
B LeXiCal Bl OMENtS. . .ot e 43
51 <SQL terminal CharaCter>. 43
52 <TOKEN> AN <SEAI IO ™. . . o o\ttt ettt et e e e e e e e e e e 14
B SCAlAr EXPIESSIONS.ttt et e e e 45
6.1 <value specification> and <target specification>. e 45
7 Additional common €lements. e 47
7.1 S 101011 =T 011 0o 0 47
8 Embedded SO 49
8.1 <embedded SQL hOSt Program>.t e 49
8.2 <embedded SQL Java PrOgram™.ttt e e e e e 52
9 Binary portability. e 53
9.1 Components of binary portable appliCations.ttt 53

iv. Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

9.2 Naming runtime COMPONENTS.ttt et et e et e e e e e e e e et et ettt 54
9.3 Binary portability reqUIrements.t 54
94 Profile OVEIVIBW. . . oo 55
9.5 Profile generation and Naming.ottt e e 56
95.1 EXAMIPI . . .o 57
9.6 SQLJ application Packaging.« vttt et et e e e 57
9.6.1 EXaMIPl . . 58
9.7 Profile CUStOMIZation OVEIVIEW.o e e e e e 58
9.7.1 Profile CUStOMIZatiON PrOCESS. ottt ettt e e e e e e et e e e e e e 59
9.7.2 Profile customization UtHHTIES.o e e 59
9.7.3 Profile cuStomizer INtErface.o e 60
9.8 Customization TNterface. o e 60
9.8.1 CUSIOMIZALION USAQE. - . - . o ettt et e et e e et e e e e e e e e e e e e e e e e e 61
982 Customization regiStration.ottt e e e e e e 62
9.9 ENtrylnfo OVEIVIBW.o 63
9.10 TYPEINfO VIVo e 65
9.11 SQLJ datatyPe PrOPEItiES. . o vttt ittt et e e e e e 67
10 SOQLJ grammar CONSIIUCES. . ..o ottt et e et e 71
10.1 SOLI rESEIVE NAMES. . . . oottt et ettt e e e e e e e e e 71
10.1.1 Temporary Variable NameS. 71
10.1.2 Classand resource filenames. ottt 71
10.1.2.1 INterNal ClasSSES. . o v vttt et e e e 72
10.1.2.2 Resource filesand profiles. 72
10.2 CommoN SUDEIEMENES. e 73
10.2. 1 <MOOIfI OS>, ottt 73
10.2.2 SJaVACIBSS MM, . o ottt e 73
10.2.3 SJaVa i, . o 74
10.24 <Javadalaly P>, . .ot t a 75
10.25 <java constant EXPrESSIONS.ttt e e e e e e e e e e e 75
10.2.6 <embedded Java EXPreSSION>. oottt e e e 76
10.2.7 <IMPIEMENLS ClaUSE>.ttt e e e e e e e 78
10.2.8 <declaration With Clause>. 79
11 <SQLJ specific clause™ and CoNtENtS.ot 83
111 <SQLJ SPECIfiC ClaUSE>.o 83
11.2 <connection declaration ClaUSE>. o i e 84
11.3 Generated CONNECHION ClaSS. vttt e e e e et e e et 85
114 <iterator declaration ClaUSE>. ot 90
115 SPOSIHIONEd B a0 >, . . . oottt e e e e e e 92
11.6 Generated positioned Iterator Class. oo it e 93
11.7 SNAME LB B0 >, . . . ottt et e e e e e e e e 96
11.8 Generated Named Iterator Class.ot e 97
11.9 <EXECULADIE ClaUSE>. . . .o 99

©ISO/IEC 2003 — All rights reserved Contents v

1 SO/l EC 9075-10:2003 (E)

11.10 SCONMEEXE ClaUSE>. . . .o e e 106
11.11 S EMENt ClaUSE>.ottt e e e 108
11.12 <delete statement: PoOSItioNEd>. 110
11.13 <update statement: POSItIONEd>. o i 112
11.14 <SElECt StalEMENt: SINGIE FOWottt et 114
11.15 <FEICh St EmMENE>. . . o e 118
11.16 <ASSIgNMENt SlalEmMENt>. . . . 122
11.17 <SAVEPOINT SEALEMENES. . . . oottt et e e e e e e e e e e 124
11.18 <release SaVEPOINt StalEMENt>. e 125
11.19 SCOMMIE S MBS, . . oot e e e e 126
11.20 <rollbacK Sta EMENt>. . . . e 127
11.21 <Set tranSaCtion StatEMENt>. e 128
11.22 <Call S EmMENt>. . . . 129
11.23 <ASSIONMENt ClaUSE>. . . . ot e e 131
11.24 QOUENY ClalSE ™. . oottt ittt ettt et e e et e e e e e e 133
11.25 <FUNCHION ClaUSE>. . .o e 139
11.26 <ItErator CONVEISION ClaUSE>. oottt ettt et e e ettt et e et e e 142
11.27 <COMPOUNG SEAIEMIENE>.ottt e e e e e e e e e 145
12 Package sglj.runtime. 147
12.1 SOLI runtime INterfaces.ot 147
1211 sglj.runtime.ConnectionCoONtEXE.o\ v 'ttt 147
12100 Vaiables. . oo 148
121111 CLOSE _CONNECTION. . . ottt ettt et e et e e et e e e e e e e et 148
12.1.1.1.2 KEEP _CONNECTION. . .ottt ettt et et e e e e e e e e e i 149
12112 MEthOOs. . .o 149
121121 ClOSE () v ottt e 149
12.1.1.2.2 Close (BOOIEAN).o e 149
12.1.1.2.3 getConnectedProfile (ObJeCt).o e 150
121124 ELCONNECHION ().« « v v e ettt e e e e e e e e e e e e e 151
121.1.25 QEtEXECULIONCONTEXE (). .« o v vt ettt e e e e e e e e e e e e e 151
12.1.1.2.6 EITYPEMAD (). o o vttt e e e e e e e e 151
120027 0SCIOSEA () v v v ot ettt e e e e 152
1212 sgljoruntimeForUpdate.o 152
12120 MEthOOS. . .o 152
121211 QELCUISOINAIME ().« .« v v ettt e e et e e e e e e 152
12.1.3 sglj.runtimeNamediterator. o 153
1214 sglj.runtime.PositionedIterator.ot 153
12141 MeEthods. . ..o 154
121411 ENAFEICN (). . . oot 154
1215 SOlj.runtime ReSUItSEtIEErator.ottt e 154
12150 Variables. . oot 154
12.151.1 ASENSITIVE. . .o e 154

vi Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

121512 FETCH_FORWARD.ttt et et e e e e e e e e e e e e e 155
121513 FETCH _REVERSE. e e 155
121514 FETCH _UNKNOWN. ... e e e e e e e e 155
121515 INSEN S TIVE. . e e e e e 155
12.15.1.6 SEN S TV E. .t e e 155
12152 MENOUS. 156
121521 ClearWarniNgS (). -« oottt e e e 156
12.152.2 ClOSE () o o e et e e 156
1215.2.3 QEtFEICNSIZE (). . . o ot 156
121524 GEIRESUITSEL ().« « o vttt et e 157
12.1525 GBI ROW ().« oottt e 157
12.1.5.2.6 GELSENSILIVITY (e« vt ettt e et et e 158
12.15.2.7 OEEWAININGS (). - -« v ettt et e e e e e e e e e e 158
12.152.8 FSCIOSEA (). -+ v v vttt et e e e e e e 159
12.15.29 NEXE ().« v vttt e e e e e 159
1215210 SetFetchSize (INt).o oot e 160
12.1.6 sglj.runtime.Scrollable. o e 161
12.0.6.1 Vaiables. . ..o 161
12.0.6.2 MELNOOS.o 161
121.6.21 ADSOIULE (IND). . . oottt 161
12.1.6.2.2 = =) 162
12.1.6.2.3 B OrEFITSt (). . oottt e 162
12.1.6.24 16 S P 162
12.1.6.25 QEtFELChDITECHION (). « o o o e ettt e e e e e e 162
12.1.6.2.6 FSATEEILESE (). - - o v v ettt et 163
12.1.6.2.7 1527 o= =) 163
12.1.6.2.8 1S T S TS 164
12.1.6.2.9 T T 164
T2.0.6.2.20 A8t (e oo v ettt e e e e e 164
12.1.8.2.11 PrEVIOUS ().« v v v e ettt e e e e e e e e e e e e e e e e e e 165
12.1.6.2.12 relative (IND). . . oot e e 165
12.1.6.2.13 setFetchDirection (iNt).t e e e e 166
12.2 SOLI RUNIIME ClaS58S. . . o v o vttt ettt e e et e e e e e et e e e e ettt 167
1221 SOl .rUNtiME ASCH St EaIM. . . . oottt ettt e e 167
12211 CONSITUCIONS. « . . oot ettt et e ettt e 167
122111 AsciiStream (INPUESIrEaM).ot e e e 167
122112 AstiiStream (INpULStream, INt). 168
1222 SOlj.runtime.BinaryStream.o 168
12221 CONSITUCTONS. . . o ottt ettt e et et e e e e e e e e e e e e e e 169
122211 BinaryStream (INpULSLIEaIMY). oottt e 169
12.2.21.2 BinaryStream (INputStream, int).ot e 169
12.23 sglj.runtime.DefaultRuntime. o 169

©ISO/IEC 2003 — All rights reserved Contents vii

1 SO/l EC 9075-10:2003 (E)

12.2.3.1 CONSITUCIOIS. . . . o ettt et e et et e 170
122311 DefalltRUNLIME (). . . o\ oot e e e e 170
12232 MEINOGS. . .o oo e 170
12.2.3.21 getDEfaUItCONNECHION (). .. vttt 170
12.2.3.2.2 getLoaderForClass (Class). . ..o vt e e e 170
1224 sglj.runtime.EXeCUtiONCONLEXL. o .ot ettt e e e e e e e 171
12241 Vaiables. . ..o 172
122411 ADD_BATCH _COUNT . . .ttt ettt e e e e e 172
12.2.4.1.2 AUTO BAT CH. ... e e e e e 172
12.24.1.3 EXEC _BATCH _COUNT . . .ttt e e e e e e 172
122414 EXCEPTION _COUNT . ottt e et e e e et e e e e 173
12.24.15 NEW _BATCH _COUNT . . .ttt ettt et e e e e e e e 173
12.24.1.6 QUERY _COUN T . ottt e e e e e e e e e e e e e e e 173
122417 UNLIMITED _BAT CH. ...ttt et e e e e e e e i 174
12242 CONSITUCIONS. . . o ottt ettt e et e e e e e e e e e e e e e e e e e 174
12.24.21 EXECULIONCONIEXE (). . . o oottt e e e e e 174
12243 MENOUS.o 174
122431 CANCED (). o ettt et e e e e e 174
12.24.3.2 EXECULE ()- « v v vttt e et e e e e e e e e 175
12.24.3.3 EXECULEBAICN (). . o . oottt 176
122434 EXECULEQUENY ().« v v v ettt et e e e e e e e e 177
12.2.4.35 EXECULBUPAAIE (). . v v vttt et e e e e e 177
12.2.4.3.6 QEtBAIChLIMIT (). . . oottt e e e 178
12.2.4.3.7 getBatchUpdateCoUNS (). . . oo v v e e ettt e e e e 179
12.2.4.3.8 QEtFEtChDITECION (). . . o v v ottt e e 179
12.24.3.9 QEtFEICNSIZE (). . . o .ot 179
1224310 getMaxXFIEldSIiZe ().ot 180
1224311 QEIMBXROWS (). .« o v ittt ettt ettt e e e e e 180
1224312 QEtNEXIRESUITSEL (). - . o oot vt ettt e e e e e e e 181
1224313 getNextResSUITSEL (INL). . . . oottt e e e e 181
1224314 getQUErYTIMEOUL (). .« . o o ettt et e e e e e e e e e e e e e e e e 182
1224315 getUpdateCouNt (). . . o« v v et ettt e e e e e e e 183
1224316 getWarniNGS (). -« .o v vttt e e e e 183
1224317 0SBaChiNg (). . oo i et 183
12.2.4.3.18 registerStatement (ConnectionContext, Object, int). i 184
1224319 rel@aSeStateMENt (). . . . oottt e e e e 185
1224320 setBatching (Do0l€an). i 186
1224321 setBatChLimit (IND).o oo e e e e e e e e 186
1224322 setFetchDireCtion (iNt).ttt e e e e 187
1224323 SetFetChSize (IN). oo 187
1224324 setMaxFeldSize (IND).ot e 188
1224325 SEMaXROWS (IN0). . . oo ottt ettt e e e e e e 188

viii Object Language Bindings (SQL/OL B) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

1224326 setQueryTimeout (iND). oottt e e e e e e 189
1225 sglj.runtime RUNtIMECONTEXL.o e e 189
12,250 Variables. . ..o 189
122511 DEFAULT _DATA _SOURCE. . . .ottt e e et e 189
122512 DEFAULT _RUNTIME. ... et e e e e 190
122513 PROPERTY _KEY . ot e e 190
12252 CONSITUCIOIS. . . . o ittt e et e 190
122521 RUNGMECONIEXE (). .+« o vttt e et e e e e e e e e e e e e e e e e 190
12253 MEINOGS.o e 190
12.25.31 getDEfaUItCONNECHION (). .. vttt et 190
12.25.3.2 getLoaderForClass (Class). . ..o vttt e e e 191
12.25.3.3 EERUNTIME (). -« . o ettt e e e e e e e e e e e e e e e 191
1226 SOlj.runtime.SIreamWWVIappEr. oottt e e e e e e e e e 192
12.2.6.1 CONSITUCIONS. . . o ottt ettt e et et e e e e e e e e e e e e e e e e e e e 192
122611 StreamWrapper (INPUESLIEaM). . . . o .ottt e e e e e e e e 192
12.2.6.1.2 StreamWrapper (INpUtStream, INt).t e 193
12.2.6.2 MEINOUS.o 193
12.2.6.21 QELINPUESIIEAM (). .« . o o ettt et et e e e e e 193
12.2.6.2.2 L ENGtN (). .o oo 193
12.2.6.2.3 SELENGth (IND). . ..o o 194
1227 sglj.runtime.UniCodeSIrEam.ttt e e e 194
12271 CONSIUCLOIS. . . o oo ettt et et e 195
122711 UnicodeStream (INPUESErEaM).ot e e i e et e e 195
12.2.71.2 UnicodeStream (INputStream, int).ottt e e e 195
1228 sglj.runtime.CharaCterStream. oo 195
12.2.8. 1 CONSITUCIONS. . . o ettt ettt et e 196
122811 CharacterStream (Reader).ot 196
12.2.8.1.2 CharacterStream (Reader, int).ot e e 196
12282 MEINOUS.t 196
122821 I REAEN ().« o v ettt 196
12.282.2 L ENGtN (). .o oo 197
12.282.3 SELENGth (IND). . ..o 197
1229 sglj.runtime.SQLNUITEXCERLION.ot e 197
12291 CONSLIUCLOIS. . . . oo ettt et et e 198
122911 SQLNUIEXCEPON (). .+« o e v e e ettt e e e e e e e e e e e e e e e 198
13 Package sglj.runtime.profile. e 199
131 SQLJIsglj.runtime.profile Interfaces. oo 199
1311 sglj.runtime.profileBatchContext. o 199
13111 MENOOS. . oot 199
131111 ClEarBaCh (). . v vttt 199
13.1.1.1.2 EXECULEBAICN (). . .o oo 199
13.1.1.1.3 SEtBatChLImIt (INL). oo e e 200

©ISO/IEC 2003 — All rights reserved Contents ix

1 SO/l EC 9075-10:2003 (E)

13.1.2 gglj.runtime.profile.ConnectedProfile. 200
13121 MEINOGOS. . ..ot 202
131211 ClOSE () v ottt 202
13.1.21.2 OEtCONNECHION ().« v vt ottt et et e e 202
13.1.2.1.3 QEtPrOFIIEDAA ().« « o v v ettt e 202
13.1.214 getStatement (iNt, Map). oot 203
13.1.2.15 getStatement (int, BatchContext, Map). oot 203
13.1.3 sglj.runtimeprofile. CustomMization.ot e 204
13131 MEINOGS. . . oo 205
13.1.31.1 acceptsConNeCtion (CONNECHION). . ..o v vttt ettt ettt et et et 205
13.1.31.2 getProfile (Connection, Profile). e e 205
1314 sgljoruntime.profileloader.o 206
13041 MEINOOS. . ..t e e 206
131411 QetRESOUrCEASSIIEam (SEING). . . o v v ettt et e e e e e e 206
13.1.4.1.2 1080CIASS (SIFING). . . v oottt e e e e e e e e e e e 207
1315 sglj.runtimeprofile RTRESUILSEL. e et e 207
13151 MEtNOUS. . . .ot 211
131511 ClEAWWANINGS (). -« ottt et e e 211
13.1.51.2 ClOSE () o ettt 211
13.151.3 fiNdColumMN (SIHNG). . . . ot e 211
131514 QELAITAY (IND). . o ottt e e e e e e e e e 212
13.1.5.15 EtASCI StreamWIrapPeEr (IND). . ..o ettt e 213
13.1.5.1.6 getBigDecimal (IN). . ..ottt e 214
13.1.5.1.7 getBinaryStreamWrapper (INL).ot 214
13.1.5.1.8 GEEBIOD (IN). . o oot 215
13.1.5.1.9 getBooleanNONUIL (iNt).o 216
13.1.5.1.10 getBooleanWrapper (IMNL).ot ettt e et e e e e e e e e 217
13152110 getByteNONUIL (IN0). . .. oo e e 218
1315112 getBYtes (IND). . o oottt et et e e e e e 219
13.1.5.1.13 getByteWrapper (IND).o ot e e 219
13.15.1.14 getCharacterStreamWrapper (iN).o oot e 220
1315115 getClob (IN). . oo vttt ettt e e e e e e e e e e 221
1315216 getColumMNCOUNE (). « o v vttt et e e e e e e e e e e e e e e e 222
13.1.5.2.17 getCUrSOINGIME (). o v v v ettt e et e ettt e e e e e e e e e 222
1315118 getDate (INL). . o oottt ettt e e e e e e e 223
13.1.5.1.19 getDoubleNONUIl (iNt). . . . oot e e e e e e 224
13.1.5.1.20 getDoubleWrapper (INL).ottt e e e e e e e e 225
13.1.5.1.21 getFloaNONUIL (iNt). . ..o ot e e e e 225
13.1.5.1.22 getFHoatWrapper (IND). . .. oottt e et et e e 226
13.1.5.1.23 getlntNONUIL (IND). . ..ot e e e e e e e 227
13.1.5.1.24 getlntWrapper (IN0). . .o oottt e e e e e e e 228
13.1.51.25 QetIDBCRESUIESEL (). . . oottt ettt e e e e et e 229

X Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

1315126 getLongNONUIL (INt).o 229
13.1.5.1.27 getLongWrapper (IND). . ..o oottt e e e e e e e e 230
13.1.5.1.28 getObject (iNt, Class). oottt e e e e e e e e e e 231
1315129 QetREf (IND). . o oot 232
13.1.5.1.30 getShortNONUIL (IND). . ..o e e e et e 233
13.1.5.1.31 getShortWrapper (IN1). oottt et e e e e e e e 234
13.1.5.2.32 getStiNg (IN).o oo e e 234
1315133 getTime (IND). . oo vttt ettt e e e e e e e e e e e e 235
13.1.5.1.34 getTimestamp (IN0).ot e e e e e e 236
13.1.5.1.35 getUnicodeStreamWrapper (IND). vu ittt e 237
1315136 QEURL (IND). o oottt ettt et e e e e e e e e e e 238
13.1.5.2.37 gEWAMINGS (). -« v o e ettt et e e e e e e e e e 238
1315138 0SCIOSEA () -« v v vttt ettt et e e e et e e e 239
1315139 09VAliOROW (). v vttt ettt e e e e e e 239
1315140 NEXE () oottt et et e e e 240
13.1.6 sglj.runtime.profile RTStatement.o e 240
13161 MENOUS. . . .ot e 245
13.1.6.1.1 CANCED (). o ettt et e e e e e 245
13.1.6.1.2 ClearWarniNgS (). -« oottt e e e 246
13.1.6.1.3 EBXECULE ().« v v ettt e ettt e e e e e 246
13.1.6.1.4 EXECULECOMPIELE ().« + o v ettt e e e e e e e e e e e 247
13.1.6.1.5 EXECULERT QUENY (). v v o et ettt et e e e e e e e e e 247
13.1.6.1.6 EXECULEUPAAIE (). ..ottt et e e e e 248
13.1.6.1.7 QELATTAY (IND). . o ottt e e e e e e e e e 248
13.1.6.1.8 QetBalCNCONIEXE (). . . o o vttt e 249
13.1.6.1.9 getBigDecimal (INL).ottt e 250
13.1.6.2.20 getBIob (INE). . . oo vttt e e e 251
13.1.6.1.11 getBooleanNONUIl (IND).ottt e e e e 251
13.1.6.1.12 getBooleanWrapper (IN0). . ..ottt et e e e e e e e e e 252
13.1.6.1.13 getByteNONUIl (iNt).o ot 253
13.1.6.1.14 getBYtes (IND). . .. vvo ittt et e e e e e e e e e 254
13.1.6.1.15 getByteWrapper (IND). oottt e e e 255
1316116 getClob (IND). . . oo v ettt et et e e e e e 255
13.1.6.1.17 getDate (IN0). . . oo ettt et e e e 256
13.1.6.1.18 getDoubleNONUIL (iNt). . . . oo v e e e 257
13.1.6.1.19 getDoubleWrapper (INL).ottt et et e e e e e e 258
13.1.6.1.20 getFloaNONUIL (iNt).o o e e e e 259
13.1.6.1.21 getFHoatWrapper (iN). . .. oottt e e e e e e e e 259
13.1.6.1.22 getlntNONUIL (IND). . . oottt e e e e e e e e 260
13.1.6.1.23 getlntWrapper (IN0). . ..o ottt e e et e e e 261
13.1.6.1.24 getIDBCCalableStatement ().o oo vttt 262
13.1.6.1.25 QgetIDBCPreparedStatement ().« oo v vttt ettt e e e e 262

©ISO/IEC 2003 — All rights reserved Contents xi

1 SO/l EC 9075-10:2003 (E)

13.1.6.1.26
13.1.6.1.27
13.1.6.1.28
13.1.6.1.29
13.1.6.1.30
13.1.6.1.31
13.1.6.1.32
13.1.6.1.33
13.1.6.1.34
13.1.6.1.35
13.1.6.1.36
13.1.6.1.37
13.1.6.1.38
13.1.6.1.39
13.1.6.1.40
13.1.6.1.41
13.1.6.1.42
13.1.6.1.43
13.1.6.1.44
13.1.6.1.45
13.1.6.1.46
13.1.6.1.47
13.1.6.1.48
13.1.6.1.49
13.1.6.1.50
13.1.6.151
13.1.6.1.52
13.1.6.1.53
13.1.6.1.54
13.1.6.1.55
13.1.6.1.56
13.1.6.1.57
13.1.6.1.58
13.1.6.1.59
13.1.6.1.60
13.1.6.1.61
13.1.6.1.62
13.1.6.1.63
13.1.6.1.64
13.1.6.1.65
13.1.6.1.66
13.1.6.1.67

getLoNgNONUIL (IND). . . . oo e 263
getLongWrapper (IND). oot e 263
QEtMAXFIEIASIZE (). . oo vttt 264
OEtMaAXROWS (). ottt e e e 265
OEtMOTERESUITS (IND). . . ottt e et e e e e e 265
getOhject (iNt, Class). . . . oo it 266
QEtQUENYTIMEOUL (). « o v ot ettt e e e e e e e e e e e e e e e e e e e 267
OEtRE (IND). . .. oo 267
OEIRESUIESEL (). .+« v vttt et e e 268
getShortNONUIL (IND). . .. oo e e e e e e 269
LSOt W IrapPEr (IND). . . ottt et e e e 270
QELSHING (IND). . . . ottt e e e e e e e e e e e e e e e 270
OEtTIME (IND). . ..ottt e e e e 271
QetTIimMEStamMP (INE). . . .ot e e e e 272
QEtUPAAEECOUNT ().« v v ettt e et e e e e e e e e e 273
EIURL ().« oottt 273
OEWAININGS ().« ot ottt ittt e e e e e e e e 274
ISBatChable (). . .. oo 275
isBatchCompatible (). oot 275
BELAITAY (INL, ATTAY). o oottt e et e e e e e e e 276
setAsciiStreamWrapper (int, ASCHSIIEaM).ottt e 277
setBigDecimal (int, BigDeCimal).ot 278
setBinaryStreamWrapper (int, BinaryStream).t e 278
setBlob (int, BIOD). 279
setBoolean (int, bOOIEaN). o 280
setBooleanWrapper (int, BOOIEAN).ttt 281
SEByte (INt, DYtE). .. .o 281
SEtBYLES (INt, DYLE). . . oot e 282
setByteWrapper (int, Byte). oo e 283
setCharacterStreamWrapper (int, CharacterStream).t 283
setClob (int, Clob). o 284
setDate (INt, DalE).ttt 285
setDouble (int, double). 285
setDoubleWrapper (int, DOUBIE). 286
setFloat (int, float).o ot e 287
setFloatWrapper (int, FlOat).o 288
Setint (INt, TND). .. oo 288
setintWrapper (INt, INTEgEr). . . . oot e e e 289
SELong (INt, 1ONQ). . . o oot 290
setLongWrapper (INt, LONG). ... oottt e e e et e e 290
SEtMaxFEldSize (IND).ttt e 291
SEEMAXROWS (IN1). . . o oottt e 292

xii Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

13.1.6.1.68 SEODJECE (). o« v vttt et e et e 292
13.1.6.1.69 satQUEryTimeoUL (IN).ttt et e e e e e et e e e 293
13.1.6.1.70 setRef (int, RE).o i 293
13.1.6.1.71 setShort (INt, SNOM). . ..ot 294
13.1.6.1.72 setShortWrapper (int, SNOM).ottt e e 295
13.1.6.1.73 setString (int, SENQG). . . . oottt e e e 295
13.1.6.1.74 setTime (INt, TImME). . . oottt et e e e e e e e et et e e e e e 296
13.1.6.1.75 setTimestamp (int, TIMEStAMP).ottt e e e e e e 297
13.1.6.1.76 setUnicodeStreamWrapper (int, UnicodeStream).t 298
13.1.6.1.77 SEURL (INt, URL). . . oottt et e e e e ettt e e e e e 298
13.1.7 sglj.runtime.profileSerializedProfile. 299
131071 MENOUS. . .. e 299
13.1.7.11 OEtPrOfI@ASSIIEaM (). . . oottt 299
13.2 SQLJ sglj.runtimeprofile Classes.ot 301
1321 sglj.runtimeprofileDefaultLoader.o 301
13211 CONSLIUCLOIS. . . oo ottt et et e 301
132111 DefaultLoader (ClassLoader).t 301
13212 MENOUS. 301
132121 getReSOUrCEASSIIeam (SHING). . . o v v ettt e e e e e e 301
13.21.22 1080CIASS (SIFNG). . . . oottt e e e e e e e e e e e 302
1322 sglj.runtimeprofile Entrylnfo. o 303
13221 Vaiables. . ..o 303
132211 BL O CK . ot 303
13.2.2.1.2 L 303
13.2.2.1.3 CALLABLE STATEMENTt e e e e e e e 304
132214 COMM I T . L e e e e 304
13.2.2.15 EXECUTE. ... e e e e 304
13.2.2.1.6 EXECUTE _QUERY ..t e e e e 305
13.2.2.1.7 EXECUTE _UPDATE. . o e e 305
13.2.2.1.8 ITERATOR_CONVERSION. . ..ottt e e e e 305
13.2.2.19 NAMED _RESUL T, .t e e e e e e e 306
1322100 NO _RESULT. .o e e e e e 306
1322110 OTHER. . . e e e e 306
1322112 POSITIONED. . . . ottt e e e e e e e e e 307
1322113 POSITIONED _RESULT. . .ottt ettt et e e e e e e e e e 307
1322114 PREPARED _STATEMENT e e 307
1322105 QUERY .. 308
1322116 QUERY_FOR UPDATE. . .. ittt e e e 308
13.2.2.1.17 RELEASE _SAVEPOINT. ... e e e e e e e 308
1322118 ROLLBA CK. . . 309
1322119 SAVEPOINT . . oot e 309
1322120 SET_TRANSACTION. . ..ttt e e e e e e e e e e 309

©ISO/IEC 2003 — All rights reserved Contents xiii

1 SO/l EC 9075-10:2003 (E)

1322121 SINGLE_ROW _QUERY e e e 310
1322122 STATEMENT . . oot e et e e e 310
1322123 UNTYPED _SELECTttt e et e e e e 310
1322124 NV ALUES. . .o 310
13.2.2.2 CONSITUCIONS. . . . ottt ettt et e e e e e e e e 311
132221 ENErYINFO (). . oo oot 311
13223 MEINOOS. . ..o 311
132231 EXECULETYPETOSIING (INL). . . o ottt e e e e e e e e e e e e e e e i 311
13.2.232 QEIDESCIIPIOr ().« « v vttt e et e e e e e 311
13.2.2.3.3 JEEEXECULETYPE ().« v vttt et e e e e e e e e e e e 312
13.2.2.34 OEtLINENUMDBEr (). . oot e 313
13.2.2.35 GEIPArAMCOUNE (). « .« o e ettt e e e e e e e e e 313
13.2.2.3.6 getParaminfo (INt).o 313
13.2.2.37 QEtRESUIESEICOUNE (). .+« v vt ettt e e e e e e e e e e e e 314
13.2.2.3.8 getResUltSELINfO (IND). oo 314
13.2.2.3.9 OEtRESUITSEINAIME (). . o vttt et e e e e e 315
13.2.2.3.10 QEtRESUIESEITYPE (). -« o vt v vttt e e e et e e e e e e e e e e e e e 315
1322311 QEROIE (). . oot vttt et e 316
1322312 QEtSQLSIING ()r « v v o vt ettt ettt e e e e e e e 317
1322313 getStatementTYPE (). .« oottt et e e e 317
1322314 getTransaCtioNDESCIIPLOr (). « .« v vttt e e e e e e e e e e e e e 317
13.2.2.3.15 QSDEfiNedROIE (IND). . ..o vttt 318
13.2.2.3.16 isvValidDescriptor (ObJeCt, INt).o it it e e 318
13.2.2.3.17 iSVAdEXECULETYPE (INL). . . o o ettt ettt e e e e e e e e e e e e e e 319
1322318 isVaAidResUItSEITYPE (IN). . ..o oot e e e 319
1322319 isVaAlidROIE (ML), . . oottt e ettt e e 320
1322320 isvaidStatementType (iN). oot 320
13.2.2.3.21 resultSEtTYPETOSIING (IND). . . . o vttt et e e e e e e et et ettt e e e et 321
13.22.3.22 r0l€TOSHING (IN0). . .o\ttt e e e e e 321
13.2.2.3.23 statementTypeToString (INL).ottt e e e 322
1322324 validateODJECE (). .« - v vttt 322
1323 sglj.runtimeprofile Profile. oo 322
13.2.3. 1 CONSITUCTONS. . . o ottt ettt e et e e e e e e e e e e e e e e e e e 323
13.231.1 Profile (Loader).co 323
13232 MENOUS. . . .o 324
13.23.21 deregisterCustomization (CUStOMIZation).ttt e e 324
13.2.3.2.2 getConnectedProfile (Connection). e 324
13.23.2.3 QELCONEEXINAIME ().« + o v vttt e e e e e e e e e e 325
13.23.24 QELtCUSLOMIZALTIONS (). .+« v v vt ettt e e e e e e e e e e 325
13.2.3.25 0etJaVaTYPE (SING). . v vttt ettt e e e e 325
13.2.3.2.6 getdavalype (TYPEINfO). .. v it e e e e e e e 326
13.2.3.2.7 0= (0o (=) TR 327

xiv Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

13.2.3.2.8 GEtPIOFIIED@A ().« « o v v ettt et e et 327
13.23.29 QetPrOfilENAME (). .. oot 327
1323220 getTimeStamMP (). « . oottt e e e e 327
13.23.2.11 instantiate (Loader, INPUESIIEaM). oottt e e 328
13.23.212 instantiate (Loader, String). vt ittt 328
13.2.3.213 registerCustomization (CUStOMIZAtiON).ottt e e e e 330
13.2.3.2.14 registerCustomization (Customization, Customization).iiuieieininenan.. 330
13.2.3.215 replaceCustomization (Customization, Customization).ouuiiiinniin e, 331
1324 sglj.runtimeprofileProfileDataot 331
132,41 CONSIUCLOIS. . . o oo ettt et et et e e e e e e e e e e e e e e e e e e 332
13.24.11 ProfilED@ta (). . . . oo v vt e 332
13242 MENOUS. . ..ot 332
13.24.21 QEtENtryInfo (IND). . . . oo 332
13.24.2.2 OEIPTOfIE (). o o e 332
13.24.2.3 QELSOUrCERITE (). . o v ottt 333
13.24.24 SIZE () ottt 333
13.25 sglj.runtime.profile.SetTransactionNDESCIiPtOr. oottt et ettt et 333
13251 Vaiables. . ..o 334
132511 READ _NONE. . .. e e 334
13.25.1.2 READ _ON LY . ittt e e e e e e 334
132513 READ _WRITE. . . e e e e e e e e 334
13252 CONSIIUCLOIS. . . . oo ettt et et e 335
13.25.2.1 SetTransactionDescriptor (int, 1ND).ttt it et e e 335
13253 MEINOUS.o 335
13.25.31 OELACCESSMOOE ().« v v ettt e e e e e e e 335
13.25.3.2 QEtISOlAtiONLEVEL (). . . o ettt 336
13.2.6 sglj.runtime.profile Typelnfo. o 336
13.2.6.1 Vaiables. . ..o 336
13.26.1.1 N 336
13.2.6.1.2 INOU T . e e e e e e e e 337
13.2.6.1.3 OU T . e e 337
13.2.6.2 CONSITUCIONS. . . . ottt ettt e et e 337
13.26.21 TYPEINTO () o v oottt 337
13.2.6.3 MEINOUS.o 338
13.2.6.3.1 etdavaTYPENAME (). . oottt e e e e e 338
13.2.6.3.2 getMarkerindeX (). .. .o oo 338
13.2.6.3.3 0= 117/ oo L= 339
13.2.6.34 OEINAIME (). . ot ettt 339
13.2.6.35 L SQL TYPE () -+ v v vttt et e e e e e e e e 340
13.2.6.3.6 OEtSOQLTYPENGAME ().« v vttt ettt e e e e e e 340
13.2.6.3.7 ISVAAMOOE (IND). ..ottt e e e e e e 341
13.2.6.3.8 ISVAlASQLTYPE (INL). . oo ettt e e e e e e e e e e e e et e 341

©ISO/IEC 2003 — All rights reserved Contents xv

1 SO/l EC 9075-10:2003 (E)

13.2.6.3.9 MOAETOSING (IND). . . . oottt e e e s 342
13.2.6.3.10 SQLTYPETOSIING (INL). . . o v v ettt e e e e e e e e e e e et e e e e e 342
13.2.6.3.11 validatEOD ECE (). .« o oo e et 343
14 sglj.runtime.profileutil.ProfileCustomizer.o 345
141 MEtNOdS. . . 347
1411 acceptsConnection (CONNECHION).ottt e e e et e e e e e 347
1412 customize (Profile, Connection, ErrorLog). 347
15 SHAIUS COUBS. . . ettt et e et e e e e e e e e e e e e e 349
15.1 SO ST AT E. ottt e e 349
16 CONfOrMANCE. . ..ottt e e e e e e e e 351
16.1 Claims of conformanceto SQL/OLB.t e e 351
16.2 Additional conformance requirements for SQL/OLB. it 351
16.3 Implied feature relationships of SQL/OLB. i e e e 351
Annex A SQL Conformance SUMMaY.ouii i e e s 353
Annex B Implementation-defined elements............... 355
Annex C Implementation-dependent elements. ... 359
Annex D SOQL feature taxOnomy.t 363
Annex E SQLJ tutorial. ... e 365
E.l DESIGN QOBIS. . . . ottt 365
E.2 Advantages of SQLI OvEr DB C. e 365
E.3 Consistency with existing embedded SQL languages. oottt 366
EA4 EXAMPI S, . . o 367
E4.1 HOSt Variables.o 367
E4.2 HOSE EXPIESSIONS. . . . o .ottt ettt e e e e e e e 367
EA4.3 SO T ClAUSES. . o v vt ittt et e 368
E4.4 Database CONNECLION CONLEXL.ttt et e e e e et et e e e 368
E45 Default connection CONEXL.ottt et e e e e e e 368
E.4.6 1= (0] = 369
E.4.6.1 Positional bindingsto COlUMNS. o 369
E.4.6.2 Named bindingSto COIUMNS.ot e e 370
E.4.6.3 Providing names for columns of QUENES.ot 371
E.4.7 Calls to stored procedures and fUNCLIONS.ottt e et et 371
E.4.8 Using multiple SQLJ contexts and CONNECLIONS.ottt it et 372
E.4.9 SQL execution control and StatUs. oottt e e 373
E.410 Multiple IDBC ResultSets from stored procedurecalls. 374
E.411 Creating an SQLJiterator object from aJDBC ResultSet object. 374
E.412 Obtaining a JDBC ResultSet object from an untyped iterator object. 375
E.4.13 Working with user-defined types.ot 375
E.414 EXAMPlE PrOgram. . . oottt ettt e e e e e e e 377
E.415 Host variable definition. 378

xvi Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

©ISO/IEC 2003 — All rights reserved Contents xvii

1 SO/l EC 9075-10:2003 (E)

Tables
Table Page
1 SQLJ output assignability.ot 20
2 SQLI input assignability.ot 26
3 Association of roles with SQLJ <executable Clause>Ss. oottt e e e e 63
4 SQLI tYPE PrOPEITiES. . . oottt ettt e e e 67
5 Methods retained from java.sgl.ReSUItSEL. o 208
6 Methods not retained from javasgl.ResUItSEL. 209
7 Additional methods uniqueto RTRESUITSEL.o o e 210
8 Methods retained from java.sgl.Statement. oo e 241
9 Methods not retained from java.sgl.Statement. e 242
10 Methods retained from javasgl.PreparedStatement. 242
11 Methods not retained from java.sgl.PreparedStatement.o 243
12 Methods retained from javasgl.CallableStatement. 244
13 Methods not retained from javasgl.CallableStatement. 244
14 Additional methods unique to RTStatement.ot e et 245
15 Customize ResUlt INterpretation.ottt e e e et e e 346
16 SQLSTATECIassand sUbCIassValUES.ot e e et e et et et e e 349
17 Implied feature relationships of SQL/OLB. ot 351
18 Feature taxonomy for optional fEAIUIES. i 363

©ISO/IEC 2003 — All rights reserved Contents xviii

1 SO/l EC 9075-10:2003 (E)

Foreword

I SO (the International Organization for Standardization) and | EC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1SO and |EC technical committees
collaboratein fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with 1SO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

In the field of information technology, 1SO and IEC have established ajoint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies
casting avote.

Attention isdrawn to the possihility that some of the elements of this International Standard may be the subject
of patent rights. ISO and I1EC shall not be held responsible for identifying any or all such patent rights.

International Standard | SO/IEC 9075-10 was prepared by Joint Technical Committee | SO/IEC JTC 1, Information
technology, Subcommittee SC 32, Data management and interchange.

I SO/IEC 9075 consists of the following parts, under the general title Information technology — Database lan-
guages — SQL.:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored M odules (SQL/PSM)

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 11: Information and Definition Schema (SQL/Schemata)

— Part 13: Routines and Types Using the Java™ Programming Language (SQL/JRT)
— Part 14: XML-Related Specifications (SQL/XML)

Annexes A, B, C, D, and E of this part of ISO/IEC 9075 are for information only.

©ISO/IEC 2003 — All rights reserved Foreword xix

1 SO/l EC 9075-10:2003 (E)

I ntroduction

The organization of this Part of this International Standard is as follows:
1) Clausel, “Scope’, specifies the scope of this part of 1SO/IEC 9075.

2) Clause 2, “Normative references’, identifies additional standards and publically-available specifications
that, through reference in this part of ISO/IEC 9075, constitute provisions of this part of |SO/IEC 9075.

3) Clause 3, “Definitions, notations, and conventions’, defines the notations and conventions used in this part
of ISO/IEC 9075.

4) Clause 4, “Concepts’, presents concepts used in the definition of the Object Language Bindings.
5) Clauseb5, “Lexical elements’, defines the lexical elements of the language.
6) Clause 6, “Scalar expressions’, defines the elements of the language that produce scalar values.

7) Clause7, “Additional common elements’, defines additional language elements that are used in various
parts of the language.

8) Clause 8, “Embedded SQL", defines the host language embeddings.

9) Clause9, “Binary portability”, provides an overview of the binary portability and profile customization
reguirements for SQLJ.

10) Clause 10, “ SQLJgrammar constructs’, defines the BNF conventions, common subelements, and datatype
mappings for SQLJ.

11) Clause 11, “<SQLJ specific clause> and contents’, defines the syntax and rules for SQL J constructs.
12) Clause 12, “Package sqlj.runtime”, specifies the SQLJ runtime package.

13) Clause 13, “Package sglj.runtime.profile”, specifies the SQLJ runtime profile package.

14) Clause 14, “sglj.runtime.profile.util.ProfileCustomizer”, specifies the SQLJ profile customizer class.
15) Clause 15, “ Status codes’, defines SQLSTATE values related to Object Language Bindings.

16) Clause 16, “Conformance”, defines the criteriafor conformance to this part of 1SO/IEC 9075.

17) Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the conformance
reguirements of the SQL language.

18) Annex B, “Implementation-defined elements’, is an informative Annex. It lists those features for which
the body of this part of |SO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL -data and/or schemas, or any other behavior is partly or wholly implementati on-defined.

19) Annex C, “Implementation-dependent elements’, isan informative Annex. It lists those features for which
the body of this part of |SO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL -data and/or schemas, or any other behavior is partly or wholly implementation-dependent.

xX Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

20) Annex D, “SQL feature taxonomy”, is an informative Annex. It identifies features of the SQL language
specified in this part of 1SO/IEC 9075 by anumeric identifier and a short descriptive name. This taxonomy
is used to specify conformance and might be used to develop other profiles involving the SQL language.

21) Annex E, “SQLJ tutoriad”, is an informative Annex. It contains tutorial information about the features of
the SQL language that are specified in this part of ISO/IEC 9075.

In the text of this part of 1SO/IEC 9075, Clauses begin a new odd-numbered page. Any resulting blank space
is not significant.

All Clauses of this part of ISO/IEC 9075 are normative.

©ISO/IEC 2003 — All rights reserved Introduction xxi

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

xXii Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

INTERNATIONAL STANDARD ISO/IEC 9075-10:2003 (E)

| nfor mation technology— Database languages —SQL —
Part 10: Object Language Bindings (SQL/OLB)

1 Scope

Thispart of 1SO/IEC 9075 defines extensions of Database language SQL to support embedding of SQL statements
into programswritten in the Java™ programming language (Javais aregistered trademark of Sun Microsystems,
Inc.). The embedding of SQL into Javais commonly known as“SQLJ’. This part of 1SO/IEC 9075 specifies
the syntax and semantics of SQLJ, as well as mechanisms to ensure binary portability of resulting SQLJ
applications. In addition, it specifiesanumber of Java packages and their contained classes (including methods).

Throughout this part of |SO/IEC 9075, the terms"SQLJ" and "SQL/OLB" are used synonymously.

©ISO/IEC 2003 — Al rights reserved Scope 1

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

2 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
2.1 JTC 1standards

2 Normativereferences

Thefollowing referenced documents are indispensabl e for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

21 JTC 1lstandards

[1S0646] 1SO/IEC 646:1991, Information technology — SO 7-bit coded character set for information
interchange.

[Framework] 1SO/IEC FCD 9075-1:2003, Information technol ogy —Database languages— SQL —Part 1:
Framework (SQL/Framework).

[Foundation] ISO/IEC FCD 9075-2:2003, I nfor mation technol ogy — Database languages — QL —Part 2:
Foundation (SQL/Foundation).

[PSM] I1SO/IEC FCD 9075-4:2003, I nfor mation technology — Database languages — SQL — Part 4: Per-
sistent Sored Modules (SQL/PSM).

[MED] ISO/IEC FCD 9075-9:2003, Information technology — Database languages — SQL —Part 9:
Management of External Data (SQL/MED).

[Schemata] | SO/IEC FCD 9075-11:2003, I nformation technol ogy — Database languages— SQL —Part 11
Information and Definition Schemas (SQL/Schemata).

[UCS] ISO/IEC 10646-1:2000, I nformation technology — Univer sal Multi-Octet Coded Character Set (UCS)
— Part 1. Architecture and Basic Multilingual Plane.

[UCSsuppl] ISO/IEC FDIS 10646-2:2000, I nformation technology — Universal Multi-Octet Coded Character
Set (UCS) —Part 2: Qupplementary Planes.

[Ordering] 1SO/IEC 14651:2001, Information technology — International string ordering and comparison
— Method for comparing character strings and description of the common template tailorable ordering.

2.2 Other international standards

[Unicode 3.0] The Unicode Consortium, The Unicode Sandard, Version 3.0, Reading, MA, Addison-Wesley
Devel opers Press,2000. ISBN 0-201-61633-5.

[Unicode 3.1] The Unicode Consortium, The Unicode Standard, Version 3.1.0, Unicode Sandard Annex
#27: Unicode 3.1 (which amends The Unicode Sandard, Version 3.0). 2001-03-23
http://ww. uni code. org/ uni code/ reports/tr27/

©ISO/IEC 2003 — All rights reserved Normativereferences 3

I SO/I EC 9075-10:2003 (E)
2.2 Other international standards

[Unicodel5] Davis, Mark and Durst, Martin. Unicode Sandard Annex #15, Unicode Normalization Forms,
Version 21.0, 2001-03-23. The Unicode Consortium.
http://ww. uni code. or g/ uni code/ reports/tr15/tr15-21. htm

[Unicodel9] Davis, Mark. Unicode Standard Annex #19, UTF-32, Version 8.0, 2001-03-23. The Unicode
Consortium.
http://ww. uni code. org/ uni code/ reports/tr19/tr19-8. htni

[UnicodelQ] Davis, Mark and Whistler, Ken. Unicode Technical Sandard #10, Unicode Collation Algorithm,
Version 8.0, 2001-03-23. The Unicode Consortium.
http://ww. uni code. or g/ uni code/ reports/tr10/tr10-8. htni

[Java] The Java™ Language Specification, Second Edition, Bill Joy (Editor), Guy Steele, James Gosling,
and Gilad Bracha, Addison-Wesley, 2000, ISBN 0-201-31008-2

[JDBC] JDBC™ 3.0 Specification, Final Release, John Ellis & Linda Ho with Maydene Fisher, Sun
Microsystems, Inc., October, 2001

[IJNDI] Java Naming and Directory Interface™ Application Programming Interface (JNDI API), Sun
Microsystems, Inc., July 14, 1999.

[JavaBeans] The JavaBeans™ 1.01 Specification
http://java. sun. com product s/ j avabeans/ docs/ spec. htm

[JDBCtutorial] JIDBC™ API Tutorial and Reference, Second Edition: Universal Data Accessfor the Java™
2 Platform, Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, Mark Hapner, Addison Wesley,
Reading, Massachusetts, 1999, ISBN: 0-201-43328-1

[RFC2368] RFC 2368, The mailto URL scheme, P. Hoffman, L. Masinter, J. Zawinski, July, 1998
http://ww. ietf.org/rfc/rfc2368.txt

[RFC2396] RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding,
L. Masinter, August, 1998
http://ww. ietf.org/rfc/rfc2396.1txt

4 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
3.1 Déefinitions

3 De€finitions, notations, and conventions

3.1

Definitions

This Subclause modifies Subclause 3.1, “ Definitions” , in |SO/IEC 9075-2.

311

Definitions provided in Part 10

For the purposes of this part of |SO/IEC 9075, the following definitions apply:

3111

3112

3113

3114

3115

3116

accessor method: A method that, when invoked, accesses column datareturned by aresult set iterator
object. An accessor method is either a named accessor method or a positioned accessor method. A
named accessor method is declared as the result of an <iterator declaration clause> containing an
<iterator spec declaration> of <named iterator>. A named accessor method derives both its name and
itsresult datatype from its defining <named iterator> clause. A positioned accessor method is declared
astheresult of an <iterator declaration clause> containing an <iterator spec declaration> of <positioned
iterator>. A positioned accessor method derivesits result datatype from its defining <positioned iterator>
clause.

customization: Animplementation-specific process of tailoring an SQL Japplication's embedded SQL
to run against atarget SQL-implementation. This frequently involves creating new versions of some
of the object instances stored in the SQL J translation-generated profile, to create customized profile
object instances.

generated connection class: A class whose methods, when invoked, maintain a named database con-
nection. The signature of this classis produced as a side effect of the direct inclusion of a<connection
declaration clause> in a Java application.

generated iterator class: A class whose methods, when invoked, provide access to the rows and
columns of SQL queries associated with result set iterators. A generated iterator classis either agen-
erated named iterator class or agenerated positioned iterator class. The signature of agenerated named
iterator classis produced as aside effect of theinclusion of a<iterator declaration clause> that contains
an <iterator spec declaration> of <named iterator>, and it specifies named accessor methods. The sig-
nature of agenerated positioned iterator classis produced as aside effect of theinclusion of a<iterator
declaration clause> that contains an <iterator spec declaration> of <positioned iterator>, and it specifies
positioned accessor methods.

getter method: A method defined on objects of either the RT Statement or RTResultSet class or a
subclass of such aclass, and that when invoked popul ates host variables of agiven datatype when those
host variables appear as bind variables.

implementation-specific: Possibly differing between SQL-implementations, but provided as part of
each particular SQL-implementation.

©ISO/IEC 2003 — All rights reserved Definitions, notations, and conventions 5

I SO/I EC 9075-10:2003 (E)
3.1 Déefinitions

3117 installation (of an SQLJ application): Animplementation-defined, and possibly empty, phase that
includes anything other than SQLJ tranglation and customization needed prior to the SQL J application
being able to execute against its target SQL-implementation.

3.1.1.8 Javaprimitive datatype: One of the following Javatypes. boolean, byte, short, int, long, float, or
double.

NOTE 1 — For interoperability with JDBC, the Java primitive datatype char isintentionally omitted from thislist.

3.1.19 I-valued expression: A Javaexpression that is allowed to appear as the LeftHandSde of a Java
assignment, as defined in [Java]. For example, an I-valued expression may be a named variable, such
asalocal variable or afield of the current object or class, or it may be a computed variable, as can
result from afield access or an array access.

31110 profile A Javaserialized object produced by an SQLJ translator, containing information regarding
the input required and output generated by individual SQL statements, as well as the text of those
statements. The serialized objects can then be accessed for additional processing by a customizer or
by the SQL J runtime system.

31111 profilefile: A file containing one or more profiles generated as aresult of an SQLJ tranglation.

31112 setter method: A method defined on objects of the RT Statement class or a subclass of RT Statement,
that when invoked passes bind variables of the given datatype as input parameters to the database.

31113 SQLJtrandation: The processof transforming a Javaapplication program contai ning embedded SQL
into two or more different files, one identical to the original Java application except that use of
embedded SQL is replaced with Java code invoking SQLJ's runtime API, and the others being profile
files.

3.2 Notation

This Subclause modifies Subclause 3.2, “ Notation” , in | SO/IEC 9075-2.

[Insert this paragraph| All keywords and SQL <token>s contained within a <statement spec clause> or an
<assignment spec clause> (i.e., those productions immediately contained between the <left brace> and <right
brace> of an enclosing <SQLJ specific clause>) are case-insensitive except for:

— Any token appearing within the <expression> of an <embedded Java expression> is a Java token and
therefore is case-sensitive.

— Any SQL <token> denoting an SQL <delimited identifier> is case-sensitive.

|Insert this paragraph| All other keywords and tokens are case-sensitive as specified by [Java].

NOTE 2 — If a<query clause> is assigned to a <named iterator>, column namesin the <query clause>s select list that differ only in
the case of one or more characters should use the SQL AS clause to avoid ambiguity, even if one or both of those column names are
specified using <delimited identifier>s.

6 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
3.3 Conventions

3.3 Conventions

This Subclause modifies Subclause 3.3, “ Conventions’ , in ISO/IEC 9075-2.

|Insert this paragraph| In addition, bolding is used when aterm isfirst introduced in this part of 1SO/IEC 9075.

3.3.1 Useof terms

This Subclause modifies Subclause 3.3.1, “ Use of terms”, in | SO/IEC 9075-2.

3.3.1.1 Other terms

This Subclause modifies Subclause 3.3.1.1, “ Other terms”, in |SO/IEC 9075-2.

[Insert this paragraph| In this International Standard, the word “object” is used in phrases of the form “ajava
type object”, where java type is the name of a Java class or interface. If java type is the name of a Java class,
then this phrase is meant to denote a Java object that is either an instance of the class java type, meaning that
it has been created by invocation of a constructor of the class java type, or an instance of one of the subclasses
of classjava type.

Insert this paragraph| If java type is the name of a Javainterface, then this phrase denotes an object that is one
of the following:

— Aninstance of a class that implements the interface java type.
— Aninstance of a class that implements an interface that extends the interface java type.

— Aninstance of asubclass of such class.

| Insert this paragraph\ The following denotations a so hold throughout this International Standard:

— A connection context object is an instance of a class that is generated by an SQL Jtranslator as the result
of processing a <connection declaration clause>. The generated class implements the interface
sqlj.runtinme. Connecti onCont ext .

— An execution context object is an instance of the classsql j . runt i ne. Execut i onCont ext .

— A named iterator isaninstance of aclassthat is generated by an SQL Jtranslator asthe result of processing
an <iterator declaration clause> that contains a <named iterator>. The generated class implements the
interfacesql j . runti me. Nanedl t er at or.

— A positioned iterator is an instance of a classthat is generated by an SQLJ trandlator as the result of pro-
cessing a<iterator declaration clause> that contains a<positioned iterator>. The generated classimplements
theinterfacesql j . runti nme. Posi ti onedlt erator.

— Aniterator iseither anamed iterator or a positioned iterator.

©ISO/IEC 2003 — All rights reserved Definitions, notations, and conventions 7

I SO/I EC 9075-10:2003 (E)
3.3 Conventions

3.3.2 Specification of translator-gener ated classes

The conventions used in this part of | SO/IEC 9075 are defined in | SO/IEC 9075-1, with the following additions.
Descriptions of tranglator-generated classes and their rel ationshipsto syntax elements contained in <executable
spec clause> specified in the Subclauses of Clause 10, “ SQLJ grammar constructs’, and Clause 11, “<SQLJ
specific clause> and contents’, are specified in terms of

— Function
Describes the purpose of the syntax element or trandator-generated class.
— Signature
Defines the client-visible signature of the trandlator-generated class.
— Definitionsand Rules
Defines the semantic rules for the syntax element or translator-generated class.
— Profile Entrylnfo Properties

Definesthe properties of the profile Entrylnfo object created for this syntax element, if any. If an EntryInfo
Javafield is not listed explicitly in this heading, it defaults to the value described in Subclause 9.9,
“Entrylnfo overview”.

— Binary Composition

Defines additional methods and/or calls to include for binary composition in the code generated for this
clause, if any.

The property of binary composition states that each of the elements defined by <SQL J specific clause>s
can interoperate with e ements defined in other <SQL J specific clause>s, evenif the <SQL J specific clause>s
are translated with different SQLJ translators. The Binary Composition headings define the minimal set
of expected behavior for each <SQL J specific clause> to achieve this interoperability.

The requirements defined in these headings augment the regquirements defined in the Signatur e headings.
— Code Generation

Defines the runtime calls made to the ConnectedProfile, RT Statement, and RTResultSet interfaces of the
sglj.runtime.profile package by the various <SQLJ specific clause>s. These interfaces are implemented
by implementation-specific runtime packages, and thusthe calls made to them shall be uniformly specified.

These headings are distinguished from the Binary Composition headingsin that they specify the interna
implementation of the <SQL J specific clause>s, whereasthe Binary Composition headings define additions
to the client visible signature of the <SQLJ specific clause>s.

The Code Gener ation headings only specify the calls that shall eventually be made to the aforementioned
interfacesfor each <SQL J specific clause>. Unless otherwise stated, these headings do not specify the exact
SQL Jtrand ation of each <SQL Jspecific clause>. An SQLJtrand ator isfreeto trand ate each <SQL J specific
clause> using any number of intermediate calls or helper classes, so long as the methods are eventually
called as specified in these headings.

NOTE 3— TheProfile Entrylnfo Properties, Binary Composition, and Code Generation headings are intended for implementations
of SQL Jtranslators and/or runtime components. They can be skipped by thoseinterested only in the SQL J programming language.

8 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
3.3 Conventions

Not all term headings are used in all Subclauses containing descriptions of translator-generated classes or of
syntax elements contained by <executable spec clause>.

©ISO/IEC 2003 — All rights reserved Definitions, notations, and conventions 9

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

10 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
4.1 Introduction

4 Concepts

This Clause/Tabl e/ Appendix/Subclause modifies Clause 4, “ Concepts’, in ISO/IEC 9075-2.

4.1 Introduction

I SO/IEC 9075-2 specifies embedded SQL for the programming languages. Ada, C, COBOL, Fortran, MUMPS,
Pascal, and PL/I. This part of ISO/IEC 9075 provides a similar embedding, <embedded SQL Java program>,
tailored for the Java programming language.

SQLJ comprises a set of clauses that extend Java programs to include SQL constructs. An SQLJtrandator is
autility that transforms those SQLJ clauses into standard Java code that accesses the database through a call
interface. The output of an SQLJ trandlator is a generated Java source program that can then be compiled by
any Javacompiler. Java programs contai ning embedded SQL are amenableto static analysis of SQL statements
for the purposes of syntax checking, type checking and schema validation.

SQL Jiscompatiblewith arange of SQL Jtrand ation approaches. In aclient environment, SQL J can be processed
by astandalone SQL J-to-Javatrandator or by a Javaintegrated devel opment environment (IDE), to emit standard
Java code with calls to any appropriate database API. If Javais supported as a stored procedure language (in
an RDBMS server), SQLJ translation can be integrated with Java and SQL compilation for ease-of-use and
performance.

4.2 Embedded syntax

This Subclause modifies Subclause 4.23, “ Embedded syntax” , in ISO/IEC 9075-2.

|Replace 1st paragraph| An <embedded SQL host program> (<embedded SQL Ada program>, <embedded
SQL C program>, <embedded SQL COBOL program>, <embedded SQL Fortran program>, <embedded SQL
MUMPS program>, <embedded SQL Pascal program>, <embedded SQL PL/I program>, or <embedded SQL
Javaprogram>) isacompilation unit that consists of programming languagetext and SQL text. The programming
language text shall conform to the requirements of a specific standard programming language. The SQL text
shall consist of one or more <embedded SQL statement>sand, optionally, one or more <embedded SQL declare
section>s, as defined in this International Standard. This allows database applications to be expressed in a
hybrid form in which SQL-statements are embedded directly in a compilation unit. For all <embedded SQL
host program>s other than <embedded SQL Java program>s, such a hybrid compilation unit is defined to be
equivalent to astandard compilation unit in which the SQL -statements have been replaced by standard procedure
or subroutine calls of <externally-invoked procedure>sin aseparate SQL-client module, and in which each
has been removed and the declarations contained therein have been suitably transformed into standard host-
language syntax. When the <embedded SQL host program> immediately contains an <embedded SQL Java
program>, such a hybrid compilation unit is defined to be equivalent to a standard compilation unit in which
the SQL statements have been replaced by use of Java classes whose methods, when invoked, make use of
JDBC.

©ISO/IEC 2003 — Al rights reserved Concepts 11

I SO/IEC 9075-10:2003 (E)
4.2 Embedded syntax

| Replace 3rd paragraph\ An implementation may reserve a portion of the name space in the <embedded SQL
host program>. For al <embedded SQL host program>s except <embedded SQL Java program>s, hame space
may be reserved for the names of procedures or subroutines that are generated to replace SQL -statements and
for program variables and branch label sthat may be generated as required to support the calling of these proce-
dures or subroutines; whether this reservation is made is implementation-defined. They may similarly reserve
name space for the <module name> and <procedure name>s of the generated <SQL -client modul e definition>
that may be associated with the resulting standard compilation unit. The portion of the name space to be so
reserved, if any, isimplementation-defined. When the <embedded SQL host program> immediately contains
an <embedded SQL Java program>, name space is reserved for variable names, internal class names, and
resource file names. See Subclause 10.1, “ SQL J reserved names’, for further details.

4.3 SQL constructs

The following kinds of SQL constructs are permitted to appear in SQLJ programs:

— Queries. SELECT statements and expressions.

— SQL-data change statements (DML): | NSERT, UPDATE, DELETE

— Data Statements: FETCH, SELECT. . . | NTO

— Transaction control: COVM T, ROLLBACK,; etc.

— DataDefinition Language (DDL; called “ SchemaManipulation Language” in SQL): CREATE, DROP, etc.
— Callsto stored procedures: e.g., CALL MYPROC(: x, :y, :2Z)

— Invocations of stored functions: e.g., VALUES(MYFUN(: x))

— Assignment statement: SET

4.4 Character strings

This Subclause modifies Subclause 4.2, “ Character strings’, in ISO/IEC 9075-2.

4.4.1 Unicode support

Javarelies on the Unicode character set [Unicode] (also known as ISO/IEC 10646-1, Universal Multi-Octet
Coded Character Set (UCS); see[UCS]) for String data and for identifiers. That allows Java to represent most
character dataiin auniform way. [Foundation] defines support for Unicode through its UTF8, UTF16, and
UTF32 character sets, which represent different encodings for Unicode character data. When character datais
moved between an SQL-server and an SQL/OLB host program, an SQL/OLB implementation that provides
SQL character set support for UTF8, UTF16, and/or UTF32 isrequired to support implicit conversion between
Java string data and the supported Unicode encodings. Any support for implicit conversions to and from char-
acter sets other than Unicode isimplementation-defined. Because of Java's reliance on Unicode as an internal

12 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.4 Character strings

representation for character data, the SQL/OLB specification does not define support for host variables that
hold character data based on character sets other than Unicode.

The rulesin [Foundation] for appearance of charactersin SQL <token>s of SQL statements also govern the
appearance of charactersin SQLJ clauses, with the exception of characters appearing in Java identifiers and
Java host expressions. All characters appearing in an SQLJ clause shall be defined in the Unicode character
Set.

4.4.2 Character sets

This Subclause modifies Subclause 4.2.7, “ Character sets’, in 1SO/IEC 9075-2.

— [Augment 1st bullet| If <embedded SQL host program> immediately contains an <embedded SQL Java
program>, then <SQL special character> shall include the <number sign> (#) in addition to the characters
that it otherwise required to contain.

45 Host variables

Arguments to embedded SQL statements are passed through host variables, which are variables of the host
language that appear in the SQL statement. Host variable names are prefixed by acolon (:). A host variable
contains an optional parameter mode identifier (IN,OUT, INOUT) followed by a Java host variable that isa
Javaidentifier, naming a parameter, variable, or Javafield. The evaluation of a Javaidentifier does not have
side effectsin a Java program, so it is permitted to appear multiple timesin the Java code generated to replace
an SQLJ clause.

4.6 Host expressions

SQLJ extends the traditional embedded support by allowing Java host expressions to appear directly in SQL
statements. Host expressions are prefixed by a colon (:) followed by an optional parameter mode identifier
(IN, OUT, INOUT) followed by a parenthesized expression clause. An expression clause contains alegal Java
expression that shall result in either: asingle value (in the case of IN or INOUT mode) and/or the site of aJava
I-valued expression (in the case of an OUT or INOUT mode).

The evaluation of host expressions does have side effectsin a Java program as they are evaluated by Java
rather than the SQL-server. Host expressions are evaluated |eft to right within the SQL statement prior to sub-
mission to the SQL-server.

Host expressions are always passed to and retrieved from the SQL-server using pure value semantics.

Assignments to output host expressions are also performed in lexical order.

©ISO/IEC 2003 — Al rights reserved Concepts 13

I SO/I EC 9075-10:2003 (E)
4.7 SQLJ clauses

4.7 SQLJ clauses

SQL statementsin SQL J appear in SQLJ clauses. SQL J clauses represent the mechanism by which SQL state-
ments in Java programs are communicated to the database.

Each SQLJ clause begins with the token #sql , whichis not alegal Javaidentifier, and isterminated by a
semicolon, and as such makes the clause and its SQL contents recognizable to an SQLJ trandator.

Thesimplest SQLJ clauses are executabl e clauses and consist of thetoken#sql followed by an SQL statement
enclosed in “curly braces’ ({ and }).

In an SQL J executable clause, the tokens that appear inside of the curly braces are SQL <token>s and <separa-
tor>s, except for the host variables. All host variables shall be distinguished by the colon character in order for
the trangdlator to be able to identify them. SQL <token>s and <separator>s never occur outside of the single
pair of curly braces of an SQL J executable clause.

In general, SQL <token>s are case-insensitive (except for identifiers delimited by double quotes), and can be
written in upper, lower, or mixed case. Java tokens, however, are case-sensitive. For clarity in examples, we
write case-insensitive SQL <token>sin uppercase, and write Java tokens in lowercase or mixed case.
Throughout this document, we use the lowercase nul | to represent the Java“null” value, and the uppercase
NULL to represent the SQL null value.

Host expressions are also permitted to be used as assignment targetsif the host expression evaluatesto a Java
[-valued expression.

4.8 Database connection context

Each SQL Jexecutable clause requires, either explicitly or implicitly, aconnection context object that designates
the database connection at which the SQL operation specified in that clause will be executed. The connection
context object isan optional expression, delimited by square brackets, that immediately followsthetoken#sql .

The connection context object designates a database at which the SQL statements will be executed, and the
session and transaction in which they are executed. A connection context is an object of a connection context
class, which is defined by means of an SQLJ connection clause. Given a JDBC Connection, a URL (see
[RFC2368], and [RFC2396] for more details about URL s), or aURL and information such as a user name and
password, a connection context class has methods for identifying and, if necessary, opening a connection to a
database. At run time, an SQLJ program shall use one of those methods to establish a database connection
before any SQLJ clauses are executed.

NOTE 4 — The connection context object implicitly specifies a database and associated schemas, and the default catalog and schema,
as per aJDBC Connection object.

14 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
4.9 Default connection context

4.9 Default connection context

If an SQL J clause contains an expression designating the connection context object on which it will be executed,
then that clauseis said to use an explicit connection. If the connection context object is omitted from a clause,
then that clause is said to use the default connection.

The specification of the default connection context is implementation-defined. Portable applications should
always use explicit connection contexts.

If aninvocation of an SQL Jtranglator indicates that the default connection context classis some class connctx,
then all SQLJ clauses that use the default connection context are trandated as if they had explicitly used the
connection context object connct x. get Def aul t Cont ext () .

Programs are permitted to install aconnection context object asthe default connection by callingset Def aul t -
Cont ext .

The default connection context object for aprogram is stored in a static variable of the default connection
context class. Some SQL J programs will wish to avoid using static variables. For example, Applets, reentrant
libraries, and some multithreaded programs will avoid static variables. Those programs will wish to use SQLJ
clauses with explicit connection contexts objects.

If an SQLJ program is executing inside a database as a“ stored procedure” (or is otherwise executing in an
environment that automatically provides aconnection context), callsto method Connect i onCont ext . get -
Def aul t Cont ext always return an object representing the schema in which the program is executing. An
SQL J program can detect whether it isexecuting in an environment that implicitly suppliesaconnection context
by callingConnect i onCont ext . get Def aul t Cont ext beforeitcalsConnecti onCont ext . set -
Def aul t Cont ext toinstall aconnection context object. An execution environment that automatically supplies
a connection context will return anon null connection context object.

The database connection used by the default connection context is defined by the data source bound to the name
j dbc/ def aul t Dat aSour ce using JNDI. If thisnameis not defined, the connection used isimplementation-
defined.

NOTE 5— “JNDI” isthe Java Naming Directory Interface, defined in [JNDI].

4.10 Schema checking using exemplar schemas

At SQL Jtranglation time, a connection context class playsadifferent role. It symbolizesthe “type” of database
schemato which the SQLJ program will connect at run time. The notion of the “type of a database schema” is
informal. It includes the names and privileges associated with tables and views, the “shapes’ of their rows,
stored programs, and so forth. The type of a schemais symbolized by an exemplar schema, which issimply a
database schema that contains the tables, views, programs, and privileges that would be required in order for
the SQL operationsin SQLJ clausesto execute successfully. An exemplar schemamight be the actual runtime
schema, or it might be another schemathat isa“typical” schema, in ways relevant to the SQLJ program being
translated.

If an exemplar schemaisbeing used, then theinvoker of an SQL Jtrandator shall provide amapping of connection
context classesto exemplar schemas. An SQL Jtrandator connects to the exemplar schemain order to provide
syntax checking, type checking and schemachecking for all SQLJ clausesthat will be executed in the connection

©ISO/IEC 2003 — Al rights reserved Concepts 15

I SO/IEC 9075-10:2003 (E)
4.10 Schema checking using exemplar schemas

context of the class “exemplified” by that schema. In that way, the exemplar schema represents the database
schemato which the application will connect at runtime. It is the responsibility of the application devel oper to
pick an exemplar schema that represents the run time schemas in relevant ways, e.g., having tables, views,
stored functions, and stored procedures with the same names and types, and having privileges set appropriately.

If no appropriate exemplar schemais available, or if it isinconvenient to connect to a database during SQLJ
program devel opment, then the programmer is permitted to omit the exemplar schema for a connection type.
SQLJ clauses to be executed on connections of that type will not then be schema checked at SQL J trandation
time, and will instead be checked later at installation or customization time.

The mapping of connection context classes to exemplar schemas is provided to an SQLJ trandator in an
implementation-defined way, typically by pairing connection context class names with connect strings and
passwords. For example, a client side SQLJ trandlator is permitted to require that mapping on the command
linein an invocation of the trandator. Those connect strings and passwords are then used as arguments to
invocations of ConnectionContext class constructors that establish a database connection to the exemplar
schema.

Since the connection context is optional in an SQLJ clause, if the connection context is absent from an SQLJ
clause, there shall be a default connection context class specified. The clause is then checked against the
exemplar schema corresponding to the class of the default connection context object for the program.

4.11 Using multiple SQLJ contexts and connections

SQL J supports connections to multiple database servers concurrently. Each database server that is connected
at runtime is modeled as a distinct connection context class in SQLJ programs. Multiple schemas co-located
within asingle database server are all accessible by a single connection context. Schemas located on different
database servers require separate connection contexts, one per database connection. The specification of the
appropriate connection context associated with an#sqgl statement allows type checking across multiple
database servers at trandlate time.

4.12 Dynamic SQL and JDBC/SQLJ Connection inter oper ability

The SQL Jlanguage provides direct support for SQL operations that are known at the time the program is
written. If someor al of aparticular SQL statement cannot be determined until runtime, it isadynamic operation.
To perform dynamic SQL operations from an SQLJ program, use JDBC. A Connect i onCont ext object
contains a JDBC Connection aobject that can be used to create JDBC Statement objects needed for dynamic
SQL operations.

4.12.1 Creating an SQLJ ConnectionContext from a JDBC connection

Every SQLJ ConnectionContext class includes a constructor that takes as an argument a JDBC Connection.
Thisconstructor isused to create an SQL J connection context object that sharesits underlying database connec-
tion with that of the JDBC connection.

16 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4,12 Dynamic SQL and JDBC/SQL J Connection inter oper ability

4.12.2 Obtaining a JDBC connection from an SQL J ConnectionContext

Every SQLJ ConnectionContext object has a get Connection method that returns a JDBC Connection object.
The JDBC Connection returned shares the underlying database connection with the SQL J connection context.
It can be used to perform dynamic SQL operations as described in [JDBC].

4.12.3 Connection sharing

An SQLJ ConnectionContext always contains a JDBC Connection and reliesupon it to provide communication
with the underlying database connection. Accordingly, calls to methods that affect connection state on one
object will also be reflected in the other object, asit is actually the underlying shared connection that is being
affected.

JDBC defines the default values for session state of newly created connections. In most cases, SQL J adopts
these default values. However, whereas anewly created JDBC connection has auto commit mode on by default,
an SQLJ connection context requires the auto commit mode to be specified explicitly upon construction.

4.12.4 Connection resour ce management

Calling the close method of a connection context object causes the associated JDBC Connection object and the
underlying database connection to be closed. Since connection contexts are permitted to share the underlying
database connection with other connection contexts and/or JDBC connections, it might not be desirableto close
the underlying database connection when a connection context is closed. A programmer might wish to release
the resources maintained by the connection context (e.g., statement handles) without actually closing the
underlying database connection. To this end, connection context classes al so support a close method that takes
as aboolean argument indicating whether or not to close the underlying database connection. Pass the constant
CLOSE_CONNECTION if the database connection should be closed, and KEEP_CONNECTION if it
should be retained. The variant of close that takes no argumentsis a shorthand for calling
close(CLOSE_CONNECTION).

If a connection context object is not explicitly closed before it is garbage-collected, then close(KEEP_CON-
NECTION) iscalled by thefinalize method of the connection context. This allows connection related resources
to bereclaimed by the normal garbage collection process while maintaining the underlying database connection
for other JDBC and SQL J objects that might be using it. Note that if no other JIDBC or SQLJ objects are using
the connection, then the database connection will also be closed and reclaimed by the garbage collection process.

Both SQL J connection context objects and JDBC connection objects respond to the close method. When writing
an SQL Jprogram, it issufficient to call the close method on only the connection context object. Thisisbecause
closing the connection context will also close the JIDBC connection associated with it. However, it is not sufficient
to close only the JDBC connection returned by the getConnection method of a connection context. Thisis

because the close method of a JDBC connection will not cause the containing connection context to be closed,
and therefore, resources maintained by the connection context will not be released until it is garbage-collected.

©ISO/IEC 2003 — Al rights reserved Concepts 17

I SO/IEC 9075-10:2003 (E)
4.12 Dynamic SQL and JDBC/SQL J Connection inter oper ability

The isClosed method of a connection context returnstrue if any variant of the close method has been called
on the connection context object. If isClosed istrue, then calling closeisano-op, and the effect of calling any
other method is implementati on-dependent.

4.13 SQL execution control and status

The execution semantics of SQL operations can be queried and modified via the execution context associated
with the operation. An execution context existsasaninstanceof classsql j . runt i me. Execut i onCont ext .

Thefollowing Execut i onCont ext Javafields control the execution environment of SQL operations. The
get XXX and set XXX methods read and change the XXX value. Once set, they affect all SQL operations sub-
sequently executed on that execution context.

— MaxRows specifies the maximum number of rowsto be returned by any query.

— MaxFi el dSi ze specifiesthe maximum number of bytesto be returned as data for any column or output
variable.
— QueryTi meout specifies the number of seconds to wait for an SQL operation to complete.

NOTE 6 — Runtime support of the above ExecutionContext Javafields, if set to anything other than their default values, is not part of
Core SQLJ. It isimplementation-defined whether or not such support is provided. If an implementation does not support an assigned
setting, then an attempt to register a statement with the ExecutionContext causes an SQL Exception condition to be thrown: OLB-specific
error — unsupported feature.

Thefollowing Execut i onCont ext Javafields describe the results of the last SQL operation executed.
— Updat eCount specifies the number of rows updated, inserted, or deleted during the last operation.
— SQ_War ni ngs describes any warnings that occurred during the last operation.

An execution context is associated either explicitly or implicitly with each executable SQL operation appearing
in an SQLJ program. An execution context can be supplied explicitly as an argument to each SQL operation.

If explicit execution contexts are used, each SQL operation can be executed using adifferent execution context
object. If an explicit connection context is also being used, both are allowed to be passed as arguments to the
SQL operation.

If an execution context isnot supplied explicitly as an argument to an SQL operation, adefault execution context
isused implicitly. The default execution context for aparticular SQL operationisobtained viatheget Execu-
ti onCont ext () method of the connection context used in the operation.

If neither aconnection context nor an execution context is explicitly supplied, the execution context associated
with the default connection context is used.

The use of an explicit execution context overridesthe execution context associ ated with the connection context,
referenced explicitly or implicitly by an SQL clause.

18 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

| SO/IEC 9075-10:2003 (E)
414 Iterators

4.14 |terators

A capability central to SQL isthe ability to execute queriesthat retrieve a“result set” of rowsfrom the database.
An SQLJ clause might evaluate a query and return aresult set iterator object containing the result set selected
by that query. Depending on the type of theiterator object, it ispermitted to be used withthe FETCH. . . | NTO
idiom of SQL to extract datainto host variables, or it might return column data through named accessor methods
having the names and types of columns returned by the query. The iterator declaration clause is permitted to
appear wherever a Java class definition may appear.

An SQLJiterator is a Java object that implements the interface sqlj.runtime.ResultSetlter ator and from
which the data returned by an SQL query can be retrieved. In that role, it corresponds to the cursor of SQL,
from which data are fetched. Unlike the cursor, however, an iterator object isafirst class object. An iterator
object can be passed as a parameter to amethod, and can be used outside the SQL J trand ation unit that creates
it, without losing its static type for the purposes of type checking of component interfaces.

An iterator object has one or more columns with associated Java types. Names that are Javaidentifiers can
optionally be provided for theiterator object columns. If the expressions selected by a query are unnamed, or
have SQL namesthat are not valid Javaidentifiers, then SQL column aliases can be used to name them. The
columns of an iterator object (which have Javatypes) are conceptually distinct from the columns of a query
(which have SQL types), and therefore, a means of matching one to the other shall be chosen. SQL J supports
two mechanisms for matching iterator object columns to query columns. They are bind by position and bind
by name.

Bind by position means that the left to right order of declaration of the iterator object columns places themin
correspondence with the expressions selected in an SQL query. Traditional FETCH. . . | NTOsyntax is used
to retrieve data from the iterator object into Java variables. Aniterator class that binds by position is declared
by providing a parenthesized, comma-separated list of datatypes, one per column of the rows returned by the
iterator object. Thelist specifies only the datatypes of the columns and does not specify aname for the columns.
Thedatatypesin thelist shall appear in exactly the same sequence as the data types of the columns of the rows
returned by the iterator object. The types of the SQL columnsin the query shall be convertible to the types of
the positionally corresponding iterator object columns, according to the SQL to Java type mappings of SQLJ.
Those conversions are statically checked at SQL J trandlation time if a database connection to an exemplar
schema.is provided to the trand ator.

Bind by name means that the name of each iterator object column is matched to the name of a column returned
by the SQL query, independent of the order in which that column appeared in the query. Named accessor
methods are generated by the SQL J trangdlator for each column of the iterator object. The name of a named
accessor method matches the name of a column returned by a query and its return type is the Java type of the
iterator object column. The FETCH. . . | NTOsyntax is not permitted to be used with an iterator object of this
type, as the named accessor methods provide the mechanism for transferring the data. An iterator class that
binds by name is declared by providing a parenthesized, comma-separated list of data types and identifiers,
one per column of the rows returned by the iterator object. The list specifies the data types and the name of
each column of the rows returned by the iterator object. The sequence of datatypes and identifiersin thelist
need not be the same sequence as the columns of the rows returned by theiterator object. A Java compiler will
detect type mismatch errorsin the uses of named accessor methods. Additionally, if aconnection to an exemplar
schemais provided at trandate time, then the SQL J trandlator will statically check the validity of the types and
names of the iterator object columns against the SQL queries associated with it.

An iterator declaration clause designates whether objects of that iterator type use bind by position or bind by
name. The two styles of access to result set data are mutually exclusive; an iterator class supports either bind

©ISO/IEC 2003 — Al rights reserved Concepts 19

| SO/IEC 9075-10:2003 (E)
4.14 lterators

by position or bind by name, but not both. Program devel opment tools might prefer to generate SQL J programs
using bind by position, since these tools can generate SQLJ code that is“ correct by construction”. People
writing SQL Jprograms “ by hand” might prefer to use bind by name, to make their applicationsresilient against
changes to the program or database schema.

4.15 Input and output assignability

An SQL type ST is SQLJ output assignable to a Java class or primitive type JT if Table 1, “ SQLJ output
assignability”, contains an 'x' in the cell identified by the column for thej ava. sqgl . Types value of ST and
therow inwhich JT isspecified in thefirst column. In addition, the following conditions shall hold for structured
and distinct types (i.e., j ava. sql . Types values STRUCT and DISTINCT).

— Ifthej ava. sql . Types vaueof ST iseither DISTINCT or STRUCT, and JT is not one of the Java
classes or primitive types identified in the first column of Table 1, “ SQLJ output assignability”, (i.e., “any
other class/interface” applies), then the user-defined type map that i s associated with the connection context
class of the SQLJ clause for which output assignability is checked shall specify a Java class or primitive
type JT that correspondsto ST.

— Ifthej ava. sqgl . Types vaueof ST isDISTINCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 1, “ SQLJ output assignability”, then there exists an SQL type ST1,
where ST1 is either the representation type of ST, or atransform group has been specified for ST in the
connection context class of the SQL J clause for which output assignability is checked, and ST1 isthe result
type of the from-sgl transform function or method of that transform group. ST1 shall be SQLJ output
assignableto JT.

— Ifthej ava. sqgl . Types vaueof ST is STRUCT, and JT isone of the Java classes or primitive types
identified in the first column of Table 1, “ SQLJ output assignability”, then a transform group has been
specified for ST in the connection context class of the SQL J clause for which output assignability is checked,
and the result type of the from-sqgl transform function or method of that transform group is SQLJ output
assignableto JT.

Table 1— SQLJ output assignability

java.sgl. Types constants'
Java Data Typesand Classes | Tl Sl IN Bl RL FL DB DC
boolean X X X X X X X X
byte X X X X X X X X
short X X X X X X X X
int X X X X X X X X
long X X X X X X X X

20 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®
float X X X X X X X X
double X X X X X X X X
java.lang.Boolean X X X X X X X X
javalang.Byte X X X X X X X X
javalang.Short X X X X X X X X
javalang.Integer X X X X X X X X
javalang.Long X X X X X X X X
javalang.Float X X X X X X X X
javalang.Double X X X X X X X X
javalang.String X X X X X X X X
java.math.BigDecimal X X X X X X X X
byte]]
javassql.Array
java.sgl.Blob
java.sgl.Clob
java.sgl.Date
java.sgl.Ref
javasgl.Time
java.sgl.Timestamp
sglj.runtime.Ascii Stream
sglj.runtime.BinaryStream
slj.runtime.Character Stream
sglj.runtime.UnicodeStream
java.net.URL
any other class/interface

©ISO/IEC 2003 — Al rights reserved Concepts 21

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®
Java Data Typesand Classes | NU BT CH VC LC CL Bl VB
boolean X X X X X
byte X X X X X
short X X X X X
int X X X X X
long X X X X X
float X X X X X
double X X X X X
javalang.Boolean X X X X X
javalang.Byte X X X X X
java.lang.Short X X X X X
javalang.Integer X X X X X
javalang.Long X X X X X
javalang.Float X X X X X
javalang.Double X X X X X
javalang.String X X X X X X X
javamath.BigDecimal X X X X X
bytef] X X
java.sgl.Array
java.sgl.Blob
java.sgl.Clob X
javassgl.Date X X X
java.sgl.Ref
java.sgl.Time X X X
java.sgl.Timestamp X X X

22 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®
slj.runtime.Ascii Stream X X X X X
sglj.runtime.BinaryStream X X
sglj.runtime.Character Stream X X X X X
sglj.runtime.UnicodeStream X X X X X
java.net. URL X X X
any other class/interface
Java Data Typesand Classes | LB BL DT ™ TS RF DS ST
boolean X X
byte X X
short X X
int X X
long X X
float X X
double X X
java.lang.Boolean X X
javalang.Byte X X
javalang.Short X X
javalang.Integer X X
javalang.Long X X
javalang.Float X X
javalang.Double X X
javalang.String X X X X X X
java.math.BigDecimal X X
byte{] X X X
javasgl.Array

©ISO/IEC 2003 — Al rights reserved Concepts 23

1 SO/l EC 9075-10:2003 (E)

4.15 Input and output assignability

java.sgl.Types constants®

java.sgl.Blob X X X
java.sgl.Clob X X
java.sgl.Date X X X
java.sgl.Ref X

javassgl.Time X X
java.sgl.Timestamp X X X
sglj.runtime. Ascii Stream X X X
sglj.runtime.BinaryStream X X X
slj.runtime.CharacterStream X X X
sglj.runtime.UnicodeStream X X X
java.net. URL X X
any other class/interface X X

Java Data Types and Classes

JO oT DL

boolean

byte

short

int

long

float

double

javalang.Boolean

javalang.Byte

java.lang.Short

javalang.Integer

javalang.Long

24 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®

javalang.Float

javalang.Double

javalang.String

javamath.BigDecimal

byte{]

javasgl.Array

java.sgl.Blob

java.sgl.Clob

javasgl.Date

java.sgl.Ref

java.sgl.Time

java.sgl. Timestamp

slj.runtime.Ascii Stream

sglj.runtime.BinaryStream

sglj.runtime.Character Stream

sglj.runtime.UnicodeStream

java.net. URL

any other class/interface X

X

and OT to OTHER

Lwhere: TI correspondsto TINYINT, Sl to SMALLINT, IN to INTEGER, Bl to BIGINT, RL to REAL, FL to FLOAT, DB to
DOUBLE, DCto DECIMAL, NU to NUMERIC, BT to BIT, CH to CHAR, VC to VARCHAR, LC to LONGVARCHAR, CL
to CLOB, Bl to BINARY, VB to VARBINARY, LB to LONGVARBINARY, BL to BLOB, DT to DATE, TM to TIME, TSto
TIMESTAMP, RF to REF, DSto DISTINCT, ST to STRUCT, JOto JAVA_OBJECT, DL to DATALINK, and AY to ARRAY,

A Javaclass or primitive type JT is SQLJ input assighable to an SQL type ST if Table 2, “SQLJ input
assignability”, contains an 'x' for the cell identified by the column for thej ava. sqgl . Types vaueof ST and
therow inwhich JT isspecified in thefirst column. In addition, the following condition shall hold for structured
and distinct types (i.e., j ava. sql . Types vaues STRUCT and DISTINCT).

— Ifthej ava. sqgl . Types vaueof ST iseither DISTINCT or STRUCT, and JT is not one of the Java
classes or primitive types identified in the first column of Table 2, “SQLJ input assignability”, (i.e., “any

©ISO/IEC 2003 — All rights reserved

Concepts 25

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

other class/interface” applies), then the user-defined type map that is associated with the connection context
class of the SQLJ clause for which input assignability is checked shall specify a Java class or primitive
type JT that correspondsto ST.

If thej ava. sql . Types valueof STisDISTINCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 2, “ SQLJ input assignability”, then there exists an SQL type ST1,
where ST1 is either the representation type of ST, or atransform group has been specified for ST in the
connection context class of the SQLJ clause for which input assignability is checked, and ST1 is the input
parameter type of the to-sgl transform function or method of that transform group. JT shall be SQL Jinput
assignableto ST1.

If thej ava. sql . Types valueof ST is STRUCT, and JT is one of the Java classes or primitive types
identified in the first column of Table 2, “ SQLJ input assignability”, then atransform group has been
specified for ST in the connection context class of the SQL J clause for which input assignability is checked,
and JT is SQLJinput assignable to the input parameter type of the to-sgl transform function or method of
that transform group.

Table 2 — SQLJ input assignability

java.sql.Types constants'
Java Data Typesand Classes | Tl Sl IN BI RL FL DB DC
boolean X X X X X X X X
byte X X X X X X X X
short X X X X X X X X
int X X X X X X X X
long X X X X X X X X
float X X X X X X X X
double X X X X X X X X
javalang.Boolean X X X X X X X X
javalang.Byte X X X X X X X X
javalang.Short X X X X X X X X
javalang.Integer X X X X X X X X
javalang.Long X X X X X X X X
javalang.Float X X X X X X X X
javalang.Double X X X X X X X X

26 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®

javalang.String X X X X X X X X

javamath.BigDecimal X X X X X X X X

byte{]
java.sgl.Array

java.sgl.Blob

java.sgl.Clob

java.sgl.Date

java.sgl.Ref

javasgl.Time

java.sgl.Timestamp

sglj.runtime. Ascii Stream

sglj.runtime.BinaryStream

sqlj.runtime.CharacterStream

sglj.runtime.UnicodeStream

java.net. URL

any other class/interface

Java Data Typesand Classes | NU BT CH VC LC CL Bl VB

boolean X X X X X
byte X X X X X
short X X X X X
int X X X X X
long X X X X X
float X X X X X
double X X X X X
javalang.Boolean X X X X X

©ISO/IEC 2003 — Al rights reserved Concepts 27

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®

javalang.Byte X X X X X

javalang.Short X X X X X

javalang.Integer X X X X X

javalang.Long X X X X X

javalang.Float X X X X X

javalang.Double X X X X X

javalang.String X X X X X X X
javamath.BigDecimal X X X X X

byte(] X X
javasgl.Array

java.sgl.Blob

java.sgl.Clob X

javasgl.Date X X X

java.sgl.Ref

java.sgl.Time X X X

java.sgl. Timestamp X X X

slj.runtime.Ascii Stream X X X X X X
sglj.runtime.BinaryStream X X
sglj.runtime.Character Stream X X X X X X
sglj.runtime.UnicodeStream X X X X X X
java.net. URL X X X

any other class/interface

Java Data Typesand Classes | LB BL DT ™ TS RF DS ST
boolean X X
byte X X

28 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®

short X X
int X X
long X X
float X X
double X X
javalang.Boolean X X
javalang.Byte X X
javalang.Short X X
javalang.Integer X X
javalang.Long X X
javalang.Float X X
javalang.Double X X
javalang.String X X X X X
javamath.BigDecimal X X
byted(] X X X
java.sgl.Array

java.sgl.Blob X X X
java.sgl.Clob X X
java.sgl.Date X X X X
java.sgl.Ref X

javassgl.Time X X X
java.sgl.Timestamp X X X X
sglj.runtime. Ascii Stream X X X
sglj.runtime.BinaryStream X X X X
slj.runtime.CharacterStream X X X

©ISO/IEC 2003 — All rights reserved

Concepts 29

1 SO/l EC 9075-10:2003 (E)

4.15 Input and output assignability

java.sgl.Types constants®

sglj.runtime.UnicodeStream

X

java.net. URL

any other class/interface

Java Data Types and Classes

JO

oT

DL

boolean

byte

short

int

long

float

double

javalang.Boolean

javalang.Byte

javalang.Short

javalang.Integer

javalang.Long

javalang.Float

javalang.Double

javalang.String

javamath.BigDecimal

byte{]

javasgl.Array

java.sgl.Blob

java.sgl.Clob

javasgl.Date

30 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.15 Input and output assignability

java.sgl.Types constants®

java.sgl.Ref

javasgl.Time

java.sgl.Timestamp

sglj.runtime.Ascii Stream

sglj.runtime.BinaryStream

sqlj.runtime.Character Stream

sglj.runtime.UnicodeStream

java.net.URL X

any other class/interface X X

1Where: Tl correspondsto TINYINT, Sl to SMALLINT, IN to INTEGER, Bl to BIGINT, RL to REAL, FL to FLOAT, DB to
DOUBLE, DC to DECIMAL, NU to NUMERIC, BT to BIT, CH to CHAR, VC to VARCHAR, LC to LONGVARCHAR, CL
to CLOB, Bl to BINARY, VB to VARBINARY, LB to LONGVARBINARY, BL toBLOB, DT to DATE, TM to TIME, TSto
TIMESTAMP, RFto REF, DSto DISTINCT, ST to STRUCT, JOto JAVA_OBJECT, DL to DATALINK, and AY to ARRAY,
and OT to OTHER

4.16 Callsto stored procedures and functions

Databases can contain stored procedures and stored functions. User defined procedures and functions are named
schema objects that execute in the database. Stored procedures and functions are implemented in various pro-
gramming languages, including the SQL-control statements specified in ISO/IEC 9075-4. An SQL J executable
clause, appearing as a Java statement, can call a stored procedure by means of the SQL CALL statement.

Stored procedures can have | N, OUT, or | NOUT parameters.
An SQLJ executable clause can call a stored function by means of the SQL VALUES construct.

4.17 Multiple JIDBC ResultSet objects from stored procedure calls

Under some situations, asingle SQL CALL statement might return multiple JDBC ResultSet objects. Because
SQL has no mechanism to define JDBC ResultSet objects as formal OUT or INOUT parameters, such JDBC

ResultSet objects arereferred to as side-channel result sets. The ExecutionContext method “ getNextResultSet”

allows navigation through these results.

©ISO/IEC 2003 — Al rights reserved Concepts 31

I SO/IEC 9075-10:2003 (E)
4.17 Multiple JDBC ResultSet objectsfrom stored procedure calls

After implicit or explicit use of some ExecutionContext execCon in association with an SQL CALL statement,
thefirst call to execCon.getNextResultSet returns the first side-channel result set produced by that CALL
statement. Subsequent callsto getNextResultSet optionally close the current JIDBC ResultSet object, and
advance to and return the next. getNextResultSet returns null if there are no further side-channel result sets.

4.17.1 Resource management with multipleresults

Under normal circumstances, the resources associated with the execution of an SQL operation are released as
soon as the execution completes. However, if there are multiple results, the resources are not released until all
the results have been processed using getNextResultSet. Accordingly, if astored procedure might return side-
channel result sets, then the programmer should always process all the results using getNextResultSet until
null isreturned. Further, if one or more side-channel result sets have been left open, they should be explicitly
closed, because their associated resources cannot be released until they are closed. If an execution context with
pending results is used to execute another SQL operation, then the pending results are discarded.

If the invocation of a stored procedure does not produce side-channel result sets, then there is no need to call
getNextResultSet. All resources are automatically reclaimed as soon as the CALL execution completes.

4.18 JDBC/SQLJ ResultSet interoperability

To facilitate the interaction between dynamic SQL and SQL Js strongly-typed iterators, SQLJ provides away
to obtain a JIDBC ResultSet object from an SQL Jiterator object and to create an SQL Jiterator object from a
JDBC ResultSet object.

4.18.1 Creating an SQLJ iterator from a JDBC ResultSet object

The SQL Jiterator conversion statement allowsaJDBC ResultSet object to be manipulated as an SQLJ strongly-
typed iterator object. Given a JDBC ResultSet object rsand a strongly typed SQL Jiterator object iter, the
iterator conversion statement can be used to assign a new iterator object to iter based on the contents of rs:

#sqgl iter = {CAST :rs };
NOTE 7 — Closing an iterator object created by an iterator conversion statement will also close the associated JDBC ResultSet object.

Theiterator conversion statement can be used to instantiate an SQL J strongly-typed iterator object from aJDBC
ResultSet object provided the type, name and number of columnsin the JDBC ResultSet object are compatible
with those of the declared iterator object. See the <iterator conversion clause> for further details.

Once an iterator object has been created by an <iterator conversion clause>, the result of calling methods on
the original JDBC ResultSet object isimplementation-defined. Accordingly, portable code shall not issuefurther
callsto aJDBC ResultSet object that has been converted into an iterator object.

32 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4,18 JDBC/SQLJ ResultSet inter oper ability

4.18.2 Obtaining a JDBC ResultSet object from an SQLJ iterator object

Every SQLJiterator object has a getResultSet method that returns a JDBC ResultSet object representation of
itsdata. The getResultSet method ispart of thesql j . runti me. Resul t Set | t er at or interface, which
isimplemented by SQL J strongly typed iterator classes (both named and positioned). It allows query resultsto
be processed using a JIDBC ResultSet object rather than an SQLJ iterator object.

For portability, theget Resul t Set () method shall be invoked beforethe first next () method invocation
on the iterator object. Once the JDBC ResultSet object has been produced, all operations to fetch data shall be
through the JDBC ResultSet object.

NOTE 8 — Support for the getResultSet method is runtime implementation-defined, and is not part of Core SQLJ. An SQLException
will be thrown if this method is not supported. If a runtime implementation supports this method, then any synchronization between
theiterator object and the produced JDBC ResultSet object isimplementation-defined.

4.18.3 Obtaining a JIDBC ResultSet object from an untyped iterator object

SQL Jdoes not support the direct creation of aJDBC ResultSet object asthe result of an SQLJquery. To obtain
a JDBC ResultSet object associated with an SQLJ query, an SQL Jiterator object is populated as the result of
the query, and the getResultSet method of the iterator object is called to return a JDBC ResultSet object, as
described in the previous Subclause. In cases where the client needs only a JDBC ResultSet object and does
not wish to process results with a strongly-typed iterator object, aclient is permitted to use an untyped Result-
Setlterator object instead. An untyped ResultSetlterator object is declared as an instance of interface
sqglj.runtinme. ResultSetlterator.

The ResultSetlterator interface is the root interface of all SQLJiterators and supports the getResultSet and

close methods, among others. As such it, can be used to obtain the results of an SQLJ query and later return
them to the client as a JDBC ResultSet object. Further, it is used to release SQL J related resources once the
results have been processed.

An untyped ResultSetlterator object provides a convenient way to obtain the results of an SQLJ query and later
accessthem using aJDBC ResultSet object. Unlikeits strongly-typed counterpart, the untyped ResultSetlterator
object does not require an additional class declaration. If using an untyped ResultSetlterator object in an SQLJ
query, translate-time type checking of the select list itemsis not performed.

4.18.4 Iterator and JDBC ResultSet resour ce management

Calling the close method of an SQL Jiterator object causes the associated JDBC ResultSet object (if any) to be
closed. If an iterator object is not explicitly closed before it is garbage collected, then the finalize method of
the iterator object implicitly calls close. Iterator objects maintain implicit resources such as statement handles,
so it isimportant to explicitly close them rather than waiting for the garbage collector.

Both SQL Jiterator objects and JDBC ResultSet objects respond to the cl ose() method. When an iterator
object produces a JDBC ResultSet object viatheget Resul t Set () method, it issufficient to close only the
iterator object, as thiswill also close the associated JDBC ResultSet object. However, it is not sufficient to
close only the associated JDB ResultSet object, asthis does not cause the containing iterator object to be closed,

©ISO/IEC 2003 — Al rights reserved Concepts 33

I SO/IEC 9075-10:2003 (E)
4,18 JDBC/SQLJ ResultSet interoper ability

and therefore, resources maintained by theiterator object will not be released until it is garbage-collected. These
restrictions are true of untyped ResultSetlterator objects as well as named and positioned iterator objects.

TheisClosed method of an iterator object returnstrueif the close method has been called on theiterator object.
If isClosed istrue, calling close isano-op, and calling any other methods isimplementation-defined. The
semantics of calling close on aJDBC ResultSet object that has already been closed isimplementation-defined.

4.19 Multi-threading considerations

SQLJ can be used to write multithreaded applications. The SQLJ runtime supports multiple threads sharing the
same connection context. However, SQLJ programs are subject to synchronization limitations imposed by the
underlying DBM Simplementation. If aDBM S implementation mandates explicit synchronization of statements
executed in a specific connection, then an SQLJ program using that implementation would require a similar
synchronization of SQL operations.

Whereas connection contexts can be safely shared between threads, execution contexts should only be shared
if their useisproperly synchronized. If an execution context is shared, the results of an SQL operation performed
by onethread will be visible in the other thread. If both threads are executing SQL operations, arace condition
can occur in which the results of an execution in one thread are overwritten by the results of an execution in
the next thread before the first thread has processed the original results. Furthermore, if athread attempts to
execute an SQL operation using an execution context that is currently being used to execute an operation in
another thread, a runtime exception is thrown. To avoid such problems, each thread should use a distinct exe-
cution context whenever an SQL operation is executed on a shared connection context.

4.20 User-defined datatypes

SQL J supports the manipulation of instances of user-defined data types, such as structured types and distinct
types. Instances of such datatypes can be retrieved into or created from host variables of an appropriate Java
type, based on type mapping information specified for a specific connection context class. Javaresource bundles
are used as the mechanism for specifying type mapping information.

Type mapping is specified in one or more entries contained in a properties file. Each property entry in thefile
defines a correspondence between a Java class and an SQL user-defined type. The entry may indicate that the
SQL typeisastructured type or adistinct type with the keyword STRUCT or DI STI NCT preceding the type
name, respectively; such anindication is optional, and is only needed to resolve ambiguitiesin caseswhere the
SQL typeisrequired for registering OUT parameters.

Java classes used in the definition of atype mapping for structured and distinct types have to fulfill the
requirements specified in the chapter “ Customized Type Mapping” of [JDBC]. In other words, they have to
implement the interface java.sql.SQL Data, which is used by the SQL J runtime implementation to supply the
newly created instance of the Java class with data from the instance of the respective SQL type.

A type map specified in apropertiesfile can be attached to a connection context class as part of the connection
context declaration in the following way:

#sqgl context Ctx with (typeMap = "packagenane.fil ename");

34 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.20 User-defined data types

The SQLJ trandator and runtime will interpret the specified type map as a Java resource bundle family name,
and look for an appropriate properties or class file using the Java class path. This means that an application
programmer can easily package the type map with the rest of the SQLJ application or application module.

SQLJ applications can then define host variables or iterator objects based on the Javatypes that participate in
the type map.

A positioned iterator object is used in conjunction with a FETCH...INTO statement to retrieve data, including
instances of user-defined types mapped in the propertiesfile.

In the same way, a Java variable whose type corresponds to a user-defined type can be used for the definition
of named iterator objects, as host variables, and in host expressions.

The SQLJtrand ator also checks for type correctness for user-defined types.

This mechanism also handles SQL type hierarchies and, correspondingly, Java class hierarchies.

4.21 Batch updates

Batch updates allow statements to be grouped together and then sent as a batch to the database for execution
usingasingleroundtrip. Thisfeatureistypically used for aseriesof UPDATE, INSERT, or DELETE statements
within aloop. This section outlines how SQLJ supports batch updates.

4.21.1 Batchable statements and batch compatibility

A batchable statement is a statement that is able to be grouped with one or more other statements for execution
as a batch at runtime. Such a group of batchable statementsis called a statement batch, or simply batch. As
with JDBC, batching in SQLJisan optional capability. Accordingly, whether aparticular statement is batchable
or not depends on the connection and customization used to execute the statement at runtime. In general, DML,
DDL and stored procedure calls with no OQUT parameters are considered batchable.

The following types of statements are never batchable:
— Queries (single and multi row)

— Transaction control (COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, RELEASE SAVE-
POINT)

— Statements with OUT parameters (stored functions, PSM assignment, stored procedures with outs or side-
channel results, blocks with outs)

A statement is batch compatible with a particular statement batch if the statement is both batchable and com-
patible with (can be added to) the batch. Whether a particular statement is batch compatible with a particul ar
statement batch depends on the connection and customization used to execute the statement at runtime. For an
implementation based on [JDBC], abatchable statement with one or | N parametersisonly batchable with other
instances of the same statement. A batchabl e statement with no | N parametersis only batchable with other
statements with no | N parameters. However, runtime implementations that do not rely solely on [JDBC] may

©ISO/IEC 2003 — Al rights reserved Concepts 35

I SO/IEC 9075-10:2003 (E)
4.21 Batch updates

additionally allow unrelated statements with | N parameters to be batched together. Any batchable statement
may potentially be batched with any other batchable statement that is created using the same connection.

Two batchable statementsthat are executed on different databases (using different connections) are never batch
compatible.

4.21.2 Statement batching API

In SQLJ, batch update capability is enabled using the set Bat chi ng method of the Execut i onCont ext
class. When batching is enabled on a particular execution context object (viaset Bat chi ng), then any
batchable statement encountered is deferred for batched execution. In such cases, the execution context object
issaid to contain a pending statement batch. Subsequent re-execution of the statement causes the statement to
be added again to the statement batch (with possibly different host expression values). A pending statement
batch can be explicitly executed at any time using Execut i onCont ext . execut eBat ch() .

In terms of the earlier definitions, if a pending statement batch exists on a particular execution context object
and abatch compatibl e statement i s encountered, then it is added to the batch for deferred execution. A statement
is batch compatibleif it isthe same as all othersin the statement batch. A statement batch that contains only
instances of the same statement (possibly differing only in host expression bind values) is called ahomogeneous
batch. It is also possible to have a heterogeneous batch in which one or more statements differ from othersin
the batch. Typically, a heterogeneous batch consists of statements that do not contain any bind expressions.

Thefact that aparticular statement is batchable does not mean that it is compatible with every statement batch.
The runtime connection and customization ultimately determine batch compatibility. For implementations of
[JDBC], statements with bind expressions can only be added to homogeneous batches, and heterogeneous
batches can only contain statements without bind expressions. When a batchabl e statement is encountered that
is not compatible with the current statement batch, then the statement batch is executed implicitly and the
statement isadded to anew statement batch. Similarly, when a statement that is not batchable (such as SELECT
or COMMIT) isencountered, the statement batch isimplicitly executed prior to the execution of the statement.
Implicit batch execution allows programs to use batch updates without explicitly calling execut eBat ch() .

Note that the update counts resulting from the last implicitly executed batch can be obtained using the method
Execut i onCont ext . get Bat chUpdat eCount s() .

A given execution context object can only manage one statement batch at atime. A client who wants to batch
two statements that are not batch compatible with one another shall use two distinct execution context objects.

It should be noted that explicit specification of an execution context object is not required for batch updates.
Asan aternative, batching can be enabled on the execution context object contained within aparticular connec-
tion context object.

4.21.3 Execution status and update counts

When a statement is batched instead of executed, calling Execut i onCont ext . get Updat eCount ()
returns the constant Execut i onCont ext . NEW BATCH COUNT if a new statement batch was created, or
Execut i onCont ext . ADD_BATCH_COUNT if the statement was added to the pending statement batch.

36 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.21 Batch updates

Checking for this constant is areliable way to determine whether the last statement was batched, and if so,
whether it was added to the pending batch or started a new batch.

When a pending statement batch exists, calling Execut i onCont ext . execut eBat ch() executesthe
batch. Theupdate countissetto Execut i onCont ext . EXEC BATCH COUNT. Anarray of i nt isreturned
reflecting the individual update counts of each statement in the batch. The array is ordered according to the
order in which statements were added to the batch. The update count array for the last batch executed can also
be obtained using the method Execut i onCont ext . get Bat chUpdat eCount s() . Thisis particularly
useful when the batch was updated implicitly rather than explicitly. Thearray returned by get Bat chUpdat e-
Count s() reflectstheresult of the last successful implicit or explicit call toexecut eBat ch() . Itisordered
according to the order in which commands were inserted into the batch, and each element either contains an
update count, or the value -2 as a generic success indicator, or the value -3 as ageneric failure indicator. If a
failure occurs during batch execution that prevents the remainder of the batch to be executed, then the array
returned may al so be shorter than the original batch and—in this case—each element shall contain either anon-
negative update value or the value -2 as a generic success indicator. The array is not updated when the call to
execut eBat ch() resultsin an exception. The array is null if no batch has yet been completed.

4.21.4 Program semantics and exceptions

When astatement batch isexecuted usingexecut eBat ch() , the statements contained in the batch are executed
in order. If execution of one of the statements resultsin an exception, the remaining statements are not executed
and the exception isthrown by execut eBat ch() . Note, however, that the exception does not rollback the
statements that were executed earlier in the batch. When appropriate, the exception is an instance of

j ava. sql . Bat chUpdat eExcept i on, whichisaclassthat extendsj ava. sql . SQLExcept i on and
addsinformation about the statementsin the batch that completed successfully. If astatement batch isimplicitly
executed as aresult of executing another statement, and the execution of the batch results in an exception, the
statement that triggered the batch execution is not executed.

Because exceptions can happen in the middle of abatch, it isgenerally recommended that autocommit isturned
off when using batch updates. Disabling autocommit allows the application to decide whether or not to commit
the transaction in the event that an error occurs and some of the commands in a batch fail to execute.

Asimplied by the above rules, the execution semantics of programs that use batch updates are somewhat dif-
ferent than programs that do not. These differences are summarized in the following list.

— A single exception is thrown for the batch of statements, not each individual statement.

— Once an exception occurs, therest of the pending statements in the statement batch are not executed. There
is no convenient way to handle the exception and continue execution of the rest of the statements.

— Statement execution isdeferred until the batch is executed rather than when the statement isfirst encountered.
When abatch isimplicitly executed during the execution of another statement, an exception resulting from
the batch execution may be appear to be thrown as the result of the current statement's execution.

When using batched statements, it is the responsibility of the client to ensure that statements which depend on
the statement batch are not executed until the batch has been executed. Pay particular attention when statements
executed on a non-batched execution context object are interleaved with statements executed on a batched

execution context object. This also applies to commit statements; issuing aConnect i on. conmmi t () when
there are pending statement batches does not implicitly execute the statement batch. Remember that database

©ISO/IEC 2003 — Al rights reserved Concepts 37

I SO/IEC 9075-10:2003 (E)
4.21 Batch updates

access is not limited to the SQLJ statements appearing in the program, and may also include JDBC, RMI,
CORBA and EJB calls.

When abatch isimplicitly executed by another statement, the batch is executed before the statement is executed,
but after | N parameters have been evaluated and passed to the statement. Deferring batch execution until after
I N parameters have been bound allows the runtime engine to collect as much information as possible before
determining whether a statement is compatible with a particular batch. This allows, for example, positioned
updates using WHERE CURRENT OF to be batched if the input iterator object is the same iterator object in
each case.

4.21.5 Batch cancellation and disabling

A pending statement batch can be cancel ed before execution using the method Execut i onCont ext . can-
cel ().Oncecancel () hasbeen called, the pending batch is cleared and can no longer be executed. The
next batchable statement encountered will be added to a new statement batch.

Itistheresponsibility of the client to execute or cancel apending statement batch before discarding the execution
context object that contains the batch. The execution context object's finalizer will not implicitly execute or
cancel a pending statement batch.

Batching can be disabled using the method Execut i onCont ext . set Bat chi ng(f al se) . Disabling
batching in thisway meansthat further statementswill not be added to the pending batch. However, the pending
batch, if any, isnot affected. It will be executed by the next implicit or explicit call to execut eBat ch(), or
canceledwithacall tocancel (), asusual. A client can usethemethod Execut i onCont ext . i sBat ch-
i ng() todeterminewhether or not batching is currently enabled on aparticular execution context object. Note
that this method is used only to determine whether batching is currently enabled, but not whether a pending
batch exists.

4.21.6 Specification of a batching limit

The method Execut i onCont ext . set Bat chLi mi t () permits usersto specify that callsto execut e-
Bat ch() should be performed implicitly. The batch limit may be given in the following ways:

— Asapositive, non-zero integer n— inthiscase, theexecut eBat ch() method will be executed whenever
the current batch size reaches n.

— Asaconstant Execut i onCont ext . UNLI M TED_BATCH— inthiscase, noimplicit call toexecut e-
Bat ch will be performed, unless one of the conditions for implicit batch execution discussed earlier is
met.

— Asaconstant Execut i onCont ext . AUTO BATCH— inthis case, the execut eBat ch() method
will be executed at a point that is chosen by the SQL J runtime implementation. The point when the current
batch is executed implicitly should be chosen so that out-of-memory conditions due to batching are reason-
ably avoided.

By default, Execut i onCont ext aobjectsareinitializedtoabatch limitof UNLI M TED_BATCH. By permitting
usersto specify abatch limit, an SQLJ program can very easily be changed to a batching SQL J program.

38 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.21 Batch updates

Consider the scenario when one Java Stored Procedure uses SQL Jto call another Java Stored Procedure, which
in turn uses SQL J to execute another SQL operation, and both execute in the same Java Virtual Machine with
the same execution context object (often associated with the default connection context object). The behavior
for batching in this situation conforms to the existing behavior for similar operations.

The batching attribute of the execution context object (set viaExecut i onCont ext . set Bat chi ng())
behaves like the other execution control attributes (max fields size, max rows, query timeout). Once set, it
affectsthe next #sql operation to start executing regardless of whether the next #sql operation is made at
the same call level, in arecursive call level, or in an outer call level.

A pending batch istreated in the same way that pending side-channel results are. Just as pending side-channel
resultsareimplicitly cleaned up and closed when another SQL operation isencountered or an outer call completes
execution, pending batches are implicitly executed when another SQL operation is encountered or an outer call
completes execution. Asan example, suppose batching isenabled and we execute anon-batchable SQL operation
that resultsin acall to a Java Stored Procedure, which in turn performs some SQL operations that are added to
anew batch. If the called Java Stored Procedure returns without executing the batch, then the originating SQL
operation will implicitly execute the batch when execution control is returned. Implicit batch execution also
happens when control returns from any batch execution (viaExecut i onCont ext . execut eBat ch())
since statements contained in a batch could themselves add statements to a new batch when executed.

4.22 SQLJ language elements

Elements of the SQL language are treated in various ways by SQLJ.

— Executable QL statements: This part of 1SO/IEC 9075 directly adopts the executable SQL statements
(most of the <SQL schema statement>s, <SQL data statement>s, and <SQL transaction statement>s) that
manipulate SQL data, definitions, and transactions, substantially as they are specified in embedded SQL
and in SQL's module language.

— Dynamic SQL: SQLJ does not directly support dynamic SQL, which is handled separately by JDBC.

— Declarations: This part of 1SO/IEC 9075 replaces <declare cursor> and <host variable definition> by
declarations of Javatypes for declaring iterator classes and other dataitems that have SQL attributes.

— Program control: The <embedded exception declaration>, <SQL session statement>s, <SQL connection
statement>s, and <SQL diagnostic statement>sthat serve to knit together SQL and host language environ-
ments by managing exceptions, database connections, and diagnostics are omitted in SQLJ, since Java
directly expressesthetypes of exceptions, database connections, and diagnostics, and can manipulate those
objects using standard programming techniques.

4.22.1 <cursor name>

In SQL language, <cursor name> is asimpleidentifier. The equivalent SQLJ construct is <iterator host
expression>. <iterator host expression> is a Java expression, the result type of which shall be an instance of a
generated iterator class (that is, a generated named iterator class or a generated positioned iterator class), or a
subclass of such aclass.

©ISO/IEC 2003 — Al rights reserved Concepts 39

I SO/IEC 9075-10:2003 (E)
4.22 SQLJ language elements

4.22.2 SQL schema, data, and transaction statements

The SQL schema, data, and transaction statements are treated as SQL J clauses in this part of 1SO/IEC 9075
and are consequentially treated as ordinary SQL statements.

4.22.3 <SQL dynamic statement>

The categories of <SQL dynamic statement> and <dynamic declare cursor> are omitted from this part of

I SO/IEC 9075. In addition, the dynamic statements PREPARE, DESCRIBE, EXECUTE, DEALLOCATE,
GET DESCRIPTOR, and SET DESCRIPTOR are omitted from this part of |SO/IEC 9075 since dynamic
operations are subsumed by this part of |SO/IEC 9075.

4.22.4 <SQL connection statement>

The <SQL connection statement> is replaced in this part of 1SO/IEC 9075 by direct Java construction and
mani pul ation of connection objects. That enablesthe capability for SQL Jprogramsto open multiple connections
simultaneously to the same or different databases.

Explicit manipulation of connection objects shall be supported to allow applications to avoid hidden global

state (e.g., Java“ static variables”) that would be necessarily used to implement the <SQL connection statement>.
In particular, Java“ applets’ and other multi-threaded programs are usually coded to avoid contention of global
state. Such programs will store connection objects in local variables and use them explicitly in SQLJ clauses.

This part of ISO/IEC 9075 allows the possibility that a Java program can manipulate multiple connection
objects, connected to different databases. If a program manipulates multiple connections, they are mentioned
explicitly in the SQLJ clauses, and they are regular Java objects.

4225 <host variable definition>

Embedded SQL specifies that <host variable definition>s are contained in specia program sections bound by
EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION. Thispart of ISO/IEC
9075 does not define a <host variable definition> section. Any Java variable, parameter, or Javafield (of an
object) is permitted to be used as a host variable.

NOTE 9 — That was required so that precompilers (translators) can detect the host variable definitions, and determine their types, by
arudimentary parse of the host program. SQL J trand ators take advantage of the portability and component software available for Java
in order to have greater parsing ability than traditional precompilers, so that the DECLARE SECTION is not required for the purpose
of confining definitions of host variables to a small portion of the host program.

This part of |SO/IEC 9075 extends the traditional embedded support by allowing Java host expressions to
appear directly in SQL statements. Host expressions are prefixed by a colon (:) followed by an optional
parameter mode identifier (IN, OUT, INOUT) followed by a parenthesized expression clause. An expression
clause contains alegal Java expression that shall result in either asingle value (in the case of IN or INOUT
mode) and/or the site of aJava“I-valued expression” (in the case of an OUT or INOUT mode).

40 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
4.22 SQLJ language elements

The evaluation of host expressions does have side effects in a Java program as they are evaluated by the Java
Virtual Machinerather than the SQL -server. Host expressions are evaluated | ft to right within the SQL statement
prior to submission to the SQL-server.

4.22.6 <embedded exception declaration>

This part of ISO/IEC 9075 does not define an <embedded exception declaration>. In [Foundation], the
<embedded exception declaration> has these forms:

EXEC SQL WHENEVER exception_condi ti on GOTO program | abel ;
EXEC SQL WHENEVER exception_condi ti on CONTI NUE;

The Java language does not support any form of “go to” statement; therefore the direct trandliteration of the
<embedded exception declaration> into Javais not possible. Instead, Javaprovidesatry...catch statement that
associates a handler for certain exceptionsin the Java block in which those exceptions might be raised.

NOTE 10— In addition, Javahaswell-devel oped rulesfor declaring and handling exceptions; thus, the <embedded exception declaration>
does not add value. Other object oriented languages have facilities for declaring and handling exceptions, similar to those in Java.

JDBC defines an exception, globaly named j ava. sql . SQLExcept i on, asthe superclass of exceptions
that are returned from SQL. This part of 1SO/IEC 9075 follows that precedent, to facilitate interoperability
between part of 1SO/IEC 9075 and [JDBC].

4.22.7 <SQL diagnostics statement>

This part of ISO/IEC 9075 follows the Java methodol ogy for handling return information traditionally found
in the diagnostics areas of SQL. Abnormal termination and certain runtime errors (e.g., NULL retrieval to non-
nullable datatypes) are processed using exception handling. Other status information (e.g., update count) are
processed by using methods on the connection context and execution context objects.

4.22.8 Cursor declaration

The <declare cursor> statement of SQL language declares a single name for both a query and its associated
result set in the host program. This part of 1SO/IEC 9075, by contrast, distinguishes between a query and the
result set that it returns. If an SQLJ clause containing aquery isevaluated, it returns an iterator object containing
the result set of rows selected by that query. The type of an iterator object is a Java class that encodes the
number and types (and names) of columnsin the result set, allowing type checking of operations on an iterator
object.

Beneath the layer of abstraction provided by SQLJiterators, an SQL-server creates and manipulates cursors.
The implicit cursor of an iterator UC is the cursor manipulated by an SQL-server when methods are invoked
against the corresponding instance of an object, the type of which implementssql j . runti ne. Resul t -
Set | t er at or . Theimplicit <declare cursor> of aniterator UC isthe <declare cursor> effectively performed

©ISO/IEC 2003 — Al rights reserved Concepts 41

I SO/IEC 9075-10:2003 (E)
4.22 SQLJ language elements

by an SQL-server as aresult of the execution of an <assignment clause> whose <assignment spec clause>
immediately contains a<query clause>.

When <assignment spec clause> immediately contains <query clause>, the <query clause> providestheimplicit
<declare cursor>'s <query expression> and optional <order by clause>. Animplicit <declare cursor>'s <cursor
returnability> is always WITH RETURN. The <Lval expression> LV immediately contained in <assignment
clause> either refersto an object of a generated iterator class or to an object the type of which implements
sqglj.runtime. Resul t Setlterator.WhenLV refersto an object of agenerated iterator class, the
associated <iterator declaration clause>'s <declaration with list> specification of the iterator's sensitivity,
holdability, and updateColumns respectively provide the implicit <declare cursor>'s <cursor sensitivity>,
<cursor holdability>, and update <column name list> specifications. In addition, <cursor scrollability> is
implicitly SCROLL if the associated <iterator declaration claus>'s <interface list> contains the <predefined
iterface class>sql j . runti me. Scr ol | abl e; otherwise, it isimplicitly NO SCROLL.

4.22.9 Input parametersto SQL statements

This part of ISO/IEC 9075 extends the approach of SQL language for input parameters to SQL statements by
allowing generalized host expressions to appear wherever host variables are allowed to appear.

4.22.10Extracting column values from SQL J iterators

SQL J supports two approaches to accessing column values from iterator objects: by position and by name. The
<fetch statement> of SQL accesses columns only by position. In the following example, thefirst columninthe
row isassigned to var 1, the second to var 2, and thethird to var 3:

EXEC SQL FETCH cursorl1l INTO :varl,:var2,:var3;

SQL Jsupportsamodified version of the FETCH statement. It al so supports accessto columns by name, through
generated methods with the names and types of the columns.

4.22.11<open statement> and cursors

SQL has an <open statement> to open and re-open its named cursors that represent both a query and its set of
result rows, (that is, itsresult set):

EXEC SQL OPEN cursor1,;
This part of |SO/IEC 9075 does not provide an OPEN operation to open or re-open iterator objects.

This part of 1SO/IEC 9075 does not name a static query nor treat it as data. Instead, a query returns an iterator
object that is manipulated as data. An application can, in effect, name a query by writing it in an SQLJ clause
in the body of a method. Methods are invoked by their names, and can return iterator objects astheir values.

42 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
5.1 <SQL terminal character>

5 Lexical elements

This Clause modifies Clause 5, “ Lexical elements’ , in 1SO/IEC 9075-2.

51 <SQL terminal character>
This Subclause modifies Subclause 5.1, “ <SQL terminal character>", in ISO/IEC 9075-2.

Function

Define the terminal symbols of the SQL language and the elements of strings.

Format

<SQ special character> ::=
I'' Al alternatives fromI|SQ |EC 9075-2
| <number sign>

<number sign> ::= #
Syntax Rules

1) |Insert this SR|If <SQL specia character> isnot contained in an <embedded SQL J Java program>, then
<SQL special character> shall not immediately contain <number sign>.

2) |Insert this SR|If the character set SQL_TEXT does not include <number sign>, then <number sign> shall
be immediately contained in an <SQL prefix> that is contained in an <embedded SQL Java program>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Lexical elements 43

I SO/IEC 9075-10:2003 (E)
5.2 <token> and <separator>

5.2 <token>and <separator>
This Subclause modifies Subclause 5.2, “ <token> and <separator>", in ISO/IEC 9075-2.

Function

Specify lexical units (tokens and separators) that participate in SQL language.

Format

<comment> ::=
Il Al alternatives from|SQO|EC 9075-2
| <Java comment >

<Java coment> ::= <Java comment introducer> [<conment character>...] <new ine>
<Java comment introducer> ::= <solidus><solidus>
Syntax Rules

1) |Inser this SR| There shall be no <separator> separating thefirst <solidus> and second <solidus> of a<Java
comment introducer>.

2) |Insert this SR|If a<comment> is contained in an <embedded SQL Java program>, then
Case:

a) If the<comment> iscontained in a<statement spec clause> or an <assignment spec clause> immediately
contained in an <SQLJ specific clause> and is not contained in an <embedded Java expression>, then
it shall be a <simple comment> or a <bracketed comment>.

b) Otherwise, the <comment> shall be either a <bracketed comment> or a <Java comment>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

44 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
6.1 <value specification> and <target specification>

6 Scalar expressions

This Clause modifies Clause 6, “ Scalar expressions’, in ISO/IEC 9075-2.

6.1 <value specification> and <target specification>

This Subclause modifies Subclause 6.4, “ <val ue specification> and <target specification>" , in | SO/IEC 9075-
2.

Function

Specify one or more values, host parameters, SQL parameters, dynamic parameters, or host variables.

Format

No additional Format itens.

Syntax Rules

1) |Insert this SR|If <embedded variable specification> is contained in an <embedded SQL Java program>,
then <embedded variable specification> shall not immediately contain <indicator variable>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Scalar expressions 45

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

46 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
7.1 <routineinvocation>

7 Additional common elements

This Clause modifies Clause 10, “ Additional common elements’ , in | SO/IEC 9075-2.

7.1 <routineinvocation>
This Subclause modifies Subclause 10.4, “ <routine invocation>" , in | SO/IEC 9075-2.

Function

Invoke an SQL-invoked routine.

Format

No additional Formmt itens.

Syntax Rules

1) |Replace SR 8)c)i)4)B)| Case:

a) If A isan <embedded variable name> contained in an <embedded SQL Java program>, then P; shall
be SQLJ output assignable to A;.

b) Otherwise, if A; isan <embedded variable specification> or a<host parameter specification>, then P;
shall be assignableto A;, according to the Syntax Rules of Subclause 9.1, “Retrieval assignment”, with
A and P; as TARGET and VALUE, respectively.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Additional common elements 47

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

48 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
8.1 <embedded SQL host program>

8 Embedded SQL

This Clause modifies Clause 20, “ Embedded SQL”, in ISO/IEC 9075-2.

8.1 <embedded SQL host program>
This Subclause modifies Subclause 20.1, “ <embedded SQL host program>", in | SO/IEC 9075-2.

Function

Specify an <embedded SQL host program>.

Format

<enbedded SQL host prograne ::=
I'' All alternatives froml|SQO |EC 9075-2
| <embedded SQL Java progranp

<statenent or declaration> ::=
Il Al alternatives froml|SQ|EC 9075-2
| <SQ.J specific clause>

<SQL prefix> ::=
I'' All alternatives froml|SQO |EC 9075-2
| <nunmber sign>sql !! 'sqgl' shall be |owercase

<enbedded vari able nane> ::=
Il Al alternatives froml|SQ|EC 9075-2
| <enbedded Java expression>

NOTE 11 — The <SQL prefix> for Javawas chosen to be “#sql” sinceit isnot avalid Javaidentifier, and as such cannot conflict with
other Java syntax.

Syntax Rules
1) [Replace SR 2)) Case

a) An<embedded SQL statement> or <embedded SQL MUMPS declare> that is contained in an
<embedded SQL MUMPS program> shall contain an <SQL prefix> that is “<ampersand>SQL <l eft
paren>". There shall be no <separator> between the <ampersand> and “ SQL" nor between “SQL” and
the <left paren>.

b) An <embedded SQL statement> that is contained in an <embedded SQL Java program> shall contain
an <SQL prefix> that is“ <number sign>sgl”. There shall be no <separator> between the <number
sign>and “sqgl” and “sgl” shall be specified using lowercase |etters.

©ISO/IEC 2003 — All rights reserved Embedded SQL 49

I SO/IEC 9075-10:2003 (E)
8.1 <embedded SQL host program>

¢) An<embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL end declare>
that is not contained in an <embedded SQL MUMPS program> or an <embedded SQL Java program>
shall contain an <SQL prefix> that is“EXEC SQL".

2) |Replace SR 3)| An <embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL
end declare> contained in an <embedded SQL Ada program>, <embedded SQL C program>, <embedded

SQL Pascal program>, <embedded SQL PL/I program>, or <embedded SQL Javaprogram>, shall contain
an <SQL terminator> that is a <semicolon>.

NOTE 12 — | Replace Note 441 | With the exception of <embedded SQL Java program>, which does not support <embedded SQL
declare section>s, there is no restriction on the number of <embedded SQL declare section>s that may be contained in an

<embedded SQL host program>.

3 Case:

a) If <statement or declaration> is contained in an <embedded SQL Java program>, then <statement or
declaration> shall immediately contain an <SQL J specific clause>.

b) Otherwise, <SQLJ specific clause> shall not be specified.

4) |Insert this SR| Case:

a) If <embedded variable name> is contained in an <embedded SQL Java program>, then <embedded
variable name> shall immediately contain an <embedded Java expression>.

b) Otherwise, <embedded Java expression> shall not be specified.
5) |Replace SR 16)| Case:

a) If <embedded Javaexpression> iscontained in an <embedded SQL J Javaprogram>, then <expression>s
immediately contained in <embedded Java expression> shall conform to scoping rules specified by
[Java].

b) Otherwise, any <host identifier> that is contained in an <embedded SQL statement> in an <embedded
SQL host program> shall be defined in exactly one <host variable definition> contained in that
<embedded SQL host program>. In programming languages that support <host variable definition>s
in subprograms, two <host variable definition>s with different, non-overlapping scopein the host lan-
guage are to be regarded as defining different host variables, even if they specify the same variable
name. That <host variable definition> shall appear in the text of the <embedded SQL host program>
prior to any <embedded SQL statement> that references the <host identifier>. The <host variable def-
inition> shall be such that ahost language reference to the <host identifier> isvalid at every <embedded
SQL statement> that contains the <host identifier>.

6) |Replace SR 17)]| Case:

a) If <embedded Javaexpression> iscontained in an <embedded SQL Javaprogram>, then <expression>s
immediately contained in <embedded Java expression> have an accessible host language data type
provided by the Java language environment. For predefined host language data types, an equivalent
SQL <datatype> can be found by first looking up the host language data typein Table 4, “ SQLJ type
properties’; the correspondingj ava. sql . Ty pes-defined constant can then be used with the default
mapping j ava. sql . Types to SQL <datatype>s, as defined by [JDBC].

b) Otherwise, a<host variable definition> defines the host language data type of the <host identifier>.
For every such host language data type an equivalent SQL <datatype> is specified in Subclause 20.3,
“<embedded SQL Ada program>", Subclause 20.4, “<embedded SQL C program>", Subclause 20.5,

50 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
8.1 <embedded SQL host program>

“<embedded SQL COBOL program>", Subclause 20.6, “<embedded SQL Fortran program>",
Subclause 20.7, “ <embedded SQL MUMPS program>", Subclause 20.8, “<embedded SQL Pascal
program>", and Subclause 20.9, “<embedded SQL PL/I program>".

7) |Replace SR 18)] If <embedded SQL host program> does not contain an <embedded SQL Java program>,
then <embedded SQL host program> shall contain a<host variable definition> that specifies SQLSTATE.

8) |Replace theintroductory paragraph of SR 20)| Given an <embedded SQL host program> H that does not
contain an <embedded SQL Java program>, there is an implied standard-conforming SQL-client module
M and an implied standard-conforming host program P derived from H. The derivation of the implied
program P and the implied <SQL-client module definition> M of an <embedded SQL host program> H
effectively precedes the processing of any host language program text manipulation commands such as
inclusion or copying of text.

9) |Replace theintroductory paragraph of SR 21)| For the <embedded SQL host program> H that does not
contain an <embedded SQL Java program>, M is derived from H as follows.

10) | Replace the introductory paragraph of SR 22)| For the <embedded SQL host program> H that does not
contain an <embedded SQL Java program>, P is derived from H asfollows:

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Embedded SQL 51

I SO/IEC 9075-10:2003 (E)
8.2 <embedded SQL Java program>

8.2 <embedded SQL Java program>

Function

Specify an <embedded SQL Java program>.

Format

<enbedded SQ. Java progrant ::=!! See the Syntax Rul es.

Syntax Rules

1) An<embedded SQL Javaprogram> isacompilation unit that consists of Javatext and SQL text. The Java
text shall conform to [Java]. The SQL text shall consist of one or more <embedded SQL statement>s.

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature JO01, “Embedded Java’, conforming SQL language shall not specify an <embedded SQL
Java program>.

52 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
9.1 Components of binary portable applications

9 Binary portability

Other languages for which embedded SQL is supported (e.g., C, COBOL, and Fortran) have had as their goal
the portability of the source file containing the embedded SQL. SQLJ takes that goal much further, asits goal
isthat the source file containing the embedded SQL, as well as the Java source file produced by an SQLJ
tranglator, aswell asthe binary produced by compiling the Java source, shall all be portable. Furthermore, that
portability applies not only amongst different Java Virtual Machines, but also amongst different DBMSs. This
Clause elaborates upon how that degree of portability can be achieved.

9.1 Componentsof binary portable applications

An SQLJ application might consist of a number of different SQLJ tranglation units, trandated using one or
more SQLJ trandators, and customized using one or more customizers. Each individual SQL J trandlation unit
is binary portable with every other SQLJ tranglation unit within the application and the application as awhole
isbinary portable with other applications so long as the required components of each SQL Jtrand ation unit are
available at runtime, and each component conforms to the regquirements specified in this document.

In addition to the classes and profiles generated by atrand ator, there might also be atranslator-specific runtime
library component required to run the generated classes. In many cases, atrandator will provide aruntime
component that implements the SQL J standard classes and interfaces defined in this document. Similarly, a
customizer might require an implementation-specific runtime library component to run a customized version
of the application. If more than one translator or customizer is used to build the application, then there might
be a different runtime library component for each translator and customizer used.

In summary, a binary portable application consists of the following components:
1) SQLJstandard runtime classes.
2) For eachtrandator T used to translate unitsin the application:
a) Runtime classes used by translator-generated code (if any).
b) For each unit trandlated by T:
i) User-defined classes (which might contain executable SQLJ clauses).
i) User-defined property files containing maps for user-defined data types (if any).
iii) Classes generated by T as aresult of declarative SQLJ clauses.
iv) Profilesgenerated by T.
V) Auxiliary helper classes generated by the T (if any).

3) For each customizer used to customize profilesin the application, runtime classes used by the installed
customization (if any).

©ISO/IEC 2003 — All rights reserved Binary portability 53

I SO/IEC 9075-10:2003 (E)
9.1 Components of binary portable applications

The runtime component of a particular translator or customizer need not be packaged with the application if
the component already existsin the runtime environment. For example, aserver environment might be configured
to support the runtime classes of a particular trandator and customization, or a set of runtime classes might be
packaged as a downloadable plug-in for use in browsers.

9.2 Naming runtime components

The'sql j ' package name and any subpackages thereof (for example, 'sql j . runt i ne') arereserved for the
use of the SQL Jstandard runtime and reference implementation classes. Runtime library components associated
with implementation-provided translator and customizer implementations shall use the Java-specified package
naming conventions to avoid conflict with the libraries of the SQL J reference implementation and other
implementations.

9.3 Binary portability requirements

This Subclause specifies the requirements for binary portable SQLJ applications. A binary portable SQLJ
application has the following properties.

— Component-level interoperability

Connection context objects defined by one application can be used in executable SQL operations of another
application. Similarly, result set iterator objects defined by one application can be instantiated and popul ated
by executable SQL operations of another application.

— Packaged description of SQL operations

Every SQLJ application shall include a set of well defined resource files that can be read to determine
information about SQL operations performed by the application.

— Configurable SQL execution control

The runtime execution of SQL operationsis controlled by implementati on-specific components. Components
can be added and removed at any time from a binary SQL J application, as appropriate for the eventual
runtime environment.

Binary portability is achieved though aframework that is based upon the following four aspects:
— Runtime library

Theruntimelibrary iscomposed of the classesthat are common to all applications produced by a particular
SQLJtrand ator. This includes the classes in the standard SQL J runtime packages:

e packagesqlj.runtine
Standard classes that a client will use directly in SQLJ source code.
e packagesqlj.runtinme.profile

Standard classes used by the binary portability framework, but not used directly by the client.

54 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
9.3 Binary portability requirements

The runtime library also includes concrete implementations of the interfaces and abstract classesin the
above packages. These classes might vary depending on the SQLJ trandlator. The standard SQLJ runtime
packages are described in Clause 12, “Package sqlj.runtime”’, Clause 13, “Package sqlj.runtime.profile”,
and Clause 14, “ sglj.runtime.profile.util.ProfileCustomizer”, of this document.

— Profilefiles

Every SQLJ application will include a set of resources called profiles that describe the SQL operations
appearing in the application; a profile file contains profiles for a single SQL J application. This document
defines the requirements for the name, number and contents of profiles created for each SQL J application.

— Generated class signature

The declarative <SQL J specific clause>s shall produce auniform class signature such that not only clients,
but also other applications are able to use these classes interchangeably.

— Callsto runtime and profile

<SQLJspecific clause>s areimplemented as call sto the SQL Jruntimelibraries and profiles. Implementation-
dependent SQL execution is accomplished by implementing runtime components. The calls made to these
components by each <SQL J specific clause> are defined in order to alow a standardized implementation.

Given the portability framework, implementations are able to install custom SQL execution components into
an SQL Japplication. Note that implementations of the abovelist isnot required to achieve custom SQL execution.
Rather, the above list specifies the preconditions that shall be true to enable reliable addition of custom SQL
execution components to an existing SQL J application.

9.4 Profileoverview

SQLJ applications are binary portable, meaning that the same binary application can be run against any SQL -
server implementati on without modification of the original source code and without retranslation of the original
source code using an implementation-specific SQLJ translator. Binary portability is achieved in part by
implementing the default SQLJ runtime libraries on top of JDBC. Any implementation that supports an
infrastructure that emulatesthe JDBC call interfaces and semanticswill automatically be able to support SQLJ.

In addition, many implementations have systemsthat allow SQL statements to be optimized and executed with
greater performance than equivalent JDBC runtime SQL operations. For these systems, it is desirable to be
ableto implement aternative SQL J runtime interfaces instead of the runtime JDBC interfaces.

To accommodate this need, two requirements shall be satisfied. First, the SQLJ application shall include a
complete, accessible description of the SQL operations that it will perform. These descriptions are then used
at application deployment time by implementation-specific tool sthat precompile and install the SQL operations
asappropriatefor aparticular DBMS. Second, theimplementation shall be abletoinstall ahook into an existing
SQLJ application such that the SQL operations are executed using an implementation-specific runtime rather
than the default JDBC implementation. Each SQL Japplication includes aset of SQL J profilesthat satisfy these
two requirements.

An SQLJprofileisaninstance of the Java class sglj.runtime.pr ofile.Profile. It describes every SQL operation
appearing within the original SQLJ source file. For each SQL operation, the profile contains an entry that
describes among other things; the operation text, the number, type and parameter mode of each parameter, and

©ISO/IEC 2003 — All rights reserved Binary portability 55

I SO/I EC 9075-10:2003 (E)
9.4 Profile overview

adescription of the columnsthat are expected to be produced by the operation, if any. SQLJ profiles are packaged
with the application either as serialized objects or as distinct subclasses of sglj.runtime.profile.Profile. Thus,
every SQLJ application includes a set of profilesthat can be loaded at any time, and used to programmatically
inspect the SQL operations it might perform.

SQLJ profiles are serializable, meaning that their state might be stored to afile (or table column) and then
restored at alater time. In addition to describing SQL operations in the source file, profiles also contain a set
of implementation-dependent customization objects. A customization object is an implementati on-dependent
object that is used by the SQLJ runtime to execute an SQL operation described in the profile (the term “ cus-
tomization” refersto the fact that they are used to achieve implementation-dependent “ customized” behavior
in the program). Customizations can be registered and deregistered with aprofile. At runtime, a profile selects
the appropriate customization to use according to the database connection established.

For example, if the client connectsto SQL-server A, then a customization that understands SQL-server A's
system will be used. If the client connects to SQL-server B, then SQL-server B's customization will be used.
In the absence of a connection specific customization, the default JDBC based customization will be used. Like
the profile object, customization objects are seriaizable. This allows the customization state to be stored and
restored with the profile. In this manner, aimplementati on-dependent deployment tool isableto load the profile,
inspect and precompile the SQL operations it contains, register an appropriate customization, and store the
profile back to disk. Then at application runtime, the profile and the registered implementati on-dependent
customization will both be restored, and the customization will be used to execute the SQL operations.

9.5 Profile generation and naming

An SQLJ profile represents the SQL operations performed on a particular connection context class within a
particular sourcefile. Every <executable clause> in an SQLJ program is associated with exactly one <connection
context> (which might be implicit or explicit). <executable clause>s are grouped within a program according
to the class of the associated <connection context> and this grouping is reflected in the profile. If the number
of <connection context> classes associated with <executable clause>sin an SQLJ program is greater than one,
then adistinct profile is created for each <connection context> class.

The generated name of aprofileiscomposed, textually, of parts, with no additional separators occurring between
those parts. Its parts include:

— Anoptiona representation of its associated package that will, if specified, be followed by a period.

— Theoriginal source file name without its filename extension.

— The predefined text string'_SJProfi |l e".

— A profile identification number that is unique among profile identification numbers in the source profile.

Informally presented in BNF form, this might appear as follows:

[packagePart<period> |filenamePart_SJProfil eidentificati onNunber
where:

— packagePart is the package name defined by the package declaration in the original sourcefile. If thereis
no package declaration in the original source file, then this component of the name is omitted.

56 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
9.5 Profilegeneration and naming

— filenamePart is the name of the original source file, without afilename extension. If the original sourceis
not associated with afile that has alogical name, then filenamePart is the name of the first public class
appearing in the source, or, in the absence of any public classes, the first class appearing in the source.

— identificationNumber is a non-negative integer used to uniquely identify the profile. A single sourcefile
can produce more than one profile. In such cases, the profiles produced are numbered consecutively,
starting with O (zero). If a source file produces only one profile, identificationNumber is O (zero).

This standard naming convention allows the programmer to easily recognize profile files and determine the
source file with which they are associated.

9.5.1 Example

Suppose we have thefollowing file, Bar.sqlj, which defines package COM .foo, and containsthree <executable
clause>s associated with two <connection context>s.

package COM f oo;
#sqgl context MyContext;
public class Bar

{
public static void doSQ(M/Context ctx) throws SQLException

{

/1 1: explicit context

#sql [ctx] { UPDATE TAB1 SET COL1 = COL1 + 2 };

/1 2: inplicit context

#sql { INSERT INTO TAB2 VALUES(3, 'Hello there') };
/1 3: explicit context again

#sql [ctx] { DELETE FROM TAB1 WHERE COL1 > 500 };

Two profilesare created for thisfile; they are named COM .foo.Bar _SJProfile0 and COM .foo.Bar_SJProfilel.
COM .foo.Bar_SJProfile0 contains information describing <executable clause>s 1 and 3, and isstored in a
file called Bar_SJProfile0.ser. Com.foo.Bar _SJProfilel describes clause 2, and is stored in file
Bar_SJProfilel.ser.

9.6 SQLJ application packaging

After devel opment of an SQL J application has been completed, the application might be packaged for deployment
asaJARfile. JAR (JavaArchive) isaplatform-independent file format specified by Javathat aggregates many
filesinto one. SQLJ applications are packaged as JAR files in order that they can be inspected and modified
asaunit by profile customization utilities.

Every JAR fileincludes amanifest file that describes the contents of the JAR. For each SQLJ profilein the
application, asection is created in the manifest file contained in the JAR file. The manifest file is used by the
SQLJ customization utilities to locate and |oad the appropriate application profiles. The SQLJ profile section

©ISO/IEC 2003 — All rights reserved Binary portability 57

I SO/IEC 9075-10:2003 (E)
9.6 SQLJ application packaging

of the manifest file has entries that specify the name of the profile file. The name of a profile is composed,
textually, of parts with no additional separators between those parts. Its parts include:

— A specification of the profile's package, given in path format.
— A directory separator '/ ' (<solidus>).

— The profile name without its filename extension.

— A period.

— Thecl ass or ser filename extension.

Informally presented in BNF form, this might appear as follows:

profil eName ::=
pat hPart <sol i dus>profil eFi |l ePart<period>{ class | ser }

And, when used in the JAR manifest:
— Name: profileName SQL JProfilee TRUE
where:

— pathPart isthe package name of the profile in path format, as specified by the manifest file format for
“Name” headers.

— profileFilePart is the name of the profile.

— If the profile existsin class file format, then the name has the extension .class. Otherwise, if the profile
exists as a serialized object, then the name has extension .ser. Only two file formats (.class and .ser) are
currently supported. Other file formats might be added in the future. Note that the customization process
will modify the contents of an existing profile such that any customized profilewill exist in seriaized format
only.

9.6.1 Example

Working again with the file Bar.sglj from the last example, the profile section of the manifest file has the fol -
lowing entries:

— Name: COM/foo/Bar_SJProfile0.ser SQL JProfilee TRUE
— Name: COM/foo/Bar_SJIProfilel.ser SQLJProfile: TRUE

9.7 Profilecustomization overview

This Subclause describes how implementation-specific “ customized” SQL execution control can be added to
SQLJ applications. The SQLJ runtime framework uses the following interfaces:

— glj.runtime.profile.RT Statement to execute SQL operations.

58 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
9.7 Profile customization overview

— gglj.runtime.profile RTResultSet to describe query results.

— gglj.runtime.profile.ConnectedPr ofile to create RT Statement objects corresponding to particular SQL
operations.

Animplementation is able to control SQL execution by providing an implementation of the RT Statement,
RTResultSet, and ConnectedPr ofile interfaces. An implementation is able to redirect control to their imple-
mentation by registering customization hooks with the application profiles.

9.7.1 Profile customization process

The profile customization processis the act of registering profile customization objects with the profile(s)
associated with an application. The profile customization process can be generalized to the following steps:

1) Discover the profile objects within aJJAR file.

2) For each profile, deserialize the profile object from the appropriate JAR entry.
3) Create a database connection with which the profile will be customized.

4) Create and register a profile customization with the profile.

5) Serialize the customized profile back to persistent storage.

6) Recreate the JAR contents using the customized serialized profiles.

Of the above steps, only step 4) islikely to change from implementation to implementation. While step 3) is
implementation-dependent, it can be done using a parameterized tool and JDBC. The rest of the stepsinvolve
actions that can be performed by any generic utility without specific knowledge of the customization being
performed.

The act of creating and registering a customization object with a profile (step 4 above) is abstractly defined by
the Javainterface sglj.runtime.profile.util.ProfileCustomizer. Theintent of defining thisinterfaceisto allow
SQL implementations to concentrate on writing profile customizers and customization objects (step 4 above),
while tools and application implementations concentrate on writing generic tools that apply customizersto
application profiles (steps 1 — 3 and 5 — 6 above).

The profile customizer interface is able to support most customization registration requirements. However, it
isnot required that all utilitiesthat register customization objectswith a profile implement thisinterface. SQLJ
applicationswill be able to run and leverage all implementation-specific customization objects registered with
aprofile, regardliess of whether or not they were registered by a profile customizer. The primary benefit of
conforming to the profile customizer interface is to be able to take advantage of existing and future automated
profile customization utilities that are able to load, call and manipulate profile customizers.

9.7.2 Profilecustomization utilities

Profile customizers can be instantiated and used by automated general-purpose profile customization utilities.
An implementation might include a command-line based tool that serves as a customization utility prototype.
In addition to acommand line-based utility, other useful customization utilities might include:

©ISO/IEC 2003 — All rights reserved Binary portability 59

I SO/I EC 9075-10:2003 (E)
9.7 Profile customization overview

— GUI-based IDESs used to drag-and-drop customizations into profiles.

— Tightintegration of customization utilitieswith server environmentsto automatically customizethe profiles
loaded into the SQL system.

— Background“SQLJingtaller” process used asadministrative tool to discover and customize SQL J applications
for available database schemas.

NOTE 13 — Implementors are encouraged to implement utilities using these and other ideas. Making such tools publically available
will greatly benefit and facilitate the SQLJ binary-portability effort.

9.7.3 Profile customizer interface

A profile customizer is a JavaBean component, as defined by [JavaBeans], that customizes a profile to allow
implementation-defined features, extensions and/or behavior. A classis a profile customizer if it implements
the sglj.runtime.profile.util.ProfileCustomizer interface, provides an accessible parameterless constructor,
and conforms to the JavaBeans API to expose its properties.

A profile customizer implements the following methods:

— acceptsConnection

publ i ¢ bool ean accept sConnecti on(j ava. sql . Connecti on conn)

Returnstrueif this customizer isableto customize profiles using the passed JDBC connection, and returns
false otherwise. A null connection indicates that customization will be performed “ offling” (without a
connection).

— customize

public bool ean customnize(sqglj.runtine.profile.Profile profile,
java. sqgl . Connecti on conn,
sqlj.framework. error. ErrorLog | 0Q)

Customizes the passed profile. If the profile was modified in the process of customization, thentrueis
returned. Otherwise, falseis returned.

See Clause 14, “ sglj.runtime.profile.util.ProfileCustomizer”, for further details on these methods and an overview
of the class usage.

9.8 Customization interface

Each profile object contains a number of Customization objects. Each Customization is an implementation-
specific object implementing the sglj.runtime.profile.Customization interface that is able to create an
sglj.runtime.profile.ConnectedPr ofile object. Customization objects implement two methods:

1) acceptsConnection

publi ¢ bool ean accept sConnection (java.sql.Connection conn)

60 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
9.8 Customization interface

Returnstrueif this Customization can create a connected profile object for the given JIDBC connection,
and returns fal se otherwise.

2) sglj.runtime.profile.getProfile

public sqglj.runtime.profile.ConnectedProfile getProfile (
java. sqgl . Connecti on conn,
sqlj.runtine.profile.Profile baseProfile)
throws SQLException

Returns a connected profile for the baseProfile on the given JDBC connection.

Documentation for thisinterface is specified in sglj.runtime.pr ofile.Customization.

9.8.1 Customization usage

The getConnectedPr ofile method of a profile object is called by the code generated for an <executable clause>.
The call is used to obtain a connected profile object. The connected profile object creates a statement handle
that is used to execute the SQL operation.

The getConnectedPr ofile method isimplemented using the customization objectsthat are currently registered
with the profile, as follows.

1) Let thisrepresent the profile object on which getConnectedPr ofile isinvoked.

2) Let C represent the IDBC Connection object passed to the getConnectedPr ofile method.
3) Let k represent the number of customization objects currently registered with the profile.
4) Leti represent anumber ranging from 1 (one) to k.

5) For each registered customization object RC;:

a) Definethat RC; accepts C if the result of invoking the acceptsConnection method on RC; passing C
as an argument returnstrue.

b) // 1f RG accepts C, then
/1 return the connected profile for RG
i f RG .acceptsConnection(C) then
return RG.getProfile(C, this);

6) If noregistered Customization object accepts the Connection object, then return the default ConnectedProfile
object.

The default connected profile isimplemented using calls to the IDBC API. This means that, by default, SQLJ
applications will work with any compliant JDBC driver and therefore do not require a custom runtime imple-
mentation on the part of a particular implementation if a JDBC driver exists.

©ISO/IEC 2003 — All rights reserved Binary portability 61

I SO/I EC 9075-10:2003 (E)
9.8 Customization interface

9.8.2 Customization registration

Customization objects can be registered, deregistered, and enumerated with aprofile. The classsglj.runtime.pro-
file.Profile supports the following Customization object-rel ated methods:

— register Customization

public void registerCustoni zati on(Custon zati on custom zati on)

Registers a Customization object for this profile object. The Customization object isadded after al currently
registered Customization objects.

— register Customization
public void registerCustonization
(Cust om zati on newCustomi zati on,
Cust om zati on next Cust om zati on)

Registers a Customization object for this profile object. The new Customization object is added to the list
just prior to the next Customization object argument.

— replaceCustomization
public void replaceCustom zation
(Cust omi zati on newCustoni zati on,
Cust omi zati on ol dCust om zati on)

Repl aces a Customization object registration for this profile object. The new Customization object is added
to thelist in place of the old Customization object argument. The new Customization object retains the
position of the old Customization object.

— deregister Customization

public void deregisterCustom zati on(Custoni zati on customni zati on)
Drop a Customization object from the profile'slist.

— Enumeration

public Enuneration get Custom zations()
Returns an enumeration of all Customization objects currently registered with the profile object.
See Clause 13, “Package sqlj.runtime.profile”, for further details on these methods.

Customization objects are serializable. This means that, once registered with a profile object, they are stored
and restored with the profile object. Serialization allowsthe profile objects associated with an SQL Japplication
to be loaded at any time. Once loaded, any number of customization objects can be registered with the profile
object. The profile object and its registered customization objects can then be reserialized to persistent storage.
When the SQL J application is actually run, all the customization objects that were previously registered with
the profile object are also loaded and used to determine what connected profile object should be used to execute
the SQL operations.

62 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
9.9 Entrylnfo overview

9.9 Entrylnfo overview

For each <executabl e clause> (except those describing a <fetch statement>), an Entrylnfo object is created and
stored in an SQLJ profile. An Entrylnfo object contains a collection of Javafields that describe an <executable
clause> as defined below:

— SQL String

A Java String containing the portion of the <executabl e clause> appearing between curly brackets. Unless
otherwise noted, the string contains the exact text of the original program source, including line breaks,
other white space, and comments. Case is preserved. Any <embedded Java expression> appearing in the
original <executable clause> is replaced with <dynamic parameter specification>.

— Role

Categorizes the <executable clause>. Unless otherwise stated, theroleis STATEMENT. Theroleis used
to distinguish operations that are likely to be handled in a special way by the runtime implementation, and
are not meant to be an exhaustive list of al possible types of SQL operations.

For example, therole SINGLE_ROW_QUERY indicates that the operation is a query that is expected to
return only asingle row. It is distinguished from the more general QUERY role since a runtime might be
ableto optimize queriesthat return only asinglerow. UPDATE, INSERT, and DELETE operations all fall
into the general role of STATEMENT, since they are likely to be handled the same way by the underlying
engine.

Table 3, “Association of roleswith SQL J<executable clause>s’, associates roleswith corresponding SQL J
clauses.

Table 3— Association of roleswith SQL J <executable clause>s

Role <executable clause>

QUERY <query clause>

CALL <call statement>

VALUES <function clause>
POSITIONED <delete statement: positioned>
POSITIONED <update statement: positioned>

QUERY_FOR_UPDATE | <query clause> populating ForUpdate iterator

SINGLE ROW_QUERY | <select statement: single row>

UNTYPED_SELECT <query clause> populating sglj.runtime.ResultSetlterator

COMMIT <commit statement>

©ISO/IEC 2003 — All rights reserved Binary portability 63

I SO/IEC 9075-10:2003 (E)
9.9 Entrylnfo overview

Role <executable clause>

SAVEPOINT <savepoint statement>

RELEASE_SAVEPOINT | <release savepoint statement>

ROLLBACK <rollback statement>

SET_TRANSACTION <set transaction statement>

ITERATOR_CONVER- <iterator conversion clause>

SION

BLOCK <compound statement>

STATEMENT all other operations

OTHER reserved for implementation-defined extensions

— Statement Type

Statement typeisCALLABLE _STATEMENT if the <executabl e clause> contains at | east one <embedded
Java expression> the <parameter mode> of which isOUT or INOUT. Otherwise, statement typeis PRE-
PARED_STATEMENT if the <executable clause> contains no <embedded Java expression> or all
<embedded Java expression>s have <parameter mode> IN.

NOTE 14 — An entry with arole of CALL is permitted to have statement type PREPARED_STATEMENT if no <embedded
Java expression> exists with <parameter mode> OUT.

— Execute Type

Describes the RT Statement execute method that is used at runtime to perform this operation, one of EXE-
CUTE_QUERY, EXECUTE_UPDATE, or EXECUTE. The execute typeis EXECUTE_UPDATE unless
otherwise noted.

— Parameter Attributes

Describes the <embedded Java expression>s appearing in the <executabl e clause>. Parameter information
is composed of anumber of Javafields.

e Param Count
Gives the number of <embedded Java expression>s appearing in the <executable clause>, k.
e Param Info

A collection of Typelnfo objects (defined below) that describe the set of <embedded Java expression>s
that appear in an <executable clause>. For each <embedded Java expression>, HE;, thei-th Typelnfo

object, describesHE; of the original <executable clause> (or, equivalently, thei-th <dynamic parameter

specification> in the SQL String Javafield), wherei isintherange 1 (one) < i < k. The Typelnfo object
returned has the mode of the <parameter mode> of HE;. It has Java type name corresponding to the
name of the type of HE;. If HE; isa<simple variable>, then the Typel nfo object returned has the same

64 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
9.9 Entrylnfo overview

name asthat of the <simplevariable>. Otherwise, if HE; isa<complex expression>, then the Typelnfo
object returned has name = null.

— Resault Set Column Java fields

Describesthe columns expected to be produced by the <executable clause>. Result set column information
is composed of a number of Javafields.

* Result Set Type

Describes the way in which the result set columns are expected to be bound. One of NO_RESULT,
NAMED_RESULT, POSITIONED _RESULT. Result set typeisNO_RESULT if the <executable
clause> is an operation that does not produce a result set.

 Result Set Count

The number of result set columns that the <executable clause> is expected to produce as indicated by
the cardinality of the <iterator spec declaration>.

If theresult set typeisNO_RESULT, then result set count is O (zero).
* Result Set Info

A collection of Typelnfo objects that describe the <iterator spec declaration>. For result set usage of
a Typelnfo, mode and dynamic parameter marker index have no meaning and are defaulted to return
OUT and -1.

Thisis empty unless otherwise stated.
* Result Set Name

The class name of the iterator object populated by this <executable clause>. If the result set typeis
NO_RESULT, the result set nameis null.

— Descriptor

Contains any extrainformation not otherwise provided by the other Javafields. The descriptor isnull unless
otherwise stated.

9.10 Typelnfo overview

Each <embedded Java expression> and expected result set column of an <executable clause> is described by

aTypelnfo object. For user-defined datatypes, the content of a Typelnfo object isin part determined using the
associated connection context type map. Thisisthe type map specified in the <connection declaration clause>
of the connection context object with which the <executable clause> is associated. A Typelnfo object contains
acollection of Javafieldsdescribing the <embedded Java expression> or result set column, as described below.

— Java Type Name

The name of the Java Class or primitive type that is the type of the <embedded Java expression> or result
set column.

©ISO/IEC 2003 — All rights reserved Binary portability 65

I SO/IEC 9075-10:2003 (E)
9.10 Typelnfo overview

Inmost cases, the name returned isthe same astheinternal name of thetype, asdefined by [Javal; primitive
types havetheir simple names (e.g., int), classesarefully qualified (e.g., java.sgl.Date), and nested classes
aredelimited with“$” (e.g., X.y.Outer Class$l nner Class). Array naming uses amore readable convention
than the internal type name: if the name returned represents an array, the string “[” is prepended to the full
name of the component type. For example, an array of array of String has the name “[[java.lang.String”.

— SQL Type

A java.sgl.Types-defined constant that corresponds for predefined data types to the default mapping of
the Javatype of the <embedded Java expression> or result set column into an SQL type, as defined by
[JDBC]. For user-defined data types that are covered by a property definition in the associated connection
context type map, thisfield contains the SQL type (i.e., STRUCT, DISTINCT, or JAVA_OBJECT)
corresponding to the Java type name as defined in that property definition. If the property definition for
the Javatype does not specify an SQL type, then the following default mechanism is used for determining
the SQL type: If the Javatype of the <embedded Java expression> or result set column implements the
interface java.sgl.SQL Data, then the SQL Typefield isset to STRUCT; otherwise, it is set to

JAVA _OBJECT. If no property entry isfound in the connection type map for the given Java type name,
or no type map has been associated with the connection context class, then the SQL TypeisOTHER. This
mapping is aso given in columns one and two of Table 4, “ SQL J type properties’.

NOTE 15— SQL Typeisnot arepresentation of the SQL types. Instead, it exists as an established default mapping between Java
types and JDBC-defined SQL type constants. It might be disregarded or remapped as appropriate by implementation-defined
profile customizations.

— SQL TypeName

If the SQL Typefield of the Typelnfo object is either STRUCT, DISTINCT, or JAVA_OBJECT, then
thisfield contains a String giving the user-defined name of the SQL type corresponding to the Javatype
of the <embedded Java expression> or result set column, as defined by the associated connection context

type map.
— Mode

Oneof IN, INOUT, or OUT. Gives the <parameter mode> of a <host expression>. For result set columns,
the mode is always OUT.

— Name

Givesthe name of the <embedded Java expression> or result set column, if available. If the Typelnfo object
represents a <embedded Java expression> the rules for determining the name are specified in Entrylnfo-
Param Info. If the Typelnfo object represents a column of <named iterator> then name is determined by
its <iterator spec declaration>. If the Typelnfo object represents a column of a <positioned iterator>, then
name=null.

— Dynamic Parameter Marker Index

Gives the zero-based index of the <dynamic parameter specification> appearing in the SQL String that
corresponds to the <embedded Java expression> represented by this Typelnfo object. The dynamic
parameter marker index is—1 if this Typelnfo object describes aresult set column.

66 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

9.11 SQLJ datatype properties

Every bind variable, return result, and column type is described in an SQLJ profile by means of a Typelnfo

object.

Table 4, “SQLJtype properties’, describes the datatypes supported by SQLJ.

I SO/IEC 9075-10:2003 (E)
9.11 SQLJ datatype properties

— Thefirst column lists the names of the Java datatypes that are supported by SQL J.

— The second column lists the java.sgl. Types constant value of the given datatype.

— Thethird column lists the “ getter method” used to fetch bind variables of the given datatype either as an

out-parameter (RT Statement) or column type (RTResultSet).

— Thefourth column lists the “ setter method” used to pass bind variables of the given datatype as input

parameter (RT Statement) to the database.

Table4 — SQLJ type properties

Javatype name java.sql.Types | getter method setter method
value

boolean BIT getBooleanNoNull setBoolean

byte TINYINT getByteNoNull setByte

short SMALLINT getShortNoNull setShort

int INTEGER getintNoNull setint

long BIGINT getL ongNoNull setL.ong

float REAL getFloatNoNull serFloat

double DOUBLE getDoubleNoNull setDouble

javalang.Boolean BIT getBooleanWrapper setBooleanWrapper

javalang.Byte TINYINT getByteWrapper setByteWrapper

javalang.Short SMALLINT getShortWrapper setShortWrapper

javalang.Integer INTEGER getIntWrapper setlntWrapper

javalang.Long BIGINT getLongWrapper setL ongWrapper

javalang.Float REAL getFloatWrapper setFloatWrapper

javalang.Double DOUBLE getDoubleéWrapper setDoubl eWrapper

©ISO/IEC 2003 — All rights reserved

Binary portability 67

I SO/IEC 9075-10:2003 (E)
9.11 SQLJ datatype properties

Java type name java.sgl.Types | getter method setter method

value
javalang.String VARCHAR getString setString
javamath.BigDecimal NUMERIC getBigDecima setBigDecimal
byte]] 1 VARBINARY getBytes setBytes
javasgl. Array6 ARRAY getArray setArray
javasqI.BIob4 BLOB getBlob setBlob
javasgl.Cl ob? CLOB getClob setClob
java.sgl.Date DATE getDate setDate
java.sgl.Time TIME getTime setTime
java.sgl.Timestamp TIMESTAMP getTimestamp setTimestamp
java.net. URL DATALINK getURL setURL
sglj.runtime AsciiStream? | OTHER getAsciiStream® setAsciiStream
sglj.runtime.BinaryStream? | OTHER getBinaryStream® setBinaryStream
sqlj.runtime.Character- OTHER getCharacterStream- setCharacterStreamWrap-
Stream? Wrapper per
sgfj.runtime.UnicodeStream? | OTHER getUnicodeStream® setUnicodeStream
java.sgl.Ref REF getRef setRef
any other cl aSS5 STRUCT, DIS getObject setObject

TINCT,

JAVA_ OBJECT,

OTHER
1The Java type name Javafield stored in a Typelnfo object for abyte array is named “[byte”, not “byte[]”.
2Thesqu runtime XXX Stream classes are subclasses of java.io.l nputStream. Explicit type names allow the type of the stream
data to be encoded statically in the type name, and therefore to be determined at translate time rather than runtime. They also
add a“length” Javafield that is needed when streams are passed to an SQL-server.
3 Getter methods for stream types are only available on the RTResultSet interface, but not the RT Statement interface. Thisis
for symmetry with JDBC.
4The Blob and Clob data type implementations are recommended to be based on large object locators. In order to retrieve or
providetheactual Lob valuesinstead of location, one can use host variables of type BinaryStream, AsciiStream, or UnicodeStream
instead of Blob and Clob.

68 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
9.11 SQLJ datatype properties

SThereisnosi ngle default java.sgl.Types value for the Javatype namein this case. The “java.sql.Typesvalue’ column liststhe
alternative values permitted in this case. The actual value stored in a Typelnfo object that is part of the profile entry is determined
by the SQLJ translator according to the Rules given in Subclause 9.10, “ Typelnfo overview”.

6The Array data type implementation is recommended to be based on array locators.

Conformance Rules

None.

©ISO/IEC 2003 — All rights reserved Binary portability 69

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

70 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
10.1 SQLJreserved names

10 SQLJ grammar constructs

10.1 SQLJ reserved names

This Subclause describes the names reserved by the SQLJ translator for naming generated classes, temporary
variables, and resource files. SQLJ programs should be written so as to avoid naming conflicts with SQLJ
generated code.

10.1.1 Temporary variable names

An SQL Jtrand ator replaces each occurrence of an <executable clause> with agenerated Java statement block.
A number of temporary variable declarations can be used within the generated statement block. The name of
any such temporary declaration will include the prefix _ sJT_. The following declarations are examples of
those that might occur in an SQL J-generated statement block.

int _ sJT_index;
hj ect __sJT_key;
sglj.runtime.profile. RTStatement __sJT_stnt;

Thestring“__sJT_" isareserved prefix for SQLJ-generated variable names. SQL J programmers are not per-
mitted to use this string as a prefix for any the following:

1) host variable names.
2) Names of variables declared in blocks that include executable SQL statements.
3) Names of parameters to methods that contain executable SQL statements.

4) Names of Javafieldsin classes that contain executable SQL statements, or the subclasses or enclosed
classes of which contain executable SQL statements.

The effect of violating SQL Js reserved variable name space is implementati on-dependent.
10.1.2 Classand resource file names

For each file trandated by SQLJ, a number of internal classes and resource files might be generated as part of
the SQL Jtrand ation. The name of every such class and resource file has a prefix composed of the name of the
original input file followed by the string “_SJ".

©ISO/IEC 2003 — Al rights reserved SQLJ grammar constructs 71

I SO/I EC 9075-10:2003 (E)
10.1 SQLJreserved names

10.1.2.1 Internal classes

SQLJinternal classes are classes created for internal use by generated code. SQL J internal classes are not
directly referenced by the SQLJ programmer, as opposed to SQLJ client-declared classes that are explicitly
named and declared by the client using the SQL J class declaration constructs <connection declaration clause>
and <iterator declaration clause>.

As described above, the name of an SQLJinternal classincludes a prefix that is the name of the original input
filefollowed by the string “_SJ”. All generated classes will appear in the same package asis declared in the
origina input file. For example, suppose the input file was named Bar .sglj and declares that it uses package
COM .foo. Examplesof fully qualified names of internal classesthat might be declared asaresult of translating
Bar.sglj are COM .foo.Bar_SJInternalClass, COM .foo.Bar_SJProfileK eys, and COM .foo.Bar_SJInternal-
Class$l nner. Note that declared classes might themselves declare inner classes.

SQLJinternal classes might appear at the end of the translated input file, or might appear in a new Javafile
created during SQL J trandation. In the case of newly created Javafiles, the filename will be the same as the
short name of the generated internal class, and will have the .java extension. Examples of filenames associated
with the aforementioned fully qudified classnamesare Bar _SJInternalClass,javaand Bar_SJProfileK eysjava.
Notethat theinner class COM .foo.Bar_SJInter nalClass$l nner would appear as an inner classwithin thefile
Bar_SJinternalClassjava.

SQLJ programmers are not permitted to declare classes with names that might conflict with SQLJ internal
classes. In particular, aclient-declared top-level classis not permitted to use a name of the form a_SJb (where
aandb arelega Javaidentifiers) if aisthe name of an existing classincluded in the SQL Japplication. Moreover,
names of files included with the application are not permitted to conflict with names of files that might be
generated by SQLJ. Aswith Java source files, SQLJ source files are named for the class declared within that
source file. Accordingly, restrictions for naming files are similar to those of naming classes.

Theeffect of violating SQL Jsreserved internal class name space or file name spaceisimplementation-dependent.

10.1.2.2 Resour ce filesand profiles

In addition to generating internal classes, an SQLJ trandator might also generate a number of resource files.
Resource files store information used by SQL J generated code that is not conveniently represented as a Java
class. Aswithinternal classes, generated resourcefiles are not meant to be used directly by the SQL J programmer.
SQL Jprofiles, described in Subclause 9.3, “ Binary portability requirements’, are one example of resourcefiles
produced by an SQLJ tranglator.

Resource files are named using the same rules as defined above for files containing generated internal classes,
every resource filename starts with the name of the original input file name followed by the string “_SJ”. See
Subclause 9.5, “Profile generation and naming”, for further details on names used for SQLJ profiles.

The programming restrictions described for avoiding conflictswith generated internal classes apply for avoiding
conflicts with generated resource files as well. No further restrictions are needed.

72 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

10.2 Common subelements

10.2.1 <modifiers>

Function

Represents valid Java class modifiers composed of Java class modifier keywords (e.g., static, public, private,
protected, etc.), as defined by [Javal. <modifiers> represent one or more Java class modifier keywords (e.g.,
static public).

Format

<modifiers> ::= 1! See the Syntax Rules

Syntax Rules

1) <modifiers> specifies one or more Java class modifier keywords as defined by [Javal.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

10.2.2 <java class name>

Function

Identify avalid Java class name as defined by [Javal.

For mat

<java class name> ::= ! See the Syntax Rul es

©ISO/IEC 2003 — Al rights reserved SQLJ grammar constructs 73

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

Syntax Rules

1) <javaclass name> specifies avalid Java class name, as defined by [Java].

Access Rules

None.

General Rules

None.

Conformance Rules

None.

10.2.3 <javaid>

Function

Identify avalid Java variable as defined by [Java].

Format

<java id> ::= 1! See the Syntax Rul es

Syntax Rules

1) <javaid> specifiesavalid Javavariable, as defined by [Java).

Access Rules

None.

General Rules

None.

Conformance Rules

None.

74 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

10.2.4 <javadatatype>

Function

Identify avalid Java data type as defined by [Java).

For mat

<java datatype> ::=!! See the Syntax Rul es

Syntax Rules
1) <javadatatype> specifiesavalid Java datatype, as defined by [Javal.

Access Rules

None.

General Rules

None.

Conformance Rules

1) Without Feature JO08, “ Datalinks via SQL language”, conforming SQL language shall not contain a<java
datatype> that specifiesj ava. net . URL.

10.2.5 <java constant expression>

Function

Identify avalid Java constant expression as defined by [Java].

Format

<java constant expression> ::=1! See the Syntax Rules

Syntax Rules

1) <javaconstant expression> specifies avalid Java constant expression, as defined by [Javal.

©ISO/IEC 2003 — Al rights reserved SQLJ grammar constructs 75

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

Access Rules

None.

General Rules

None.

Conformance Rules

None.

10.2.6 <embedded Java expression>

Function

Identifies a Java variable or a Java expression that resolves to a Java variable.

Format

<enbedded Java expression> ::= <colon> [<paraneter npde>] <expression>

<expression> ::=
<sinmpl e vari abl e>
| <left paren> <conpl ex expression> <right paren>

<sinmple variable> ::= 1! See the Syntax Rul es
<conpl ex expression> ::=

<Rval expression>
| <Lval expression>

<Rval expression> ::= 1!l See the Syntax Rul es
<Lval expression> ::=1!! See the Syntax Rul es
Syntax Rules

1) <simple variable> shall conform to the Javarules for simple name specified by [Javal in section 6.2.

2) <Rval expression> shall conform to the Javarulesfor AssignmentExpression specified by [Javal in section
15.26.

3) <Lval expression> shall conform to the Javarules for LeftHandSide specified by [Java] in section 15.26.
4) Case

76 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

b)

d)

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

If <embedded Java expression> is contained in an argument for a parameter of the subject routine of
a<call statement> whose <parameter mode> isIN, then

Case:
)] If <parameter mode> is specified, then <parameter mode> shall be IN.
i) Otherwise, a <parameter mode> of IN isimplicit.

If <embedded Java expression> is contained in an argument for a parameter of the subject routine of
a<call statement> whose <parameter mode> is OUT, then a <parameter mode> of OUT shall be
specified.

If <embedded Java expression> is contained in an argument for a parameter of the subject routine of
a<call statement> whose <parameter mode> is INOUT, then a <parameter mode> of INOUT shall be
specified.

If <embedded Java expression> is contained in a <value specification> and is not contained in an
argument for a parameter of the subject routine of a <call statement>, then

Case:
i) If <parameter mode> is specified, then <parameter mode> shall be IN.
i) Otherwise, a <parameter mode> of IN isimplicit.

If <embedded Java expression> is contained in an <assignment target> and is not contained in an
argument for a parameter of the subject routine of a<call statement>, then

Case:
)] If <parameter mode> is specified, then <parameter mode> shall be OUT.

i) Otherwise, a <parameter mode> of OUT isimplicit.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) A <complex expression> isaproper superset of <simple variable>.

2)
3)

An <Rval expression> is a proper superset of <L val expression>.

During execution of an SQLJ program, an <Rval expression> isevaluated to determineitsvalue, according

to the rules of Java expression evaluation. The determination of an <Rval expression>'svalueresultsin all
side effects of the <Rval expression> evaluation becoming visible.

©ISO/IEC 2003 — Al rights reserved SQLJ grammar constructs 77

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

4) During execution of an SQLJ program, an <Lval expression> is evaluated to determine a pair comprising
both the value and the location of the <Lval expression>. The determination of both of these properties
resultsin all side effects of the <Lval expression> evaluation becoming visible.

a) During execution of an SQLJ program, the value of <Lval expression> is determined according to the
rules of Java expression evaluation.

b) Atthesametime, during execution of an SQLJprogram, thelocation of <L val expression> isdetermined
asfollows:

)] If <Lval expression> isasimple Javaidentifier, denoting a Java variable X, then the location
of <Lval expression> isthe location of X.

i) If <Lval expression> references a Javafield called F of a Java <Rval expression> denoting a
Java object O, then the location of <Lval expression> isthe location of:

O.F

i) If <Lval expression> references an element of a Java <Rval expression> array A with index
<Rval expression> |, then thelocation of <L val expression> isthelocation of the array element:

All]

Conformance Rules

1) Without Feature JO08, “Datalinks via SQL language”, conforming SQL language shall not contain an
<embedded Java expression> whose Javatypeisj ava. net . URL.

10.2.7 <implements clause>

Function

Specifies a set of one or more interface classes to a generated class declaration.

Format
<inplenents clause> ::= inplements [<interface list>]
<interface list> ::= <interface element> [{ <comma> <interface elenent> }...]

<interface element> ::=
<predefined interface cl ass>
| <user defined interface class>

<user defined interface class> ::= <java class nane>

<predefined interface class> ::=
sqlj.runtime. For Updat e
| sqglj.runtine.Scrollable

78 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

Syntax Rules

1) <user defined interface class> shall specify a user-defined interface class.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) The<interfacelist> is appended to the generated class definition by text substitution.
Conformance Rules

None.

10.2.8 <declaration with clause>

Function

Specifies a set of one or more initialized variables to a generated class declaration.

Format

<declaration with clause> ::= with <left paren> <declaration with |list> <right paren>
<declaration with list> ::= <with element> [{ <comma> <with element> }...]

<with elenment> ::= <with keyword> <equal s operator> <w th val ue>

<wi th keyword> ::=
<predefined iterator with keyword> <predefined connection with keyword>
| <user defined with keyword>

<predefined iterator with keyword> ::=
sensitivity
| holdability
| updat eCol ums

<predefined connection with keyword> ::=
dat aSour ce
| typeMap

©ISO/IEC 2003 — Al rights reserved SQLJ grammar constructs 79

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

pat h

| transfornoup

<user defined with keyword> ::= <java id>
<wi th value> ::= <java constant expression>
Syntax Rules
1) No <with keyword> shall be specified more than once.
Access Rules

None.

General Rules

None.

Definitions and Rules

1)

2)
3)

4)

5)

Each <with element> is added as a public static final variable the type of which is derived from the type
of its associated <java constant expression> to the generated class declaration.

Support for each <predefined iterator with keyword> is implementation-defined.

If the <predefined iterator with keyword>issensi ti vi t y, then the <with value> shall be one of the
sglj.runtime.ResultSetlterator defined int constants SENSI Tl VE, | NSENSI TI VE, or ASENSI Tl VE.

a) Thekeywordsensi ti vity specifiesthe semanticsdefined for <cursor sensitivity>in Subclause 14.1,
“<declare cursor>", |1SO/IEC 9075-2.

b) Theeffective sensitivity of aniterator refersto the runtime value that would be returned by an invocation
of get Sensi ti vity() onthatiterator. JDBC mandatesthat an implementation that cannot support
the requested sensitivity enforce the closest matching sensitivity supported to that requested.

¢) Thedefault sensitivity of an iterator refers to the compile time sensitivity value when the keyword
sensi ti vi ty isnot specified. The default sensitivity shall be ASENSI Tl VE, as specified in
Subclause 14.1, “ <declare cursor>", in ISO/IEC 9075-2.

If the <predefined iterator with keyword> ishol dabi | i t y, then the <with value> shall be the boolean
valuetrue or false.

a) Thekeywordhol dabi | ity specifiesthe semanticsdefined for <cursor holdability>in Subclause 14.1,
“<declare cursor>", |1SO/IEC 9075-2.

b) The default holdability of an iterator when the keyword hol dabi | i ty isnot specified shall be
W THOUT HOLD, as specified in Subclause 14.1, “<declare cursor>", in | SO/IEC 9075-2.

If the <predefined iterator with keyword> isupdat eCol umrms, then the <with value> shall be a String
literal containing a comma-separated list of column names.

80 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

6) If an <iterator declaration clause> contains a <declaration with clause> that contains a <predefined iterator
with keyword> of updat eCol unns, then the <iterator declaration clause> shall also contain an <imple-
ments clause> specifying a <predefined interface class> that contains sglj.runtime.For Update.

7) If the <predefined connection with keyword> is dataSour ce, then the <with value> shall be a String literal
naming a JNDI resource of typej avax. sql . Dat aSour ce, as specified by [JDBC].

8) If the <predefined connection with keyword> istypeM ap, then the <with value> shall adhereto thefollowing
rules:

a) The <with value> shall be a String literal containing one name or a comma-separated list of multiple
names of Java resource bundle(s). The name of aresource bundle shall adhere to the required syntax
for resource bundle family names as specified in [Javal, and shall refer to a Java properties classor file
that contains type mapping information.

b) A property definition contained in the classor file that is recognized by the SQL J tranglator as defining
atype mapping shall be specified in the following way:

i) The name of the property has the following syntax:

<type nmap property name> ::= class. <java class nane>
where <java class name> isafull class name that includes a package name.

)] The value of the property has the following syntax:

<type map property value> ::=
[<sgl type>] <user-defined type nane> [TRANSFORM <group nane>]

<sql type> ::=
DI STI NCT
| STRUCT
| JAVA_OBJECT

¢) Each <type map property name> shall be unique across al type maps specified in the <with value> of
asingle <connection declaration clause>.

d) A <user-defined type name> that is contained in a <type map property value> shall not be contained
in any other <type map property value> of the same type map or any other type map specified in the
<with value> of the same <connection declaration clause>.

€) Theclass <javaclass hame> hasto specify that it implements either java.sgl.SQLData or java.io.Seri-
dizable.

f) If <type map property value> TMPV contains a transform <group name>, then let TG be that <group
name> and let UDT be the <user-defined type name> contained in TMPV. The <group specification>
“TGFOR TYPE UDT" iscalled aproperty group specification of the type map propertiesfile.

9) If the <predefined connection with keyword> ispath, then the <with value> shall be a<schemanamelist>,
and an <embedded path specification> of the form “PATH <wi t h val ue>" isimplicitly specified and
precedes any <SQL J specific clause> executed in the scope of the connection context class.

10) If the <predefined connection with keyword> is transformGroup, then the <with value> shall be of the
form “{ <single group specification> | <multiple group specification> }". If <single group specification>

©ISO/IEC 2003 — Al rights reserved SQLJ grammar constructs 81

I SO/I EC 9075-10:2003 (E)
10.2 Common subelements

is specified, then no property class or file contained in the <with value> of atypeMap shall contain a
property group specification. An <embedded transform group specification> of the form “ TRANSFORM
GROUP <wi t h val ue>" isimplicitly specified and precedes any <SQLJ specific clause> executed in
the scope of the connection context class.

11) If <multiple group specification> is specified, then no <user-defined type name> contained in the <multiple

group specification> shall also be part of aproperty group specification that is contained in aproperty class
or file specified in the <with value> of atypeMap.

12) If no <single group specification> is specified, then let MGU be the comma-separated list of all <group

specification>s contained in a <multiple group specification> and all the property group specifications
contained in the property classes or files specified as part of the <declaration with clause> of the <connection
declaration clause>. If MGU is not empty, then an <embedded transform group specification> of the form
“TRANSFORM GROUP MaU™ isimplicitly specified and precedes any <SQL J specific clause> executed
in the scope of the connection context class.

Conformance Rules

1

2)

3)

Without Feature SO071, “ SQL pathsin function and type name resolution”, conforming SQL language shall
not contain a <predefined connection with keyword> that simply contains path.

Without Feature S241, “ Transform functions’, conforming SQL language shall not contain a <predefined
connection with keyword> that is transformGroup.

Without Feature S241, “ Transform functions’, conforming SQL language shall not contain a user-defined
type map specified using a<predefined connection with keyword> that ssmply containstypeM ap and that
contains a property group specification.

82 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

11 <SQL J specific clause> and contents

11.1 <SQLJ specific clause>

Function

Specify an embedded SQL J clause inside a Java application.

Format

<SQ.J specific clause> ::=
<connection decl aration cl ause>
| <iterator declaration clause>
| <executabl e clause>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.1 <SQLJ specific clause>

<SQLJ specific clause> and contents 83

I SO/I EC 9075-10:2003 (E)
11.2 <connection declaration clause>

11.2 <connection declaration clause>

Function

Specify a named database connection declaration inside a Java application.

Format

<connection decl aration clause> ::=
[<nodifiers>] context <java class nane>
[<inmplements clause>] [<declaration with clause>]

Syntax Rules

1) An <implements clause> shall not specify a <predefined interface class>.

2) A <declaration with clause> shall not specify a <predefined iterator with keyword>.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) SQLJdatabase connections are objects of classesthat are defined by means of the <connection declaration
clause> and result in the generation of a generated connection class declaration.

2) A <connection declaration clause> is permitted to appear anywhere a Java class definition may appear.

Conformance Rules

None.

84 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.3 Generated connection class

11.3 Generated connection class

Function

A generated connection class is generated as a side effect of the direct inclusion of a <connection declaration
clause>. The generated connection classis formally defined, since its signature (i.e., associated methods) are
directly required by the Java programmer.

The generated connection class is generated using the specified <modifiers> and <java class name>.

Signature
In the following signature, let withType represent the <java datatype> of its associated <with keyword>.

<nmodi fi ers> cl ass <java cl ass nanme>
i mpl ements sqlj.runtinme. Connecti onCont ext
[, <interface list>] /1 Optional; not literal []

/1l Optional and repeatable; not literal [] or {} or
[{ static public final wthtype
<wi th keyword> = <with value> ; }...]

<create connection constructors>
public <java class nane>

(ConnectionContext other)

throws SQLException ;
public <java class nane>

(java.sql . Connection conn)

throws SQLException ;
static public <java class name>

get Def aul t Context () ;
static public void setDefaul t Cont ext

(<java class name> ctx) ;
public java.util.Mp

get TypeMap () ;

A generated connection classimplements interfacesql j . runt i me. Connect i onCont ext .

<create connection constructors> ::=
<data source constructors>
| <url constructors>

<data source constructors> ::=
public <java class nane> () throws SQLException ;
| public <java class name>
(String user, String password)
throws SQLException ;

<url constructors> ::=

public <java class nane>
(String url, Properties info, boolean autoComit)

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 85

I SO/I EC 9075-10:2003 (E)
11.3 Generated connection class

throws SQ.Exception ;
| public <java class nanme>
(String url, boolean autoComrit)
throws SQLException ;
| public <java class nanme>
(String url, String user, String password,
bool ean aut oCommit)
throws SQLException ;

Definitions and Rules

1)

2)

3)

4)

If the <connection declaration clause> contains a <declaration with clause> that specifies the <predefined
connection with keyword> dataSour ce, then the generated connection class signature uses <data source
constructors>; otherwise, the generated connection class sighature uses <url constructors>.

If the <connection declaration clause> contains a <declaration with clause> that specifies the <predefined
connection with keyword> typeM ap, then let TM be the corresponding <with value>. The invocation of
themethod get TypeM ap () of the generated connection classreturns an instance of aclassthat implements
java.util.Map that contains the user-defined type mapping information provided by the propertiesfiles
listed in TM in the form specified in [JDBC]. This method isinvoked by code generated by the SQLJ
tranglator for <executable clause>s and <iterator declaration clause>s, but it can also be invoked by an
SQLJ application programmer for direct use in JDBC statements. The implementation of this method
attempts to load the properties files based on the Java class path. Furthermore, the implementation of this
method should avoid repeatedly loading the propertiesfiles by keeping a copy of the Map object in astatic
variable. If the <connection declaration clause> does not contain a<declaration with clause> that specifies
the <predefined connection with keyword> typeM ap, then this method returns Java null.

At runtime, a connection context object and its underlying JDBC Connection object have an associated
connection context user identifier, which is by default used as the current user identifier for all SQL state-
ments executed in the scope of the connection context object, and is defined as follows.

Case:

a) If the connection context object is created using <data source constructors> or <url constructors> that
haveauser parameter, or if auser nameisprovided as part of thei nf o parameter, then the connection
context user identifier is the user name provided.

b) If the connection context object is created using the constructor that takes an existing connection context
object, then the connection context user identifier isthe user identifier of the existing connection context
object.

¢) If the connection context object is created using the constructor that takes an existing JDBC Connection
object, then the connection context user identifier is the user name that was provided during creation
of the IDBC Connection object.

d) Otherwise, the connection context user identifier isimplementation-defined.

The semantics of constructors defined by <data source constructors> are as described for overloadings of
method getConnection of classj avax. sql . Dat aSour ce in [JDBC]. If one of these constructorsis
called, INDI is used to obtain the data source object named by the <with value> of the dataSour ce <with
keyword>. The data source object is used to create the connection. The auto commit modeis set as specified
by the given data source.

86 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

5)

6)

7)

8)
9)

I SO/I EC 9075-10:2003 (E)
11.3 Generated connection class

The semantics of constructors defined by <url constructors> are as described for overloadings of method
get Connect i on of classj ava. sql . Dri ver Manager in[JDBC]. The connection is created with
an auto commit mode set as specified by the value of the “autoCommit” argument.

The constructor that takes an existing connection context object asits argument causes the object on which
the method is invoked to share its database session, i.e., its underlying database connection. The auto
commit mode is that of the passed connection context object.

The constructor that takes an existing JDBC connection object asits argument causes the object on which
the method was invoked to share its database session, i.e., its underlying database connection. The auto
commit mode is that of the passed connection object.

Method setDefaultContext sets the default connection context for this class.
Case:

a) If setDefaultContext has been called, then getDefaultContext returns the default connection context
object for thisclass.

b) If adatasourceisdefinedin JNDI for thenamej dbc/ def aul t Dat aSour ce, then getDefaultCon-
text returns a connection context object that uses the connection created by this data source.

¢) If adefault database connection exists in the runtime environment, then getDefaultContext returns a
connection context object that shares the underlying default database connection.

d) Otherwise, getDefaultContext returns null.

10) All other methods are defined in sglj.runtime.ConnectionContext.

Binary Composition

The following rules are defined for binary composition in every generated connection class.

1)

The generated class includes a static public method named getPr ofileK ey:
public static Object getProfil eKey
(sqlj.runtine.profile.Loader |oader,
String profileNane) throws SQ.Exception;

get Profil eKey() returnsakey associated with the profile having the given profileName. If the key
for a profile with this name aready exists, then it is returned; otherwise, a new profileisinstantiated with
the given name and Loader and a new key for this profile is returned. An exception isthrown if aprofile
cannot be loaded with the given name and Loader.

The abject returned is an opaque, implementation-defined key for use in a subsequent call to get Pr o-
file() orget Connect edProfil e() . Thismethodisused by trandlator-generated codethat replaces
<executable clause>s to obtain a key with which a particular profile can be identified within a connection
context.

— Parameters:
» loader — The profile loader with which the profile should be loaded if it doesn't already exist.
» profileName — Thefully qualified name of the profile.

— Returns:

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 87

I SO/I EC 9075-10:2003 (E)
11.3 Generated connection class

2)

3)

« A key for the profile with the given name in this context.
— Throws:
* SQLException — If a profile with this name cannot be |oaded.

The generated class includes a static public method named getPr ofile:

public static sqglj.runtime.profile.Profile getProfile (Qbject profileKey);

getProfilereturnsatop-level profile associated with profile key returned by an earlier call to getProfileK ey
in this context class. Each connection context class maintains astatic set of profilesthat collectively define
al possible SQL operations that are permitted to be performed on this context.

— Parameters:

» profileKey — the key associated with the desired profile.
— Throws:

* |llegal ArgumentException — If the profileKey isnull or invalid.
The generated class includes a public method named getConnectedPr ofile:

public sqglj.runtine.profile.ConnectedProfile
get Connect edProf i | e(Obj ect profil eKey)
t hrows SQLExcepti on;

getConnectedPr ofile returns the connected profile associated with aprofileKey for this connection context
object. Each connection context object maintains a set of connected profiles on which SQL operation
statements are prepared. Collectively, the set of connected profiles contained in a connection context rep-
resent the set of all possible SQL operations that are permitted to be performed between the time the con-
nection context object is created and the time it is destroyed.

The profileK ey object shall be an object that was returned viaaprior call toget Prof i | eKey() . An
exception isthrown if a connected profile object could not be created for this connection context.

Thismethod is used by translator-generated code that replaces <executable clause>sto obtain a connected
profile. The connected profilein turn creates a statement handle that is used to execute the SQL operation.

— Parameters:
» profileKey — The key associated with the desired profile.
— Throws:
« lllega ArgumentException — If the profileKey isnull or invalid.
» SQLException — If the connected profile abject could not be created.

Code Generation

In addition to managing the database connection, the connection context class implementation is responsible
for instantiating profile and connected profile objects at runtime, as follows:

88 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1)
2)
3)

4)
5)

6)

I SO/I EC 9075-10:2003 (E)
11.3 Generated connection class

Let PL represent a profile loader.
Let PN represent a profile name.
If getProfileKey iscalled with values PL and PN, and akey for PN does not exist, then:

a) A new profileisinstantiated using the instantiate method:

sglj.runtime.profile.Profile p =
sglj.runtime.profile.Profile.instantiate (PL, PN) ;

b) Animplementation-dependent key is created and returned that is associated with PN, and that if refer-
enced by members of thisgenerated connection class uniquely identifiesthe newly-instantiated profile.

Let PK represent a profile key returned by a call to getProfileK ey.

If getProfileis called with argument PK, then return the profileinstantiated during the call to getPr ofileK ey
associated with PK.

If getConnectedProfileis called with argument PK, then:
a) Let C represent the underlying JDBC connection associated with the current connection context object.
b) Let P represent the Profile associated with PK. This can be found using the static getPr ofile method.

c) Let CP represent the ConnectedProfile associated with PK in the current connection context object,
or null if none exists.

d) If CPisJavanull, then anew connected profileis created using the getConnectedPr ofile method of
P:

CP = P.get ConnectedProfile (C) ;

e) ReturnCP

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 89

I SO/I EC 9075-10:2003 (E)
11.4 <iterator declaration clause>

11.4 <iterator declaration clause>

Function

Specify either apositioned iterator class declaration or anamed iterator class declaration inside aJavaapplication.
Aniterator isan object that containsthe result of the evaluation of aquery. Iterators are objects that implement
theinterface sglj.runtime.ResultSetlterator, and are declared by an SQL Jtranglator in responseto an <iterator
declaration clause>.

The SQLJ clause for declaring an iterator class has two forms, distinguishing a <named iterator> from a
<positioned iterator>.

Format

<iterator declaration clause> ::=
[<nodifiers>] iterator <java class nanme>
[<inmplenents clause>] [<declaration with clause>]
<l eft paren> <iterator spec declaration> <right paren>
<iterator spec declaration> ::=

<positioned iterator>
| <naned iterator>

Syntax Rules

1) A <declaration with clause> shall not specify a <predefined iterator with keyword>.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) Thetwo kinds of iterators, positional and named, are distinct and incompatible Java types implemented
with different interfaces.

2) Thetwokindsof iterators, positional and named, cannot be used interchangeably. Separate class (interface)
hierarchies for named and positional iterators enforce this restriction.

3) A <iterator declaration clause> is permitted to appear anywhere a Java class definition is permitted to
appear.

90 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.4 <iterator declaration clause>

4) Without Feature JO02, “ResultSetlterator access to JDBC ResultSet”, if an implementation of either the
sqlj.runtine. ResultSetlterator interface's public method get Resul t Set () or the
sqlj.runtime.profil e. RTResul t Set interface's public method get JDBCResul t Set () is
invoked, then an SQL exception condition shall be thrown: OLB-specific error — unsupported feature.

Signature

From an <iterator declaration clause>, an SQLJ trandator generates an iterator class. All iterator classes
implement interface Resul t Set | t er at or. TheResul t Set | t er at or interface includes the public
method get Resul t Set (), which, using the public method get JDBCResul t Set () of sqlj . run-
time. profile. RTResul t Set, returns the JDBC ResultSet object associated with this iterator.

If the <iterator declaration clause> contains an <implements clause> with the Scrollable interface, the iterator
class implements the interface Scrollable.

Conformance Rules

1) Without Feature JO02, “ ResultSetlterator access to JDBC ResultSet”, conforming SQL language shall not
contain an invocation of thesqgl j . runti me. Resul t Set | t er at or interface's public method
get Resul t Set () orthesqlj.runtine.profile. RTResul t Set interface's public method
get JDBCResul t Set () .

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 91

I SO/IEC 9075-10:2003 (E)
11.5 <positioned iterator>

11.5 <positioned iterator>

Function

Specify apositioned iterator inside a Java application.

Format
<positioned iterator> ::= <java type list>
<java type list> ::= <java datatype> [{ <comma> <java datatype> }...]
Syntax Rules
None.
Access Rules
None.

General Rules

None.

Conformance Rules

None.

92 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.6 Generated positioned iterator class

11.6 Generated positioned iterator class

Function

A generated positioned iterator classis generated asaside effect of the direct inclusion of a<positioned iterator>.
The generated positioned iterator classisformally defined since its signature (i.e., associated methods) are
directly required by the Java programmer.

The generated positioned iterator classis generated using the specified <maodifiers>, <java class name>,
<interface list>, and <declaration with clause> of its containing <iterator declaration clause>.

Signature

In a<positioned iterator>, no names are provided for the columnsin theiterator class declaration, and an SQLJ
tranglator will generate code for positional access to the columns of SQL queries associated with iterators of
type <java class name>.

In the following signature, let withType represent the <java datatype> of its associated <with keyword>.

<nmodi fi ers> cl ass <java cl ass nanme>
i mpl ements sqlj.runtine.Positionedlterator
/1 Optional; not literal []
[, <interface list>]

/1 Optional and repeatable; not literal [], {}, or ...
[{ static public final wthtype
<wi th keyword> =
<with value>; }...]
/1 Methods are defined in sqlj.runtine.Positionedlterator

For a<positioned iterator>, an SQLJ translator will generate an iterator class implementing interface
sqlj.runtinme. Positionedlterator.

Binary Composition
The following rules are defined for binary composition in every generated positioned iterator class.

1) The generated classincludes a public constructor that has an RTResultSet parameter, and might throw an
SQL Exception:

public <java class nane>
(sqlj.runtime.profile. RTResultSet rs)
throws java. sql . SQLException ;

This constructor is used by tranglator-generated code replacing any <assignment clause> that populates a
<positioned iterator> result.

2) The generated classincludes a public method named next () the semantics of which are the same as
those defined for the next () method of the <named iterator> class:

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 93

I SO/IEC 9075-10:2003 (E)
11.6 Generated positioned iterator class

3)
4)
5)

public next ()
t hrows SQLException ;

Thismethod isused by trand ator-generated code that replacesthe <fetch statement> to advancetheiterator
to the next row.

Let k represent the cardinality of the <javatype list>.
Let i represent avariable ranging from 1 (one) to k.

For each <javadatatype> JT in <javatypelist>, the generated classincludes a public method named getCol
the return type of whichisJT;:

public JT; getColi ()
t hrows SQLException

This method is used by tranglator-generated code that replaces the <fetch statement> to fetch the data cor-
responding the i-th column of the current iterator row.

Code Generation

As described in the binary composition section, a <positioned iterator> object is constructed using an instance
of classsglj.runtime.profile. RTResultSet. Theiterator classimplementation shall use the passed RTResultSet
to fetch data from the implicit cursor, as follows:

1)
2)
3)
4)
5)
6)

94

Let RT represent the sglj.runtime.profile RTResultSet object passed during construction of thisiterator.
Let k be the cardinality of the <positioned iterator>.

Let m represent the number of columnsin RT.

If m # k, then an SQLException is thrown by the iterator constructor.

Let i represent a variable ranging from 1 (one) to k.

For each <java datatype> JT in <javatypelist>:

a) Let GM represent the getter method corresponding to JT;, asgivenin Table4, “ SQLJtype properties’.

b) If GM is getObject, then the implementation of getColi returns the result of calling the getObject
method on RT using the compile-time class of JT;:

JT; getColi () throws SQLException
{

}
¢) If GM isnot getObject, then the result of getColi returns the result of calling the GM method on RT:

return RT.getCbject (i, JTj.class) ;

JT; getColi () throws SQLException
{

Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.6 Generated positioned iterator class

return RT.GM (i) ;
}

The above requirements define that a method call to the underlying RTResultSet is made each time getColi is
caled. By uniformly defining when the call is made, the underlying RTResultSet implementations are able to

reliably implement optimizations such as preparing all results during the next () call or caching column
results.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 95

I SO/I EC 9075-10:2003 (E)
11.7 <named iterator>

11.7 <named iterator>

Function

Specify anamed iterator inside a Java application.

Format

<named iterator> ::= <java pair list>

<java pair list> ::= <java pair> [{ <comm> <java pair>}...]
<java pair> ::= <java datatype> <java id>

Syntax Rules

1) No<javaid> contained in a<javapair list> shall be equivalent to any other <javaid> in that <javapair
list> (using a case-sensitive comparison).
Access Rules

None.

General Rules

None.

Definitions and Rules

1) The <fetch statement> shall not be used in conjunction with <named iterator>.
2) An accessor method will be generated for each <javaid>, with the following specifications:
a) One accessor method will be generated for each specified <javaid>.

b) Each accessor method will have as its name the corresponding <javaid> and be of the exact case as
that specified by <javaid>.

c) Each accessor method will be of the form <javaid>(), returning the corresponding Javatype <java
datatype> and throwing type SQL Exception.

d) If<javadatatype> isaJava primitive datatype and the column value is an SQL null value, then the
accessor method will raise an exception of type sglj.runtime.SQL Null Exception.

Conformance Rules

None.

96 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.7 <named iterator>

11.8 Generated named iterator class

Function

A generated named iterator classis generated as aside effect of the direct inclusion of a<named iterator>. The
generated named iterator classisformally defined since its signature (i.e., associated methods) are directly
required by the Java programmer.

The generated named iterator classis generated using the specified <modifiers>, <javaclass name>, <interface
list>, and <declaration with clause> of its containing <iterator declaration clause>.

Signature

For a<named iterator>, the SQL J translator will generate accessors for each column in the <javapair list> in
order to provide named access to the columns of SQL queries associated with an iterator of type <javaclass
name>. Inthefollowing signature, let withType represent the <javadatatype> of its associated <with keyword>.

<nodi fi ers> class <java cl ass nanme>
i mpl ements sqlj.runtine. Nanedlterator
[, <interface list>] // Optional, not literal []

/1 Optional and repeatable; not literal [], {}, or ...
[{ static public final withtype
<with keyword> = <with value> ; }...]
/! Repeatable; not literal {} or ...
{ public <java datatype> <java id> ()
throws SQLException ; }...
/1 Al'l other Methods are defined in sqglj.runtinme. Nanedlterator

For a<named iterator>, an SQLJ translator will generate a class implementing interface Naned| t er at or .

Binary Composition
The following rules are defined for binary composition in every generated named iterator class.

1) Thegenerated classincludes apublic constructor that has an RTResultSet parameter, and might throw an
SQL Exception.

This constructor is used by tranglator-generated code replacing any <assignment clause> that populates a
<named iterator> result.

Code Generation
As described in the binary composition section, a <named iterator> object is constructed using an instance of

class sglj.runtime.profile. RTResultSet. The iterator class implementation shall use the passed RTResultSet
to fetch data from the implicit cursor, as follows.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 97

I SO/I EC 9075-10:2003 (E)
11.8 Generated named iterator class

1)
2)
3)

4)
5)
6)

Let RT represent the sglj.runtime.profile. RT ResultSet object passed during construction of thisiterator.

Let k be the cardinality of the <named iterator>.

Let m represent the number of columnsin RT:

m = RT. get Col umCount () ;

If m <k, then an SQLException isthrown by the iterator constructor.

Let i represent avariable ranging from 1 (one) to k.

For each <javapair> JP in <javapair list>:

a)
b)
c)

d)

f)

Let JT represent the <java datatype> of JP;.

Let JI represent the <javaid> of JP;.

Let n represent theindex of JI in RT, as defined by findColumn:
n = RT.findColum (JI) ;

Let GM represent the getter method corresponding to JT, asgivenin Table 4, “ SQL Jtype properties’.

If GM isgetObject, then theimplementation of the accessor method for JP; returnsthe result of calling
getObject on RT, using the compile-time class of RT:

JT JI () throws SQLException
{

}

If GM is not getObject, then the implementation of the accessor method for JP; returns the result of
calling the GM method on RT:

return RT.getCbject (n, JT.class) ;

JT JI () throws SQLException
{

}

return RT.GM(n) ;

The above requirements define that amethod call to the underlying RTResultSet is made each time an accessor
method is called. By uniformly defining when the call is made, the underlying RTResultSet implementations
are ableto reliably implement optimizations such as preparing all results during the next () call or caching
column results.

Notethat it is not required that the findColumn method is called each time an accessor method is called since
the result of findColumn isinvariant for a particular column name in a particular RTResultSet object.
Accordingly, findColumn need only be called once for each column of each iterator constructed.

98 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

11.9 <executable clause>

Function

Specify the execution of an SQL statement.

Format

<executabl e clause> ::= [<context clause>] <executable spec clause>
<execut abl e spec clause> ::=

<st at enent cl ause>
| <assignnent cl ause>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) An <executable clause> is permitted to appear anywhere a Java statement is permitted to appear.
2) An <executable clause> might throw exceptionj ava. sql . SQLExcept i on.

3) All runtime exceptions raised during the execution of an <executable spec clause> will be caught as an
SQL Exception as defined by [JIDBC].

4) If aruntime exception israised during the execution of an <executable clause>, then the values of any OUT
or INOUT <embedded Java expression> is implementati on-dependent.

5) Without Feature JO03, “ Execution control”, if animplementation of thesql j . runti ne. Execut i on-
Cont ext class's public methods setM axFieldSize(int), setM axRows(int), or setQueryTimeout(int) is
invoked to set the corresponding Execut i onCont ext Javafield to anything other than its default value,
and an attempt is made to register a statement with such an Execut i onCont ext (which, as specified
under Code Generation in this Subclause, invokesthesql j . runti ne. profil e. RTSt at enent
interface's methods of the same name), then an SQL Exception condition is thrown: OLB-specific error —
unsupported feature.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 99

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

6) Without Feature JO0O4, “Batch update”, if animplementation of thesql j . runt i ne. Execut i onCon-
t ext classspublicmethodsexecut eBat ch() ,get Bat chLi mit (),get Bat chUpdat eCount s(),
i sBat chi ng(),set Bat chi ng(bool ean) ,orset Bat chLi m t (i nt) isinvoked, thentheresult
is implementation-defined.

7) Without Feature JO09, “Multiple Open ResultSets’, if animplementation of thesql j . runti me. Exe-
cut i onCont ext class's public method getNextResultSet(int) isinvoked with any value other than
j ava. sgl . St at enment . CLOSE_CURRENT _RESULT, then an SQL Exception condition is thrown:
OLB-specific error — unsupported feature.

8) Let n represent the number of <embedded Java expression>s appearing in the <executable clause>.

9) LetBP;, 1(one) <i < n, represent the bind parametersin the SQL statement corresponding to <executable
clause>.

a) Every bind parameter BP; can either set an input value, or return an output value, or both.

b) If <executable clause> is an <assignment clause>, then let BP(represent the bind parameter than can
return the output value of the SQL statement.

10) The semantics of executing <executable spec clause> with <embedded Java expression>s HE;, with
parameter mode P;, 1 (one) <i < n, are asfollows.
a) If <executable clause> contains an implicit or explicit <context clause>, then:
i) Let DC represent the implementation-defined class name of the default connection context.

i) If <context clause> contains a <connection context> then set CCtx to the value specified by
<connection context>; otherwise, set CCtx to the value of DC. get Def aul t Cont ext () .

iii) If <context clause> contains an <execution context> then set ECtx to the value specified by
<execution context>; otherwise, set ECtx tothevaue of CCtx. get Execut i onCont ext ().

b) If <executable clause> isan <assignment clause> (i.e., it contains <Lval expression>), then set L |,,gto
the location of <Lval expression>.
c) Forali,1(one)<i<n,do:

i) If P; = IN, then HE; shall be SQLJinput assignable to V;. The Syntax Rules of Subclause 9.2,
“Storeassignment”, in I SO/IEC 9075-2 are not applied when setting V; to the value of HE;. BP;
can set an input value.

i) If P; =INOUT, then HE; shall be SQLJinput assignableto V;. The Syntax Rules of Subclause 9.2,
“Store assignment”, in ISO/IEC 9075-2 are not applied when simultaneously setting V; to the
value of HE; and setting L to the location of HE;. BP; can set an input value and return an
output value.

iii) If P;=OUT, then set L; to the location of HE;. BP; can return an output value.

d) For every BP;, 1 (one) <i < n, that can set an input value, set BP; to V;.

100 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

e) Executethe SQL statement, using connection context CCtx and execution context ECtx. Execution
results in the following values becoming available:

i) Values O; for every BP;, 1 (one) < i < n, that can return an output value shall be SQLJ output
assignable to HE;. The Syntax Rules of Subclause 9.1, “Retrieval assignment”, in ISO/IEC
9075-2 are not applied.

i) If <executable clause> is an <assignment clause>, then the value Og for BPg shall be SQLJ

output assignableto <Lval expression>. The Syntax Rules of Subclause 9.1, “Retrieval assign-
ment”, in ISO/IEC 9075-2 are not applied.

f) Forali,1(one)<i<n,if P=0UT,or INOUT, then set the value at Javalocation L; to O;.

g) If <executable clause> is an <assignment clause>, then set the value at Java location L g to O.

Binary Composition

Unless explicitly specified, this Subclause defines the semantics of Binary Composition for al <executable
clause>s.

The binary portability rules state that an <executable clause> should be able to:

— Useapassed <connection context> the type of which isacontext class generated by any SQL J-conformant
translator (not necessarily the current tranglator).

— Instantiate and popul ate an iterator-valued <L val expression> thetype of whichisan iterator class generated
by any SQL J-conformant translator (not necessarily the current tranglator).

The Binary Composition sections of the generated iterator and connection context classes define methods to
support the above requirements. In particular:

— A connection context class defines getPr ofileK ey and get ConnectedPr ofile methods from which aconnected
profile object can be created. The connection context returned by these methods shall be used to obtain the
sglj.runtime.profile.RT Statement object that executes the SQL operation.

— lterator classes can be constructed using an instance of an sglj.runtime.profile. RTResultSet. Any <exe-
cutable clause> returning an iterator type shall construct the iterator using an RTResultSet object returned
from the RT Statement object of the previous step.

Code Generation

With the exception of <fetch statement>, all <executable clause>s share a common mechanism for obtaining
an executable statement from a connection context, as described below.

1) Let LC bethe name of the loading context class. The loading context classis any classthat appearsin the
current SQL J trandlation unit. It might be a class that is generated as a side effect of the code generation
for the <executable clause>.

The purpose of the loading context classis to be able to associate a profile stored as a serialized resource
file with the appropriate class(es) at runtime. A profile shall be uniquely identified given the name of the
profile and its associated | oading context class. Theloading context class shall be able to be used to uniquely

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 101

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

2)

3)
4)

5)

6)

7)

8)
9)

identify the profile associated with a particular <executable clause>. By default, the loading context class
will have anon-null class|oader that can be used to load a resource by name as a Java stream. Thiswould
allow the profile resource to be read from the same JAR file that contained the loading context class, for
example. In other cases, the class might contain other identifying information such as a schema lookup
path that would allow an associated resource file to be found in an appropriate schema.

A system classis not permitted to be used as aloading context class.

Let PN be the name of the profile associated with the current executable clause, as defined in Subclause 9.5,
“Profile generation and naming”.

Let CT be the name of the <connection context> class, which is the type of CCtx.

Let i be the number of <executable clause>s appearing in the current SQLJ trandlation unit prior to the
current <executable clause> the <connection context> class of which isthe sameas CT. If thisisthefirst
such <executable clause>, then i is 0 (zero).

A profile loader for the <executable clause> is obtained using L C.

sqglj.runtine.profile.Loader |oader =
sqglj.runtine. Runti neContext.getRuntine ().getLoader (LC. class) ;

For a particular Java Virtual Machineinvocation, the value of loader will not change. The loader variable
does not need to be re-eval uated each time <executable clause> is executed. Accordingly, it issafeto store
loader asastatic variable.

A profile key is obtained from CT using the loader and PN:

hj ect profileKey = CT.getProfileKey (|oader, PN) ;
The getProfileKey method is a static method invoked on CT.

For aparticular Java Virtua Machine invocation, the value of profileK ey will not change. The profileK ey
variable does not need to be re-eval uated each time <executable clause> is executed. Accordingly, itissafe
to store profileK ey as a static variable.

A connected profile is obtained from CCtx using profileK ey:

sqlj.runtine.profile.ConnectedProfile connProfile =
CCt x. get ConnectedProfile (profil eKey) ;

Sincethevalue of CCtx isonly known at runtime, connPr ofile shall be re-evaluated each time <executable
clause> is encountered.

Let ECtx be the current execution context object.

If ECtx has batching enabled and a pending statement batch context object, then let BC be the pending
statement batch context object. Otherwise, let BC be null.

10) If ECtx does not have batching enabled, then the statement object to be executed is obtained from connPr o-

fileusing i and the user-defined type map associated with CT.

sqlj.runtinme.profile. RTStatement stnt =
connProfile.getStatenent (i, CT.getTypeMap()) ;

102 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

Otherwise, the statement object to be executed isobtained fromconnPr of i | e usingi, BC, and the user-
defined type map associated with CT.

sqlj.runtine.profile. RTStatenent stnt =
connProfile.getStatenent (i, BC, CT.getTypeMap()) ;

The statement stmt is used to execute the SQL operation described by the i-th entry of profile PN, which
can be obtained as follows:

sqlj.runtime.profile.Entrylnfo entry =
CT.getProfile (profileKey).getEntrylnfo (i) ;

Once the statement stmt has been obtained, but before the statement is executed, execution control methods
are permitted to be called as needed given the current <execution context>, ECtx. Execution control methods
are defined by the following RT Statement interface methods:

— getMaxFieldSize
— setMaxFieldSize
— getMaxRows
— setMaxRows
— getQueryTimeout
— setQuery Timeout

Once the statement stmt has been executed but before the executionComplete method is called, execution
status methods can be called. Execution status methods are defined by the following RT Statement interface
methods:

— getWarnings
— clearWarnings

Other method calls made to the statement stmt vary according to the type of <executable clause>. Thefollowing
rules represent the default calls made to bind inputs, execute, fetch outputs, and release the statement.

Unless explicitly specified, the following rules define the statement specific Code Generation callsfor all
<executable clause>s.

1) Letk represent the number of <embedded Java expression>s appearing in the <executable clause>.
2) Leti represent avariable ranging from 1 (one) to k.

3) For each <embedded Java expression> HE appearing in the <executable clause>, if the <parameter mode>
of HE; isIN or INOUT, then:

a) LetJT represent the <java datatype> of HE;.

b) Let SM represent the setter method corresponding to JT, asgivenin Table 4, “ SQLJ type properties’.
¢) HE; isbound to the statement using SM:

stmt.SM (i, HE) :

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 103

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

4)

5

6)

7)

8)

If ECtx has abatch context object with a pending statement batch and one or more of the following condi-
tions are false:

a) ECtx hasbatching enabled, as defined by thei sBat chi ng() method.
b) The statement is batchable, as defined by thei sBat chabl e() method.
c) The statement is batch compatible, as defined by thei sBat chConpat i bl e() method.

then the pending statement batch is executed on the batch context object using the method execut e-
Bat ch().

BC. execut eBat ch() ;

If batching isenabled on ECtx, asdefined by i sBat chi ng() , and the statement is batchable, as defined
by i sBat chabl e(), then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt. getBatchContext();

Otherwise, if batching isnot enabled on ECtx or the statement is not batchabl e, then the statement i s executed
using execut eUpdat e:

stnt. executeUpdate () ;

For each <embedded Java expression> HE appearing in the <executable clause>, if the <parameter mode>
of HE; isOUT or INOUT, then

a) LetJT represent the <java datatype> of HE;.

b) Let GM represent the getter method correspondingto JT, asgivenin Table 4, “ SQL Jtype properties’.

c) If GM isgetObject, then HE; isfetched from the statement using getObject and the compile-time class
of JT:

HE; = stnt.getObject (i, JT.class) ;
d) If GM isnot getObject, then HE; is fetched from the statement using GM:
HE =stm.GM(i) ;

A call to executeCompl ete defines the end of the statement method invocations. It is called even if an
exception occursin an earlier step.

stnt. executeConplete () ;

Conformance Rules

1)

Without Feature JO03, “Execution control”, conforming SQL language shall not contain an invocation of
thesqglj.runtime. Executi onCont ext class's public methods setM axFieldSize(int), set-
MaxRows(int), or setQueryTimeout(int) that sets the corresponding Execut i onCont ext Javafield

104 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.9 <executable clause>

to anything other than its default value, and shall not contain an attempt is made to register a statement
withsuchan Execut i onCont ext (which, as specified under Code Generation in this Subclause, invokes
thesqglj.runtime. profil e. RTSt at enent interface's methods of the same name).

2) Without Feature J004, “Batch update”, conforming SQL langauge shall not contain an invocation of an
implementation of thesql j . runti me. Execut i onCont ext classs public methods execut e-
Bat ch(),getBatchLi mt (), get Bat chUpdat eCount s(),i sBat chi ng() , set Bat ch-

i ng(bool ean),orsetBatchLimt(int).

3) Without Feature JO09, “Muultiple Open ResultSets’, conforming SQL language shall not contain an invocation
of animplementation of thesql j . runt i me. Execut i onCont ext class'spublic method getNextRe-
sultSet(int) with any value other than j ava. sql . St at enent . CLOSE_CURRENT_RESULT.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 105

I SO/I EC 9075-10:2003 (E)
11.10 <context clause>

11.10 <context clause>

Function

Specify an execution context or statement context.

Format

<context clause> ::= <left bracket><context spec clause> <right bracket>
<context spec clause> ::=
<connection context >
| <execution context>
| <connection context> <conmma> <execution context>
<connection context> ::= <java id>

<execution context> ::= <java id>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) A <connection context> shall reference a Java expression the type of which is generated connection class,
or asubclass of such aclass.

2) If <connection context> is not explicitly stated, then the default connection is used for the executable
statement.

3) An<execution context> shall reference a Java expression thetype of whichissglj.runtime.ExecutionCon-
text, or a subclass of such aclass.

4) If <execution context> is not explicitly stated, then the <execution context> is taken from the statement's
connection context.

106 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.10 <context clause>

Conformance Rules

None.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 107

I SO/I EC 9075-10:2003 (E)
11.11 <statement clause>

11.11 <statement clause>

Function

Specify the execution of asubset of SQL statements.

Format

<statenent clause> ::= <left brace><statenent spec clause> <right brace>
<statenment spec clause> ::=

<SQ. procedure statenent>
| <compound st at enment >

Syntax Rules

1) An<SQL procedure statement> contained in a <statement spec clause> that immediately contains an <SQL
executabl e statement> that immediately contains an <SQL control statement> shall immediately contain
a<call statement>.

2) An<SQL procedure statement> contained in a <statement spec clause> shall not immediately contain an
<SQL executable statement> that immediately contains an <SQL data statement> that immediately contains
<open statement>, <close statement>, <free locator statement>, or <hold locator statement>.

3) An<SQL procedure statement> contained in a <statement spec clause> shall not immediately contain an
<SQL executable statement> that immediately contains an <SQL transaction statement> that immediately
contains <start transaction statement>.

4) An <SQL procedure statement> contained in a <statement spec clause> shall not immediately contain an
<SQL executable statement> that immediately contains an <SQL connection statement>, <SQL session
statement>, <SQL diagnostics statement>, or <SQL dynamic statement>.

Access Rules

None.

General Rules

None.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 9.9, “EntryInfo overview”.
— Role— STATEMENT

108 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.11 <statement clause>

Conformance Rules

1) Without Feature JO05, “Call statement”, conforming SQL language shall not contain a <statement spec
clause> that contains a <call statement>.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 109

I SO/IEC 9075-10:2003 (E)
11.12 <delete statement: positioned>

11.12 <delete statement: positioned>

This Subclause modifies Subclause 14.6, “ <del ete statement: positioned>", in 1SO/IEC 9075-2.

Function

Delete arow of atable.

Format

<del ete statenent: positioned> ::=

I All alternatives froml|SQO |EC 9075-2
DELETE FROM <t arget table> WHERE CURRENT COF <iterator host expression>

<iterator host expression> ::= <enbedded Java expressi on>

Syntax Rules

1)

Insert this SR| Case:

a) If <delete statement: positioned> is contained in an <embedded SQL Java program>, then <iterator
host expression> shall be specified.

b) Otherwise, <iterator host expression> shall not be specified.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1)

2)

<iterator host expression> shall result in an instance of either a generated positioned iterator classor a
generated named iterator class that implements the interface sglj.runtime.For Update.

The DELETE privilege for the execution of <delete statement: positioned> is based upon the authorization
identifier that was used to execute the <query clause> associated with <iterator host expression>.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 9.9, “Entrylnfo overview”, with the <iterator host

expression> replaced by a <dynamic parameter specification>.

110 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.12 <delete statement: positioned>

— Role— POSITIONED

— Parameter Javafields— Describesthe <embedded Javaexpression>s of the <del ete statement: positioned>,
including the <iterator host expression>.

— Descriptor — A 1-based java.lang.Integer value denoting the index of the <iterator host expression> within
the Parameter Javafields. Thisisused to be able to conveniently determine which parameter corresponds
to the positioned iterator.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 111

I SO/IEC 9075-10:2003 (E)
11.13 <update statement: positioned>

11.13 <update statement: positioned>
This Subclause maodifies Subclause 14.10, “ <update statement: positioned>", in |SO/IEC 9075-2.

Function

Update arow of atable.

Format

<update statenent: positioned> ::=
I All alternatives froml|SQO |EC 9075-2
| UPDATE <target table> SET <set clause |ist> WHERE CURRENT CF <iterator host expression>

Syntax Rules
1) [insert this SR] Case:

a) If <update statement: positioned> is contained in an <embedded SQL Java program>, then <iterator
host expression> shall be specified.

b) Otherwise, <iterator host expression> shall not be specified.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) <iterator host expression> shall result in an instance of either a generated positioned iterator class or a
generated named iterator class that implements the interface sglj.runtime.For Update.

2) The UPDATE (column-specific) privilege for the execution of <update statement: positioned> is based
upon the authorization identifier that was used to execute the <query clause> associated with <iterator host
expression>.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 9.9, “Entrylnfo overview”, with the <iterator host
expression> replaced by a <dynamic parameter specification>.

112 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.13 <update statement: positioned>

— Role— POSITIONED

— Parameter Java fields — Describes the <embedded Java expression>s of the <update statement: posi-
tioned>, including the <iterator host expression>.

— Descriptor — A 1-based java.lang.Integer value denoting the index of the <iterator host expression> within
the Parameter Javafields. Thisisused to be able to conveniently determine which parameter corresponds
to the positioned iterator.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 113

I SO/IEC 9075-10:2003 (E)
11.14 <select statement: single row>

11.14 <select statement: single row>
This Subclause modifies Subclause 14.5, “ <select statement: singlerow>", in ISO/IEC 9075-2.

Function

Retrieve values from a specified row of atable.

Format

No additional Format itens.

Syntax Rules

1) |Replace SR 3)h)iv)| For each <target specification> TSthat is an <embedded variable specification>,

Case:

a) If <sdlect statement: singlerow> is contained in an <embedded SQL Java program>, then the value of
the corresponding element of the <select list> shall be SQLJ output assignableto T.

b) Otherwise, the Syntax Rules of Subclause 9.1, “ Retrieval assignment”, shall apply to TSand the corre-
sponding element of the <select list>, as TARGET and VALUE, respectively.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 4)b)iv)| For each <target specification> TSthat is an <embedded variable specification>,

Case:

a) If the <select statement: single row> is contained in an <embedded SQL Java program>, then the cor-
responding value in the row of Q is assigned to TS as described in the following Code Generation.

b) Otherwise, the corresponding valuein the row of Q is assigned to TS according to the General Rules
of Subclause 9.1, “Retrieval assignment”, as VALUE and TARGET, respectively. The assignment of
values to targets in the <select target list> isin an implementation-dependent order.

Definitions and Rules

1) If the<select statement: single row> resultsin the generation of no rows, then an SQL Exception condition
is thrown: no data.

114 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

2)

3)
4)
5)

6)

7)

I SO/IEC 9075-10:2003 (E)
11.14 <select statement: single row>

If the <select statement: single row> resultsin the generation of more than one row, then an SQL Exception
condition is thrown: cardinality violation.

Let k represent the cardinality of the <select target list>.
Let j represent the cardinality of the <select list>.
Let SL E denote an expression of <select list>.

If k # j, then an SQL Exception is thrown: OLB-specific error —invalid number of columns.
Let HE;, 1 (one) <i <k, represent an <embedded Java expression> in <select target list>.

a) HE; <expression> shall be either a<simple variable> or an <Lval expression>.

b) If HE; explicitly states a <parameter mode>, then the specified mode shall be OUT.

c) LetJT represent the corresponding <java datatype> of HE;.

d) If JT isaJava primitive datatype, and the value of the corresponding argument is an SQL null value,
then raise an exception of type sglj.runtime.SQL NullException.

Profile Entrylnfo Properties

SQL String — Thetext of the <select statement: single row> with INTO <select target list> removed.
Role— SINGLE_ROW_QUERY
Execute Type — EXECUTE_QUERY

Parameter Java fields— Describe al <embedded Java expression>s appearing in the <select statement:
single row>, except those appearing in the <select target list>.

Result Set Column Java fields — Describes the <embedded Java expression>s appearing in the <select
target list> of the <select statement: single row>.

* Result Set Type— POSITIONED_RESULT
* Result Set Count — The cardinality of the <select target list>, k.

* Result Set Info— Returns a Typelnfo object describing a particular HE of the <into list>. Thei-th
Typelnfo object describes HE;. The Typelnfo object returned has mode OUT, dynamic parameter

marker index —1, and Javatype name corresponding to the name of thetype of HE;. If HE; isa<simple

variable>, then the Typelnfo object returned has the same name as that of the <simple variable>. Oth-
erwise, if HE; is a<complex expression>, then the Typelnfo object returned has a null name.

* Result Set Name — null

Code Generation

1)

Let k represent the number of <embedded Java expression>s appearing in the <select statement: single
row>, not including those in the <select target list>.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 115

I SO/IEC 9075-10:2003 (E)
11.14 <select statement: single row>

2)
3)

4)

5)

6)

7)
8)

9)

Let i represent a variable ranging from 1 (one) to k.

For each <embedded Java expression> HE; appearing in the <select statement: single row> that does not
appear in the <select target list>:

a) LetJT represent the <java datatype> of HE;.
b) Let SM represent the setter method corresponding to JT, asgivenin Table 4, “ SQL J type properties’.
¢) HE; isbound to the statement using SM.

stnmt.SM (i, Hg) ;

If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by thei sBat chi ng() method.
b) The statement is batchable, as defined by thei sBat chabl e() method.
¢) The statement is batch compatible, as defined by thei sBat chConpat i bl e() method.

then the pending statement batch is executed on the batch context object using the method execut e-
Bat ch().

BC. execut eBat ch();
An RTResultSet is created using executeQuery:
rs = stnt.executeQery() ;

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occursin an earlier step:

stnt. executeConplete () ;

Let n represent the number of <embedded Java expression>s appearing in the <select target list>.

Let m represent the number of columnsin the returned RTResultSet object:

m = rs. get Col umCount () ;

If m % n, then an SQLEXxception is thrown by the generated code.

10) The RTResultSet object is advanced to itsfirst and only row using next () :

rs.next () ;

11) If the invocation of next () returns false, indicating that there were no rows in the RTResultSet object,

then an SQL Exception is thrown by the generated code.

12) Let j represent avariable ranging from 1 (one) to n.

13) For each <embedded Java expression> HE; in <select target list>:

116 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

d)

f)

9)

I SO/IEC 9075-10:2003 (E)
11.14 <select statement: single row>

Let JT represent the <java datatype> of HE;.

Let GM represent the getter method corresponding to JT, asgivenin Table 4, “ SQL Jtype properties’.

If GM isgetObject, then HE; isfetched from the RTResultSet object using getObject and the compile-
timeclassof JT.

HE = rs.getObject (j, JT.class) ;
If GM is not getObject, then HE; is fetched from the RTResultSet object using GM.
HE =rs.GM(j) ;

A subsequent call to next () ismade on the RTResultSet object to verify that there are no further
rows:

rs.next () ;

If the subsequent call to next () returnstrue, indicating that there were additional rows, then an
SQL Exception is thrown by the generated code.

The RTResultSet object is closed, even if an exception occursin an earlier step:

rs.close () ;

NOTE 16 — If an implementation is able to detect that more than one row is returned, then an exception condition may be raised
prior to the second invocation of r s. next (') . Applications should not rely upon the <select target list> containing thefirst row's
values if there is more than one result row.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 117

I SO/I EC 9075-10:2003 (E)
11.15 <fetch statement>

11.15 <fetch statement>
This Subclause modifies Subclause 14.3, “ <fetch statement>", in | SO/IEC 9075-2.

Function

Position a cursor on a specified row of atable and retrieve values from that row.

Format

<fetch statenent> ::=
I'' Al alternatives from|SQ |EC 9075-2
| FETCH [[<fetch orientation>] FROM]
<iterator host expression> |INTO <fetch target |ist>

Syntax Rules
1) [insert this SR] Case:

a) If <fetch statement> iscontained in an <embedded SQL Java program>, then <iterator host expression>
shall be specified.

b) Otherwise, <iterator host expression> shall not be specified.
2) |Replace SR 1) in ISO/IEC 9075-4||Replace SR 3)| Case:

a) If <fetch statement> is contained in an <embedded SQL Java program>, then let DC be the implicit
<declare cursor> of <iterator host expression>, let CR betheimplicit cursor of <iterator host expression>,
and let T be the table defined by the <cursor specification> of DC.

b) Otherwise, let CN be the <cursor name> in the <fetch statement>. CN shall be contained within the
scope of one or more <cursor name>sthat are equivalent to CN. If there is more than one such <cursor
name>, then the one with the innermost scope is specified. Let CR be the cursor specified by CN. Let
T be the table defined by the <cursor specification> of CR. Let DC be the <declare cursor> denoted
by CN.

3) |Insert after SR 6)b)iii)| For each <target specification> TS3 that is an <embedded variable name>,

Case:

a) If <fetch statement> is contained in an <embedded SQL Java program>, then the value of the corre-
sponding column of table T shall be SQLJ output assignable to TS3.

b) Otherwise, the Syntax Rules of Subclause 9.2, “ Store assignment”, in 1SO/IEC 9075-2 shall apply to
TSand the corresponding column of table T as TARGET and VALUE, respectively.

Access Rules

No additional Access Rules.

118 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.15 <fetch statement>

General Rules

1)

|Replace GR 7)b) | Otherwise, if the <fetch target list> contains more than one <target specification>, then
valuesfrom the current row are assigned to their corresponding targetsidentified by the <fetch target list>.
If <fetch statement> is not contained in an <embedded SQL Java program>, then the assignments are made
in an implementation-dependent order. Let TV be atarget and let SV denote its corresponding value in the
current row of CR.

Case:

a) If TVisthe<SQL parameter name> of an SQL parameter of an SQL -invoked routine, then the General
Rules of Subclause 9.2, “ Store assignment”, apply to TSand SV as TARGET and VALUE, respectively.

b) Otherwise,
Case:

i) If <fetch statement> is contained in an <embedded SQL Java program>, then SV is assigned to
TV as described in the following Code Generation.

i) Otherwise, the General Rules of Subclause 9.1, “Retrieval assignment”, in ISO/IEC 9075-5 are
applied to TV and SV as TARGET and VALUE, respectively.

Definitions and Rules

1

2)

3)

4)

5)
6)
7)
8)
9)

If the execution of a <fetch statement> resultsin arow not found, then the values of the <embedded Java
expression>s contained in the <fetch target list> are implementation-dependent.

If the execution of a <fetch statement> resultsin arow not found, then endFet ch() becomestrue.
NOTE 17 — No SQLException is thrown for this condition.

<iterator host expression> shall result in an instance of a generated positioned iterator class or a subclass
of such aclass.

The SELECT privilege for the execution of <fetch statement> is based upon the authorization identifier
that was used to execute the <query clause> associated with <iterator host expression>.

Let k represent the cardinality of the <fetch target list>.
Let j represent the cardinality of the associated iterator's <javatype list>.

If k # j, then an SQL Exception condition is thrown: OLB-specific error —invalid number of columns.

Let SLE denote a SELECT list expression of the associated iterator.
Let IT denote a<java datatype> in the associated iterator's <javartype list>.

10) Let HE;, 1 (one) <i <k, represent an <embedded Java expression> in <fetch target list>:

a) HE; <expression> shall be either a<simple variable> or an <Lval expression>.

b) If HE; explicitly states a <parameter mode>, then the specified mode shall be OUT.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 119

I SO/I EC 9075-10:2003 (E)
11.15 <fetch statement>

c)
d)

€)

Let JT represent the corresponding <java datatype> of HE;.
I T shall bethesameasJT.

If JT isaJavaprimitive datatype, and the value of the corresponding argument isan SQL null value,
then raise an exception of type sglj.runtime.SQL NullException.

Profile Entrylnfo Properties

The <fetch statement> isimplemented as a client-side trand ation that popul ates the <embedded Java expression>s
of the <fetch target list> using the contents of the current row of the iterator. Since it does not require database
access (execute of any statement), it does not appear in the profile.

Code Generation

The <fetch statement> is special. It represents a client-side trandlation that does not require database access
and therefore does not appear in the profile. Accordingly, it does not access connection context or its contained
connected profile.

1) Let|E represent the <iterator host expression>. | E shall be an instance of a class or subclass of generated

2)

3)

4)

iterator class.

Case:

a) |f <fetch orientation> specifies NEXT, then let [EM benext () .

b) If <fetch orientation> specifies PRIOR, then let IEM be pr evi ous() .

c) If <fetch orientation> specifies FIRST, then let IEM befirst ().

d) If <fetch orientation> specifies LAST, thenlet IEM bel ast ().

e) If <fetch orientation> specifiesABSOLUTE, then let IHE bethe value of the <simple value specifica-
tion>and let [EM beabsol ut e(l HE) .

f) If <fetch orientation> specifiesRELATIVE, then et |HE bethe value of the <simpl e val ue specification>

andlet IEM berel ative(l HE) .

Theiterator is positioned on arow using | EM:

| E. | EM

If the invocation of |EM returns true, then:

a)
b)
c)

Let n represent the number of <embedded Java expression>s appearing in the <fetch target list>.
Letj represent avariable ranging from 1 (one) to n.

For each <embedded Javaexpression> HE; in <fetch target list>, HE; isfetched from theiterator using
getCol:

HE = I1E getColj () ;

120 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.15 <fetch statement>

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 121

I SO/IEC 9075-10:2003 (E)
11.16 <assignment statement>

11.16 <assignment statement>

This Subclause maodifies Subclause 13.5, “ <assignment statement>" , in | SO/IEC 9075-4.

Function

Assign avalue to an SQL variable, SQL parameter, host parameter, or host variable.

Format

No additional Format itens.

Syntax Rules
1) [Replace SR 9)| Case

a)

b)

If <assignment statement> is contained in an <embedded SQL Java program> and the <assignment
target> simply contains an <embedded variable name>, then let AT represent the <assignment target>,
let JT represent the <java datatype> of AT, and let ST represent the SQL type of <assignment source>.
ST shall be output assignableto JT.

Otherwise, if the <assignment target> simply contains an <embedded variable name> or a <host
parameter specification> and the <assignment source> is a <value expression>, then the Syntax Rules
of Subclause 9.1, “Retrieval assignment”, in 1SO/IEC 9075-2 are applied to <assignment target> and
<assignment source> as TARGET and VALUE, respectively.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 2)|If <assignment target> is a <target specification> that is the <embedded variable name>
of ahost variable or embedded Javaexpression T or the <host parameter specification> of ahost parameter
T, then

Case:

a)

b)

If <assignment statement> is not contained in an <embedded SQL Java program>, then the value of
<assignment source> is assigned to T according to the General Rules of Subclause 9.1, “Retrieval
assignment”, in 1SO/IEC 9075-2, with <assignment source> and T as VALUE and TARGET, respectively.

Otherwise, the value of <assignment source> isassigned to T as specified in Subclause 11.9, “<exe-
cutable clause>".

122 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.16 <assignment statement>

Definitions and Rules

1
2)
3)
4)
5)
6)

Let AT represent the <assignment target>.

Let TT represent the <java datatype> of AT.

Let AS represent the SQL type of <assignment source>.

AT shall be either a<simple variable> or <Lval expression>.

If AT explicitly states a <parameter mode>, then <parameter mode> shall specify OUT.

If TT isaJavaprimitive datatype, and the runtime value of ASisan SQL null value, then raise an exception
of type sqlj.runtime.SQL Null Exception.

Profile Entrylnfo Properties

— SQL String — Usesthe default as specified in Subclause 9.9, “EntryInfo overview”.
— Role— STATEMENT

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 123

I SO/IEC 9075-10:2003 (E)
11.17 <savepoint statement>

11.17 <savepoint statement>

This Subclause modifies Subclause 16.4, “ <savepoint statement>" , in ISO/IEC 9075-2.

Function

Establish a savepoint.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.
— Role— SAVEPOINT

— Parameter Java fields— No parameters allowed.

Conformance Rules

No additional Conformance Rules.

124 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

11.18 <release savepoint statement>

I SO/IEC 9075-10:2003 (E)
11.18 <release savepoint statement>

This Subclause modifies Subclause 16.5, “ <release savepoint statement>" , in |SO/IEC 9075-2.

Function

Destroy a savepoint.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.

— Role— RELEASE_SAVEPOINT

— Parameter Java fields— No parameters allowed.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved

<SQLJ specific clause> and contents 125

I SO/I EC 9075-10:2003 (E)
11.19 <commit statement>

11.19 <commit statement>
This Subclause modifies Subclause 16.6, “ <commit statement>" , in | SO/IEC 9075-2.

Function

Terminate the current SQL -transaction with commit.

Format

No additional Format itens.

Syntax Rules

1) |Replace SR 1)| Neither AND CHAIN nor AND NO CHAIN shall be specified.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

None.
NOTE 18 — Conformance to SQL/OLB requires support only of the COMMIT and optional WORK keywords.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.
— Role— COMMIT

— Parameter Java fields— No parameters allowed.

Conformance Rules

No additional Conformance Rules.

126 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.20 <rollback statement>

11.20 <rollback statement>
This Subclause modifies Subclause 16.7, “ <rollback statement>" , in 1SO/IEC 9075-2.

Function

Terminate the current SQL -transaction with rollback, or rollback all actions affecting SQL -dataand/or schemas
since the establishment of a savepoint.

For mat

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

None.

NOTE 19— Conformanceto SQL/OL B requires support only of the ROLLBACK and optional WORK keywords. If support of Feature
F271, “ Savepoints’, is claimed, then the <savepoint clause> is also supported.

Profile Entrylnfo Properties

— SQL String — Exact text of the matching production.
— Role— ROLLBACK

— Parameter Java fields— No parameters allowed.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 127

I SO/I EC 9075-10:2003 (E)
11.21 <set transaction statement>

11.21 <set transaction statement>
This Subclause modifies Subclause 16.2, “ < set transaction statement>", in |SO/IEC 9075-2.

Function

Set the characteristics of the next SQL-transaction for the SQL -agent.

Format

No additional Format itens.

Syntax Rules

1) |Insert this SR| If <set transaction statement> is contained in an <embedded SQL Java program>, then
LOCAL shall not be specified.

2) |Insert this SR|If <set transaction statement> is contained in an <embedded SQL Java program>, then <set
transaction statement> shall not contain a<transaction mode> that immediately contains <diagnostics size>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Profile Entrylnfo Properties

— SQL String — Exact text of matching production
— Role— SET_TRANSACTION
— Parameter Java fields— No parameters allowed.

— Descriptor — Aninstance of class sglj.runtime.profile.SetTransactionDescriptor that describes the
<transaction access mode> and <isolation level>.

Conformance Rules

No additional Conformance Rules.

128 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.22 <call statement>

11.22 <call statement>
This Subclause modifies Subclause 15.1, “ <call statement>", in | SO/IEC 9075-2.

Function

Invoke an SQL-invoked routine.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) If an <embedded Java expression> contained in an <SQL argument> does not explicitly state a<parameter
mode>, then its <parameter mode> isimplicitly IN.

Profile Entrylnfo Properties
— SQL String — Rewritten in JDBC specified procedure call syntax:

{ <call statement> }

— Role— CALL
— Execute Type— EXECUTE

Code Generation

1) All <embedded Java expression>s with <parameter mode> of IN or INOUT are bound as specified in the
default rules for <executable clause>.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 129

I SO/I EC 9075-10:2003 (E)
11.22 <call statement>

2)

3)

4)

5)

6)

If ECtx has abatch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by thei sBat chi ng() method.
b) The statement is batchable, as defined by thei sBat chabl e() method.
c) The statement is batch compatible, as defined by thei sBat chConpat i bl e() method.

then the pending statement batch is executed on the batch context object using the method execut e-
Bat ch() .

BC. execut eBat ch() ;

If batching isenabled on ECtx, asdefined by i sBat chi ng() , and the statement is batchable, as defined
by i sBat chabl e() , then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt.getBatchContext();

Otherwise, if batching isnot enabled on ECtx or the statement is not batchabl e, then the statement is executed
using execute:

stnt.execute () ;

All <embedded Java expression>s with <parameter mode> of OUT or INOUT are assigned as specified in
the default rules for <executable clause>.

A call to executeCompl ete defines the end of the statement method invocations. It is called only after all
side-channel results have been visited using the associated execution context's getNextResultSet method.
If no side-channel results are produced, executeComplete is called immediately. It is caled even if an
exception occursin an earlier step:

stnt. executeConplete () ;

Conformance Rules

No additional Conformance Rules.

130 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

11.23 <assignment clause>

Function

I SO/IEC 9075-10:2003 (E)
11.23 <assignment clause>

Assigns the value of an SQL operation to a Java variable, Javafield, or parameter.

Format

<assi gnnment cl ause> ::=
<Lval expression> <equal s operator>
<l eft brace> <assi gnnent spec clause> <right brace>

<assi gnment spec cl ause> ::=
<query cl ause>
| <function clause>
| <iterator conversion clause>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) An <assignment clause> shall not appear in the control list of a FOR loop.

2) An<assignment clause> is hot permitted to appear where a Java assignment expression, but not an

assignment statement, is permitted to appear.

3) An<assignment clause> has the effect of evaluating <assignment spec clause> and assigning its value to

<Lval expression>.

4) If the <assignment spec clause> is a <query clause>, then:

a) Let JT represent the <java datatype> of <Lval expressi on>.

b) JT shall refer to an object the type of which is generated iterator class or interface sglj.runtime.Result-

Setlterator.

¢) If JT isagenerated positioned iterator class, then the number and types of columns of the query shall

match those of the iterator class declaration.

©ISO/IEC 2003 — All rights reserved

<SQL J specific clause> and contents 131

I SO/IEC 9075-10:2003 (E)
11.23 <assignment clause>

5) If the <assignment spec clause> is a <function clause>, then:
a) Let JT represent the <java datatype> of <Lval expressi on>.
b) Let FT represent the SQL datatype that is returned by the invocation of the function.

c) If JT isaJava primitive datatype and the runtime value of the FT isan SQL null value, then raise an
exception of type sglj.runtime.SQL Null Exception.

d) FT shall be SQLJoutput assignableto JT.
6) |f the <assignment spec clause> is an <iterator conversion clause>, then:
a) LetJT bethe <javadatatype> of <Lval expression>.

b) JT shal refer to an object whose type is generated iterator class.

Conformance Rules

None.

132 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.24 <query clause>

11.24 <query clause>

Function

Specify a statement to retrieve multiple rows from a specified table.

Format

<query clause> ::= <query expression> [<order by clause>]

Syntax Rules

1) Let QCbethe<query clause> and let T betheresult of evaluating the <query expression> QE immediately
contained in QC.

2) Let AC bethe <assignment clause> whose <assignment spec clause> immediately contains QC and let ACI
be theiterator object referenced by the <Lval expression> immediately contained in AC.

3) Let IDC betheimplicit <declare cursor> of ACI that is the <declare cursor> effectively performed by an
SQL-server as aresult of the execution of AC and let CSbe the cursor specified by IDC.

4) QE isthe simply underlying table of CS.

5) If an <order by clause> is specified, then:
a) LetK; bethe <sort key> contained in the i-th <sort specification>.
b) Let DT be the declared type of K;.

¢) If DT isauser-defined type, then the comparison form of DT shall be FULL.
d) K;shall not beac<literal>.

e) If QEisa<query expression body> that isa<query term> that is a <query primary> that isa<simple
table> that isa <query specification>, then the <cursor specification> issaid to be asimpletable query.

f) Case

i) If <sort specification list> contains any <sort key> K that contains a column referenceto a
column that is not a column of T, then:

1) The <cursor specification> shall be a simple table query.
2) Case

A) If Kjisnot equivalent to a<value expression> immediately contained in any <derived
column> in the <select list> S of <query specification> QS contained in QE, then:

1 T shall not be a grouped table.

I1) S shal not specify SELECT DISTINCT or directly contain one or more <set
function specification>s.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 133

I SO/IEC 9075-10:2003 (E)
11.24 <query clause>

9)
h)

1)

Let CJ- be acolumn that is not a column of T and whose column referenceis
contained in some K;.

IV) Let KL bethelist of <derived column>s that are <column name>s of column
referencesto every Cj. The columns C; are said to be extended sort key columns.
V) Let TE be the <table expression> immediately contained in QS.
VI) Let ST betheresult of evaluating the <query specification>:
SELECT SL, SKL FROM TE
B) Otherwise:
1 Let ST beT.

1)

1)

For every <derived column> DCg of SL that is equivalent to K, if DCg has a
<column name>, then let CNg be that <column name>; otherwise:

1) Let CNg be animplementation-defined <column name> that is not equal to
any <column name> of any column of ST.

2) DCgiseffectively replaced by DEg AS CNgin the <select list> of ST, where
DE, isthe <derived element> of DCe.

K; is effectively replaced by CNg.

i) Otherwise, let ST be T.
ST issaid to be a sort table.

Kj isa<value expression>. The <value expression> shall not contain a <subquery> or a <set function
specification>, but shall contain a <column reference>.

i) Let X be any <column reference> directly contained in K;.

i) If X does not contain an explicit <table or query name> or <correlation name>, then K; shall be
a <column name> that shall be equivalent to the name of exactly one column of ST.

Access Rules

None.

General Rules

1)
2)
3)

134 Object Language Bindings (SQL/OLB)

Let T be the result of the <query expression>.

If Tisempty, then acompletion condition is raised: no data.

If an <order by clause> is not specified, then ordering of the rows that result from <query clause> is
implementati on-dependent.

©ISO/IEC 2003 — All rights reserved

4)

I SO/IEC 9075-10:2003 (E)
11.24 <query clause>

If an <order by clause> is specified, then the ordering of rows of the result is effectively determined by the
<order by clause> asfollows:

a) Let TSbethe sort table.

b) Each <sort specification> specifies the sort direction for the corresponding sort key K;. If DESC is not
specified in the i-th <sort specification>, then the sort direction for K; is ascending and the applicable
<comp op> is the <less than operator>. Otherwise, the sort direction for K; is descending and the
applicable <comp op> is the <greater than operator>.

c) LetPbeanyrow of TSand let Q be any other row of TS, and let PV; and QV; be the values of K; in

theserows, respectively. Therelative position of rows P and Q intheresult isdetermined by comparing
PV; and QV; according to the rules of Subclause 8.2, “<comparison predicate>", in | SO/IEC 9075-2,

where the <comp op> is the applicable <comp op> for K;, with the following specia treatment of null

values. A sort key valuethat is null is considered equal to another sort key value that is null. Whether
asort key valuethat isnull is considered greater or lessthan anon-null valueisimplementation-defined,
but all sort key values that are null shall either be considered greater than all non-null values or be
considered less than all non-null values. PV; is said to precede QV; if the value of the <comparison

predicate> “ PV; <comp op> QV;” istrue for the applicable <comp op>. If PV; and QV; are not null and
theresult of “PV; <comp op> QV;” is Unknown, then the relative ordering of PV; and QV; isimplemen-
tation-dependent.

d) InTS therelative position of row P is before row Q if PV, precedes QV,, for some n greater than O
(zero) and less than or equal to the number of <sort specification>s and PV; = QV; for dl i <n. The

relative order of two rows that are not distinct with respect to the <sort specification>s are implemen-
tation-dependent.

e) Theresult table specified by the <cursor specification> is TSwith all extended sort key columns (if
any) removed.

Definitions and Rules

1
2)
3)
4)
5)

Let Q be the table specified by the <query expression>.
Letj represent the degree of Q.
Let SLE denote a column of Q.
Let IT represent the iterator type of the associated iterator object.
Case:
a) If IT isinterface sglj.runtime.ResultSetlterator, then no further type checking is performed on SLE.
b) If IT isof type <positioned iterator>, then:
i) Let k represent the cardinality of the <javatype list> of the associated iterator object.

i) If k # j, then an SQLException is thrown: OLB-specific error —invalid number of columns.

iii) Leti represent avariable ranging from 1 (one) to k.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 135

I SO/IEC 9075-10:2003 (E)
11.24 <query clause>

iv) For each <javadatatype> JD in <javatypelist>, let i be its associated range variable.
1) Let ST represent the SQL datatype of SLE;.

2) LetJT represent the Java datatype of JD;.

c) IfIT isof type <named iterator>, then:

i) If SLE isnot named in the query by alegal Javaidentifier, then SLE shall be given a column
diasthat isalegal Javaidentifier by means of the SQL phrase AS i denti fi er.

i) Let k represent the cardinality of the <java pair list>.

iii) If k isgreater than j, then an SQLEXxception condition isthrown: OLB-specific error —invalid
number of columns.

iv) Let SLN represent the SQL name or alias of an associated SLE.

V) Let i represent avariable ranging from 1 (one) to k.

vi) Letn represent avariable ranging from 1 (one) to .

vii) For each <javapair> JP in <javapair list> let i be its associated range variable.

1) If thereexistsan SLE, the SL N of which is a case-insensitive match of the <javaid> asso-
ciated with JP;, then let n be the index of the first such SLN; otherwise, let n be O (zero).

2) 1f nisO0 (zero), then an SQL Exception condition is thrown: OLB-specific error —invalid
number of columns.

3) LetJT represent the Java datatype of JP;.
4) Let ST represent the SQL datatype of SLE,,.

d) ST shall be SQLJoutput assignableto JT.
6) The constructor method of the corresponding <iterator declaration clause> shall be in scope.

Profile Entrylnfo Properties

— SQL String — Default as described in Subclause 9.9, “Entrylnfo overview”.

— Role—If IT implementsinterface sglj.runtime.For Update, then roleis QUERY_FOR_UPDATE. If
I T is(not merely implements) interface sglj.runtime.ResultSetlterator, then roleisUNTY PED. Otherwise,
roleis QUERY

— Execute Type— If IT isinterface sglj.runtime.ResultSetlterator, then EXECUTE_UPDATE; otherwise,
EXECUTE_QUERY

— Parameter Java fields — Describes the <embedded Java expression>s appearing in the <executable
clause>, as described in Subclause 9.9, “EntryInfo overview”. Additionaly, if I T isinterface sglj.run-
time.ResultSetlterator, then the <Lval expression> of the return result is described as an additional
parameter.

136 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.24 <query clause>

Param Count — Gives the number of <embedded Java expression>s appearing in the <executable
clause>, as described in Subclause 9.9, “Entrylnfo overview”. Additionally, if I T isinterface sglj.run-
time.ResultSetlterator, then the count is incremented by one to reflect the parameter describing the
<Lval expression> of the return result.

Param Info — Returns a Typelnfo object describing a particular <embedded Java expression>, as
described in Subclause 9.9, “Entrylnfo overview” . If I T isinterface sglj.runtime.Resul tSetl terator, then
a Typelnfo object describing the <Lval expression> of the return result is returned as an additional
parameter, appearing after all other parameters.

— Result Set Column Java fields — Describes the result set columns, as expected by I T.

Result Set Name — If I T isinterface sglj.runtime.ResultSetlterator, then null; otherwise, the class
nameof IT.

Result Set Type— If IT isof type <positioned iterator>, then POSI TI ONED_RESULT. If IT isof
type <named iterator>, then NAMED RESULT. If I T isinterface sglj.runtime.ResultSetlterator, then
NO _RESULT.

Result Set Count — If I T isof type <positioned iterator>, then the cardinality of the <javatype list>
of the associated iterator, k. If I T isof type <named iterator>, then the cardinality of the <javapair list>
of the associated iterator, k. If I T isinterface sglj.runtime.ResultSetlterator, then O (zero).

Result Set Info— If I T isof type <positioned iterator>, then returns a Typel nfo object describing a
JD in <javatypelist>. Thei-th Typelnfo object describes JD;. The Typelnfo object returned has name
= null, mode = OUT, dynamic parameter marker index = —1, and Java type name corresponding to the
name of the type of JD;. If IT isof type <named iterator>, then returns a Typelnfo object describing a
JP in <javatype list>. Since a named iterator is used, the order of the Typelnfo objects returned is
implementation-dependent. For each JP, there exists exactly one Typel nfo object describing JP, which
has name=<javaid> of JP, mode = OUT, dynamic parameter marker index = —1, and Java type name
corresponding to the name of thetype of JP. If I T isinterface sqlj.runtime.Resul tSetl terator, then there
are no Typelnfo objects returned.

Code Generation

1
2)
3)

4)
5)

Let k represent the number of <embedded Java expression>s appearing in the <query clause>.

Let i represent avariable ranging from 1 (one) to k.

For each <embedded Java expression> HE; appearing in the <query clause>:

a)
b)

<)

Let JT represent the <java datatype> of HE;.

Let SM represent the setter method corresponding to JT, asgivenin Table 4, “ SQL J type properties’.
HE; is bound to the statement using SM:

stm.SM (i, Hg) ;

Let | E represent the <Lval expression> on the |eft hand side of the <assignment clause>.

Let IT represent the <java datatype> of | E.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 137

I SO/IEC 9075-10:2003 (E)
11.24 <query clause>

6) If ECtx hasabatch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by thei sBat chi ng() method.
b) The statement is batchable, as defined by thei sBat chabl e() method.
c) The statement is batch compatible, as defined by thei sBat chConpat i bl e() method.

then the pending statement batch is executed on the batch context object using the method execut e-
Bat ch() .

BC. execut eBat ch() ;
7) Case
a) If IT isinterface sglj.runtime.ResultSetlterator, then:

i) If batching isenabled on ECtx, asdefined by i sBat chi ng() , and the statement isbatchable,
asdefinedby i sBat chabl e(), then the statement is placed into abatch context object which
becomes the current batch context object.

BC = stnt. getBatchContext();

i) The statement is executed using executeUpdate.

iii) IE isfetched from the statement using getObj ect, the compile-time class of I T, and an index
one greater than the number of <embedded Java expression>s in the <query clause>:

|E = stnt.getvject(k + 1, IT.class);

b) Otherwise:
i) An RTResultSet is created using executeQuery.
i) | E is assigned to the result of creating a new iterator object.

8) A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occursin an earlier step:

stnt. executeConplete () ;

Conformance Rules

None.

138 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.25 <function clause>

11.25 <function clause>

Function

Invoke an SQL-invoked function.

Format

<function clause> ::= VALUES <l eft paren> <routine invocation> <right paren>

Syntax Rules

1) Let RI bethe <routine invocation> immediately contained in the <function clause>.

2) Let SRbe the subject routine specified by applying the Syntax Rules of Subclause 10.4, “<routine invoca
tion>", in ISO/IEC 9075-2, to RI.

3) SRshall be an SQL-invoked function.

Access Rules

No additional Access Rules.

General Rules

1) Let SAL bethe <SQL argument list> immediately contained in <routine invocation>.

2) TheGeneral Rulesof Subclause 10.4, “<routineinvocation>", in | SO/IEC 9075-2, are applied with SRand
SAL as the subject routine and SQL argument list, respectively, yielding avalue V that is the result of the
<routine invocation>.

3) Thevaue of <function clause>isV.

Profile Entrylnfo Properties

— SQL String — Rewritten in IDBC-specified function call syntax with all <embedded Java expression>s
replaced by <dynamic parameter specification>.

{ ? = CALL <routine invocation> }

— Role— VALUES

— Parameter Java fields — Describes both the <Lval expression> of the return result and al <embedded
Java expression>s appearing in the <function clause>.

» Param Count — Gives the number of <embedded Java expression>s appearing in the <function
clause>, plus one for the return result.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 139

I SO/I EC 9075-10:2003 (E)
11.25 <function clause>

e Param Info — Returns a Typelnfo object describing a particular <embedded Java expression>. The
<Lval expression> of the containing <assignment clause> isthefirst Typel nfo object returned, at index
1 (one). Thei-th Typelnfo object describes the i-th <embedded Java expression> appearing in the
original <assignment clause> (or, equivalently, thei-th <dynamic parameter specification> in the SQL
String Javafield), wherei is a one-based index.

Code Generation

1)

2)

3)

4)

5)
6)
7)
8)

All <embedded Java expression>s are bound according to the rules specified for <executable clause> with
the exception that the parameter index isincreased by 1 (one).

If ECtx has abatch context object BC with a pending statement batch and one or more of the following
conditions are false:

a) ECtx has batching enabled, as defined by thei sBat chi ng() method.
b) The statement is batchable, as defined by thei sBat chabl e() method.
¢) The statement is batch compatible, as defined by thei sBat chConpat i bl e() method.

then the pending statement batch is executed on the batch context object using the method execut e-
Bat ch().

BC. execut eBat ch() ;

If batching is enabled on ECtx, asdefined by i sBat chi ng() , and the statement is batchable, as defined
by i sBat chabl e() , then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt. getBatchContext();
The statement is executed using executeUpdate:
stnt.executeUpdate () ;

Let RE represent the <Lval expression> on the left hand side of the <assignment clause>.

Let RT represent the <java datatype> of RE.

Let GM represent the getter method corresponding to JT, as given in Table 4, “ SQLJ type properties’.
Case:

a) If GM isgetObject, then RE isfetched from the statement using getObject and the compile-time class
of RT:

RE = stnt.getbject (1, RT.class) ;
b) Otherwise, RE isfetched from the statement using GM:

RE=stm.GM(1) ;

140 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
11.25 <function clause>

9) A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occursin an earlier step:

stnt.executeConplete () ;
Conformance Rules

1) Without Feature JOO6, “ Assignment Function statement”, conforming SQL language shall not contain a
<function clause>.

©ISO/IEC 2003 — All rights reserved <SQL J specific clause> and contents 141

I SO/I EC 9075-10:2003 (E)
11.26 <iterator conversion clause>

11.26 <iterator conversion clause>

Function

Specify the conversion of a JDBC ResultSet into a strongly-typed iterator object.

Format

<iterator conversion clause> ::= CAST <result set expression>

<result set expression> ::= <enbedded Java expression>

Syntax Rules

None.

Access Rules

None.

General Rules

None.

Definitions and Rules

1) The<javadatatype> of <result set expression> shall implement the interface java.sgl.ResultSet.

2) After an iterator conversion, the result of further calls to the ResultSet object given by the <result set
expression> are implementation-defined.

3) Closing theiterator assigned by the <Lval expression> will also close the ResultSet of the <result set
expression>.

4) Let RE represent the runtime value of <result set expression>.
5) Letj represent the number of columns contained in RE.
6) LetIT represent theiterator type of the <Lval expression>.
7) Case
a) IfIT isof type <positioned iterator>, then:
i) Let k represent the cardinality of the <javatype list> of the associated iterator.

i) If k # j, then an SQL Exception condition is thrown: OLB-specific error —invalid number of
columns.

142 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

b)

i)

I SO/I EC 9075-10:2003 (E)
11.26 <iterator conversion clause>

Let i represent a variable ranging from 1 (one) to k.

For each <java datatype> JD in <javatypelist>, let i beits associated range variable.
1) Let ST represent the SQL datatype of the i-th column of RE.

2) LetJT represent the Java datatype of JD;.

If IT isof type <named iterator>, then:

Let k represent the cardinality of the <java pair list>.

If k isgreater than j, then an SQL Exception condition is thrown: OLB-specific error —invalid
number of columns.

Let SLN represent the name of an associated column of RE.

Let i represent avariable ranging from 1 (one) to k.

Let n represent avariable ranging from 1 (one) toj.

For each <java pair> JP in <java pair list>, let i be its associated range variable.

1) Let n betheindex of the first column whose SLN is a case-insensitive match of the <java
id> associated with JP;, or O (zero) if no such SLN exists.

2) 1f nis0 (zero), then an SQLException condition is thrown: OLB-specific error —invalid
number of columns.

3) LetJT represent the Java datatype of JP;.

4) Let ST represent the SQL datatype of the n-th column of RE.

¢) ST shall be SQLJoutput assignableto JT.

8) The constructor method of the corresponding <iterator declaration clause> shall be in scope.

Profile Entrylnfo Properties

©ISO/IEC 2003 — All rights reserved

SQL String — Default as described in Subclause 9.9, “EntryInfo overview”
Role— ITERATOR_CONVERSION

Execute Type — EXECUTE_UPDATE

Statement Type — CALLABLE_STATEMENT

Parameter Java fields — Describes both the <Lval expression> of the return result and the <result set
expression> appearing in the <iterator conversion clause>

Param Count — 2

Param I nfo — Returns a Typelnfo object describing a particular <embedded Java expression>. The
<Lval expression> isthefirst Typelnfo object returned, at index 1 (one). The <result set expression>
is the second Typelnfo object returned, at index 2.

<SQLJ specific clause> and contents 143

I SO/I EC 9075-10:2003 (E)
11.26 <iterator conversion clause>

Code Generation

1
2)
3)
4)

5

6)

7)

8)

9)

Let RE represent the <Lval expression> on the left hand side of the <assignment clause>.
Let RT represent the <java datatype> of RE.
Let HE represent the <result set expression> of the <iterator conversion clause>.
HE is bound to the statement using setObject:
stnt.set Cbject (2, HE);
If ECtx has a batch context object BC with a pending statement batch and one or more of the following
conditions are fal se:
a) ECtx has batching enabled, as defined by thei sBat chi ng() method.
b) The statement is batchable, as defined by thei sBat chabl e() method.
¢) The statement is batch compatible, as defined by thei sBat chConpat i bl e() method.

then the pending statement batch is executed on the batch context object using the method execut e-
Bat ch() .

BC. execut eBat ch() ;

If batching isenabled on ECtx, asdefined by i sBat chi ng() , and the statement is batchable, as defined
by i sBat chabl e() , then the statement is placed into a batch context object which becomes the current
batch context object.

BC = stnt. getBatchContext();

The statement is executed using executeUpdate:

st nt. execut eUpdat e() ;

RE isfetched from the statement using getObject and the compile-time class of RT:

RE = stnt.getObject(1, RT.class);

A call to executeComplete defines the end of the statement method invocations. It is called even if an
exception occursin an earlier step.

st . execut eConpl ete();

Conformance Rules

None.

144 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
11.27 <compound statement>

11.27 <compound statement>
This Subclause modifies Subclause 13.1, “ <compound statement>" , in 1SO/IEC 9075-4.

Function

Specify a statement that groups other statements together.

Format

<compound statement> ::= BEG N { <SQ. procedure statenment> <semicolon> }... END

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Definitions and Rules

1) <compound statement> is permitted to appear in a <statement clause>. It consists of one or more <SQL
procedure statement>s (i.e., any of the SQL Constructsthat are permitted to appear in a<statement clause>,
except for a<compound statement>), terminated by semicolons, sandwiched between BEGIN and END:

#sql { BEG N
I NSERT | NTO RAIN (MONTH, RAI NFALL) VALUES (:Xx, :Y);
SELECT MAX(RAI NFALL) | NTO :z FROM RAIN WHERE MONTH - : x;
END };

2) SQLJfollowsthe SQL/PSM rules for the semantics of blocks in which a contained statement raises an
exception and in which ahost variable is referenced in multiple statements.

3) If an <embedded Java expression> containing an <Lval expression> has either an implicit or explicit
<parameter mode> of OUT or INOUT inagiven <SQL procedure statement> then let LV denotethelocation
of the <Lval expression>. If another <embedded Java expression> containing an <Lval expression> has
either animplicit or explicit <parameter mode> of IN or INOUT in asubsequent <SQL procedure statement>
and thelocation of the <L val expression>isLV, then the value of the <L val expression> isimplementation-
defined.

©ISO/IEC 2003 — All rights reserved <SQLJ specific clause> and contents 145

I SO/IEC 9075-10:2003 (E)
11.27 <compound statement>

Profile Entrylnfo Properties

— SQL String — Default as defined in Subclause 9.9, “Entrylnfo overview”.
— Role— BLOCK

Conformance Rules

1) Without Feature JOO7, “ Compound statement”, conforming SQL language shall not contain a <compound
statement>.

146 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12 Package sglj.runtime

The sglj.runtime package defines the runtime classes and interfaces used by the SQL J programmer. It includes
utility classes such AsciiStream that are used directly by the SQLJ programmer, and interfaces such as Result-
Setlterator that appear as part of a generated class declaration.

12.1 SQLJruntimeinterfaces

12.1.1 sglj.runtime.ConnectionContext

public interface ConnectionContext

The ConnectionContext interface provides a set of methods that manage a set of SQL operations performed
during asession with a specific database. A connection context object maintains a JDBC Connection object on
which dynamic SQL operations are permitted to be performed. It aso contains a default ExecutionContext
object by which SQL operation execution semantics are permitted to be queried and modified.

In addition to those methods defined by this interface, each concrete implementation User Ctx of a connection
context object shall provide the following methods:

— Returns aprofile key for a particular profile.Loader object and profile name:

public static Object getProfil eKey

(sqlj.runtine.profile.Loader I,
String profileNane) throws SQLException ;

— Returns atop level profile object for a particular profile key:

public static sqglj.runtine.profile.Profile getProfile (Cbject key) ;
— Returns the default connection context object for the UserCtx class:

public static UserCtx getDefaultContext () ;
— Setsthe default connection context object for the UserCtx class:

public static void setDefaultContext (UserCix dflt) ;

— Constructs a connection context object:

public UserCtx (ConnectionContext other)
throws SQ.Excepti on;
public UserCtx (java.sql.Connection conn)

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 147

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

throws SQLExcepti on;

If the connection context is specified to support <url constructors>, then:

public UserCtx (String url, String user, String pwd, bool ean autoConmit)
throws SQ.Exception ;

public UserCtx (String url, Properties info, boolean autoComit)
throws SQ.Exception ;

public UserCtx (String url, boolean autoComrit)
throws SQ.Exception ;

If the connection context is specified to support <data source constructors>, then:

public UserCix ()
throws SQ.Exception ;

public UserCtx (String user, String password)
throws SQ.Exception ;

Note that an invocation of UserCtx causes either anew JDBC Connection object to be created or an existing
Connection (or ConnectionContext) object to be reused. If the invocation causes an exception to be thrown,
then the Connection object is closed only if the invocation caused it to be created.

Notethat, for any UserCtx constructor that createsa JDBC Connection object during construction, that Connec-
tion object will be automatically closed if the constructor call throws an exception. For any UserCtx constructor
that uses an already opened JDBC Connection object (or connection context object) passed from the client,
that Connection object (or connection context object) will remain open even if the constructor call throws an
exception.

12.1.1.1 Variables

121111 CLOSE_CONNECTION

public static final bool ean CLOSE_CONNECTI ON
The underlying JDBC Connection object should be closed.

See Also

— Subclause 12.1.1.2.1, “close ()”
— Subclause 12.1.1.2.2, “close (boolean)”

148 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

121.1.1.2 KEEP_CONNECTION

public static final bool ean KEEP_CONNECTI ON
The underlying JDBC Connection object should not be closed.

See Also

— Subclause 12.1.1.2.1, “close ()”
— Subclause 12.1.1.2.2, “close (boolean)”

12.1.1.2 Methods

121121 close()

public abstract void close () throws SQ.Exception

Releases all resources used in maintaining database state on this connection context object, closes any open
ConnectedProfile objects, and closes the underlying JDBC Connection object. This method is equivalent to
cl ose(CLOSE_CONNECTI ON) .

Throws

— SQLException — if unable to close the connection context object

See Also

— Subclause 12.1.1.2.2, “close (boolean)”

12.1.1.2.2 close (boolean)

public abstract void close (bool ean cl oseConnection)
throws SQLException

Releases all resources used in maintaining database state on this connection context object and closes any open
ConnectedProfile objects managed by this connection context object. Since the underlying JDBC Connection
object managed by this connection context object is permitted to be shared between multiple connection context
objects, it is hot always desirable to close the underlying JDBC Connection object when cl ose() iscalled.
If the congtant KEEP_CONNECTION is passed, the underlying JDBC Connection object isnot closed. Otherwise,
if the constant CLOSE_CONNECTION is passed, the underlying Connection object is closed.

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 149

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

NOTE 20 — A connection context object isautomatically closed at thetimeit is garbage-collected. A connection context object closed
in such away does not close the underlying JDBC Connection object since it will also be automatically closed at thetimeit is garbage-
collected.

Parameters

— closeConnection — is CLOSE_CONNECTION if the underlying Connection object should also be closed

Throws

— SQLException — if unable to close the connection context object

See Also

— Subclause 12.1.1.1.1, “CLOSE_CONNECTION”"
— Subclause 12.1.1.1.2, “KEEP_CONNECTION"

12.1.1.2.3 getConnectedProfile (Object)

public abstract ConnectedProfile getConnectedProfile (Object profil eKey)
throws SQLException

Each connection context object maintains a set of ConnectedProfile objects on which SQL statements are pre-
pared. Collectively, the set of ConnectedProfile objects contained in a connection context object represent the
set of all possible SQL operations that are permitted to be performed between the time that this connection
context object is created and the time that it is destroyed.

The profileK ey object shall be an object that was returned viaaprior call toget Prof i | eKey() . An
exception isthrown if a ConnectedProfile object could not be created for this connection context object.

Parameters

— profileKey — the key associated with the desired profile object

Returns

— The ConnectedProfile object associated with a profileKey for this connection context object.

Throws

— SQLException — if the ConnectedProfile object could not be created
— Illegal ArgumentException — if the profileKey is null or invalid

150 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.1.2.4 getConnection ()

public abstract Connection getConnection ()

Notethat, depending on construction, the returned Connection object might be shared between many connection
context objects.

Returns

— The underlying JDBC connection object associated with this connection context object.

12.1.1.2.5 getExecutionContext ()

publ i c abstract ExecutionContext getExecutionContect ()

The default execution context object isthe execution context object used if no explicit context object issupplied
during the execution of a particular SQL operation.

The returned default ExecutionContext object refers to the default ExecutionContext object in this connection
context object and, as such, any changes made to the returned object are visiblein the connection context object.

Returns

— The default execution context object used by this connection context object.

12.1.1.26 getTypeMap ()

public abstract Map get TypeMap ()

If the <connection declaration clause> contains a <declaration with clause> that specifies the <predefined
connection with keyword> typeMap, then let TM be the corresponding <with value>. The invocation of the
method get TypeMap() returns an instance of aclassthat implementsj ava. uti | . Map that contains the
user-defined type mapping information provided by the propertiesfileslisted in TM in the form specified in
[JDBC]. If the <connection declaration clause> does not contain a <declaration with clause> that specifies
typeM AP, then this method returns Java null.

Returns

— The user-defined tyep map associated with the ConnectionContext in the format specified in [JDBC], or
Javanull if thereis no associated type map.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 151

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.1.2.7 isClosed ()

public abstract bool ean isC osed ()

Returnstrueif this execution context object has been closed; otherwise, returns false.

Returns

— If this execution context object has been closed, then true; otherwise, false.

12.1.2 glj.runtime.ForUpdate

public interface ForUpdate

An interface implemented by iterator classes whose instances will be used in a positioned update or delete
statement (as parameter to a WHERE CURRENT OF clause). The class of every iterator object that isto be
passed as a parameter to a WHERE CURRENT OF clause shall implement this interface.

12.1.2.1 Methods

12.1.2.1.1 getCursorName ()

public abstract String getCursorName () throws SQLException
Get the name of theimplicit SQL cursor used by thisiterator.

In SQL, aresult tableis retrieved through anamed cursor. The current row of aresult can be updated or deleted
using a positioned update or del ete statement that references the cursor name.

SQLJ supports this SQL feature by providing the name of the implicit cursor used by an iterator. The current
row of an iterator is also the current row of thisimplicit cursor.

NOTE 21 — If positioned update is not supported, then an SQL Exception is thrown.

Returns

— Theiterator's SQL cursor name.

Throws

— SQLException — if a database access error occurs.

152 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.3 xglj.runtime.NamedIterator

public interface Namedlterator
extends ResultSetlterator

Aninterface implemented by all iterators that employ astrategy of binding by name. All such iterators depend
on the name of the columns of the data to which they are bound, as opposed to the order of the columnsto
which they are bound.

In addition to implementing thisinterface, classes that implement the Namediterator interface shall provide:

— A public constructor that, when invoked, takes an RTResultSet object as an argument. If the construction
of anamed iterator resultsin an exception being thrown, it is assumed that the iterator automatically closes
the underlying RTResultSet object. This only applies to exceptions thrown during construction.

— A named accessor method for each <javaid> appearing in the <java pair list> of the <iterator declaration
clause> that declared the current iterator. Each named accessor method uses as its name an exact case-
matching copy of its <javaid>. Using case-insensitive comparison, the name of the accessor method is
equal to the name of its associated result column.

— Oncenext () hasreturned false, the behaviour of any named accessor method isimplementati on-dependent.

12.1.4 sglj.runtime.Positionedlterator

public interface Positionedlterator
extends ResultSetlterator

An interface implemented by all iterators that employ a by position binding strategy. All such iterators depend
on the position of the columns of the data to which they are bound, as opposed to the names of the columns to
which they are bound.

In addition to implementing thisinterface, classesthat implement the Positionedlterator interface shall provide:

— A public constructor that, when invoked, takes an RTResultSet object as an argument. If the construction
of apositioned iterator results in an exception being thrown, it is assumed that the iterator automatically
closes the underlying RTResultSet object. This only applies to exceptions thrown during construction.

— A positioned accessor method for each column in the expected result. The name of the positioned accessor
method for the N-th column will be getColN.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 153

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.4.1 Methods

12.1.4.1.1 endFetch ()

public abstract bool ean endFetch () throws SQ.Exception

Thismethod isused to determinethe successof aFETCH. . . | NTO statement; it returnstrueif the last attempt
tofetch arow failed, and returnsfalseif thelast attempt was successful. Rows are attempted to be fetched when
thenext () methodiscaled (whichiscaled implicitly during the execution of aFETCH. . . | NTO statement).

NOTE 22 — If next () has not yet been called, this method returns true.

Returns

— If theiterator is not positioned on arow, then true; otherwise, false.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 12.1.5.2.9, “next ()"

12.1.5 gglj.runtime.ResultSetlterator

public interface ResultSetlterator

Aninterface that definesthe shared functionality of those objects used to iterate over the contents of an iterator.

12.1.5.1 Variables

121511 ASENSITIVE

public static final int ASENSITI VE

Constant used by the “ sensitivity” Javafield, indicating that the iterator is defined to have an asensitive cursor.

154 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

121512 FETCH_FORWARD

public static final int FETCH FORWARD

Constant used by sqglj.runtime.Scrollable.setFetchDir ection, sglj.runtime.ExecutionContext.getFetchDi-
rection, and sglj.runtime.ExecutionContext.setFetchDir ection to indicate that the rowsin an iterator object
will be processed in aforward direction, first-to-last.

121513 FETCH_REVERSE

public static final int FETCH REVERSE

Constant used by sglj.runtime.Scrollable.setFetchDir ection, sglj.runtime.ExecutionContext.getFetchDi-
rection, and sglj.runtime.ExecutionContext.setFetchDir ection to indicate that the rowsin an iterator object
will be processed in areverse direction, last-to-first.

121514 FETCH_UNKNOWN

public static final int FETCH_UNKNOM

Constant used by sqglj.runtime.Scrollable.setFetchDir ection, sglj.runtime.ExecutionContext.getFetchDi-
rection, and sglj.runtime.ExecutionContext.setFetchDir ection to indicate that the order in which rowsin
an iterator object will be processed is unknown.

121515 INSENSITIVE

public static final int |INSENSITIVE

Constant used by the " sensitivity” Javafield, indicating that the iterator is defined to have an insensitive cursor.

121516 SENSITIVE

public static final int SENSITIVE

Constant used by the “sensitivity” Javafield, indicating that the iterator is defined to have a sensitive cursor.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 155

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.5.2 Methods

NOTE 23 — Once method i sCl osed() hasreturned true, the behaviour of any other method on that iterator isimplementation-
dependent.

12.1.5.2.1 clearWarnings()

public abstract void clearWarnings () throws SQ.Exception

After this call, getWarnings returns null until anew warning is reported for this iterator.

Throws

— SQLException — if a database access error occurs

12.1.5.2.2 close()

public abstract void close () throws SQ.Exception

Closes the iterator object, releasing any underlying resources. It is recommended that iterators be explicitly
closed as soon as they are no longer needed, to allow for the immediate rel ease of resources that are no longer
needed.

NOTE 24 — If itis not already closed, an iterator is automatically closed when it is destroyed.

Throws

— SQLException — if there is a problem closing the iterator

See Also

— Subclause 12.1.5.2.8, “isClosed ()"

12.1.5.2.3 getFetchSize()

synchroni zed public int getFetchSize () throws SQ.Exception

Retrieves the number of rowsthat is the current fetch size for thisiterator object. If thisiterator object has not
set afetch size by calling the method setFetchSize, or has set afetch size of 0 (zero), then the value returned
is implementati on-dependent.

156 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

Returns

— The current fetch size for the iterator object.

Throws

— SQLException — if a database error occurs.

12.15.2.4 getResultSet ()

public abstract ResultSet getResultSet () throws SQLException

Returns the JIDBC ResultSet object associated with this iterator. The produced JDBC ResultSet object shall
have norma JDBC functionality, as defined in [JDBC] (in particular, SQL null values fetched with JIDBC
positional column access methods will not raise an SQLNullException). This method is provided to facilitate
interoperability with JDBC.

NOTE 25 — Support for this method is implementation-defined and not part of Core SQLJ. If this method is not supported, then an
SQL Exception will be thrown: OLB-specific error — unsupported feature.

If an implementation supports this method, then any synchronization between the iterator and the produced JDBC ResultSet object is
implementation-defined.

For maximum portability, this method should be invoked before the first next () method invocation on the iterator. Once the JDBC
ResultSet object has been produced, all operations to fetch data should be through the JDBC ResultSet object.

Returns

— A JDBC ResultSet object for thisiterator.

Throws

— SQLException — if no JDBC ResultSet object is available for thisiterator
121525 getRow ()

synchroni zed public int getRow () throws SQLException

Retrieves the current row number. The first row is number 1, the second is number 2, and so on.

Returns

— If thereis no current row, then 0 (zero); otherwise, the number of the current row.

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 157

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

Throws

— SQLException — if a database error occurs.

12.1.5.2.6 getSensitivity ()

synchroni zed public int getSensitivity () throws SQLException

Retrievesthe sensitivity of thisiterator object. The sensitivity isdetermined by the <iterator declaration clause>
and by the SQLJ runtime implementation that created the iterator object.

Returns

— Case:

« |f thisiterator object was declared with the <predefined iterator with keyword> sensitivity and a cor-
responding <with value> SENSI T1VE, and the SQL Jruntime that created thisiterator object supports
sensitive iterators, then Resul t Set | t er at or . SENSI TI VE.

« If thisiterator object was declared with the <predefined iterator with keyword> sensitivity and a cor-
responding <with value> INSENSI T1VE, and the SQLJruntimethat created thisiterator object supports
insensitive iterators, then Resul t Set | t er at or . | NSENSI Tl VE.

« If thisiterator object was declared with the <predefined iterator with keyword> sensitivity and a cor-
responding <with value> ASENSITIVE, then Resul t Set | t er at or . ASENSI Tl VE.

e Otherwise, an implementation-dependent value.

Throws

— SQLException — if a database error occurs.

12.1.5.2.7 getWarnings|()

public abstract SQ.Warning getWarnings () throws SQLException

Thefirst warning reported by calls on thisiterator is returned. Subsequent iterator warnings will be chained to
this SQLWarning.

The warning chain is automatically cleared each time the iterator object is advanced to the next row.

NOTE 26 — Thiswarning chain only covers warnings caused by iterator methods. Any warning caused by statement execution (such
as fetching OUT parameters) will be chained on the ExecutionContext object.

158 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

Returns

— If there are no errors, then null; otherwise, the first SQLWarning.

Throws

— SQLException — if a database access error occurs

12.1.5.2.8 isClosed ()
public abstract bool ean isC osed () throws SQLException

Returns

— |If thisiterator has been closed, then true; otherwise, false

Throws

— SQLException — if an error occurs determining the close status of the iterator.

See Also

— Subclause 12.1.5.2.2, “close ()”

121529 next ()

public abstract bool ean next () throws SQLException

Advances the iterator to the next row. At the beginning, the iterator is positioned before the first row.
NOTE 27 — A FETCH. . . | NTOstatement performs an implicit invocation of next () on theiterator passed.

Returns

— If there was anext row in the iterator, then true; otherwise, false.

Throws

— SQLException — if an exception occurs while changing the position of the iterator

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 159

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.5.2.10 setFetchSize (int)

synchroni zed public void setFetchSize (int rows) throws SQ.Exception

Gives the SQLJ runtime a hint as to the number of rows that should be fetched when more rows are needed
from thisiterator object. If the value specified is zero, then the runtime is free to choose an implementation-
dependent fetch size.

Parameters

— rows — the default fetch size for result sets generated from this iterator object.

Throws

— SQLException — if adatabase error occurs, or the condition 0 (zero) < rows < ECtxt. get MaxRows ()
is not satisfied, where ECtxt is the ExecutionContext object that was used to create this iterator object.

Conformance Rules

None.

160 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.6 sglj.runtime.Scrollable

public interface Scrollable

Thisinterface provides a set of methods that all scrollableiterator objects support. The effect of an update on
a Scrollable iterator object isimplementation-defined.

12.1.6.1 Variables

None.

12.1.6.2 Methods

12.1.6.2.1 absolute (int)

public abstract bool ean absolute (int row) throws SQLException
Moves the iterator object to the row with the given row number.

If the row number is positive, the iterator object moves to the row with the given row number with respect to
its beginning. The first row isrow 1, the second isrow 2, and so on.

If the given row number is negative, the iterator object moves to an absolute row position with respect to its
end. For example, calling absol ut e(- 1) positionstheiterator object on the last row, absol ut e(- 2)
indicates the next-to-last row, and so on.

An attempt to position the iterator object beyond itsfirst or last row leavesthe iterator object before or after its
first or last row, respectively.

NOTE 28 — Calling absol ut e(1) isthesameascalingfirst (). Cdlingabsol ute(-1) isthesameascalingl ast ().

Returns

— If theiterator object ison arow, then true; otherwise, false

Throws

— SQLException — if a database access error occurs or row is 0 (zero).

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 161

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.62.2 afterLast ()

public abstract void afterLast () throws SQ.Exception

Movesthe iterator object to immediately after itslast row. Has no effect if theiterator object contains no rows.

Throws

— SQLException — if adatabase access error occurs

12.1.6.2.3 beforeFirst ()

public abstract void beforeFirst () throws SQLException
Moves theiterator object to immediately beforeitsfirst row. Has no effect if the iterator object contains no
rows.

Throws

— SQLException — if a database access error occurs

12.1.6.24 first ()

public abstract boolean first () throws SQLException

Movestheiterator object toitsfirst row.

Returns

— If the iterator object is on arow, then true; If there are no rows, then false.

Throws

— SQLException — if a database access error occurs

12.1.6.25 getFetchDirection ()

public abstract int getFetchDirection () throws SQ.Exception

162 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

Retrievesthe direction for fetching rowsfor thisiterator object. If thisiterator object has not set afetch direction
by calling the method set Fet chDi r ecti on() , then the value returned is the default specified in
Subclause 12.1.6.2.13, “setFetchDirection (int)”.

Returns

— Thefetch direction for this iterator object.

Throws

— SQLException — if a database access error occurs.

12.1.6.2.6 isAfterLast ()

public abstract bool ean isAfterLast () throws SQLException

Indicates whether the iterator object is after itslast row.

Returns

— If theiterator object is positioned after its last row, then true; otherwise false. Returns false when the iter-
ator object contains no rows.

Throws

— SQLException — if a database access error occurs

12.1.6.2.7 isBeforeFirst ()

public abstract bool ean isBeforeFirst () throws SQ.Exception

Indicates whether the iterator object is before its first row.

Returns

— If theiterator object is positioned beforeits first row, then true; otherwise false. Returns false when the
iterator object contains no rows.

Throws

— SQLException — if adatabase access error occurs

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 163

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.6.2.8 isFirst ()

public abstract boolean isFirst () throws SQ.Exception

Indicates whether the iterator object is on itsfirst row.

Returns

— If theiterator object is positioned onitsfirst row, then true; otherwisefalse. Returnsfal sewhen theiterator
object contains no rows.

Throws

— SQLException — if a database access error occurs

12.1.6.29 isLast ()

public abstract bool ean isLast () throws SQ.Exception

Indicates whether the iterator object is on its last row.

NOTE 29 — Invocation of themethod i sLast () may be expensive, because the SQLJ driver might need to fetch ahead one row in
order to determine whether the current row is the last row.

Returns

— If theiterator object is positioned on itslast row, then true; otherwise false. Returnsfalse when the iterator
object contains no rows.

Throws

— SQLException — if adatabase access error occurs

12.1.6.2.10 last ()

public abstract boolean last () throws SQ.Exception

Movestheiterator object toitslast row.

164 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

Returns

— |f theiterator object is positioned on arow, then true; otherwise false. Returns false when the iterator
object contains no rows.

Throws

— SQLException — if a database access error occurs

12.1.6.2.11 previous|()

public abstract bool ean previous () throws SQLException

Movestheiterator object to its previous row.

Returns

— If the iterator object is positioned on arow, then true; if it is positioned before itsfirst row or after its last
row, then false. Returns false when the iterator object contains no rows.

Throws

— SQLException — if a database access error occurs

12.1.6.2.12 réelative (int)

public abstract boolean relative (int rows) throws SQException

Moves the iterator object the given number of rows, either positive or negative, from its current position.
Attempting to move beyond itsfirst or last row positions the iterator object before or after itsfirst or last row,
respectively. Invoking r el ati ve(0) isvalid, but does not change the iterator object position.

Returns

— If theiterator object is positioned on arow, then true; false otherwise. Returns false when the iterator
object contains no rows.

Throws

— SQLException — if adatabase access error occurs

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 165

I SO/I EC 9075-10:2003 (E)
12.1 SQLJruntimeinterfaces

12.1.6.2.13 setFetchDirection (int)

public abstract void setFetchDirection (int direction) throws SQ.Exception

Givesthe SQL Jruntime ahint asto the direction in which rows of thisiterator object are processed. The default
valueissqgl j.runtime. Resul t Setlterator. FETCH FORWARD.

Parameters

— direction — theinitia direction for processing rows.

Throws

— SQLException— if adatabase accesserror occurs, or thegiven directionisnotoneof Resul t Set I t er -
at or. FETCH FORWARD, Resul t Set | t er at or . FETCH_REVERSE, or Resul t Set | t er a-
t or . FETCH_UNKNOWN.

Conformance Rules

None.

166 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2 SQLJ Runtime Classes

12.2.1 sglj.runtime.AsciiStream

j ava. |l ang. Obj ect

+—java.io. | nput Stream

+—java.io.FilterlnputStream

+—sqlj.runtine. Stream apper

+—sqlj.runtine. Ascii Stream

public class Ascii Stream
ext ends Stream apper

AsciiStream (sglj.runtime.Ascii Stream) is a class derived from java.io.InputStream. The octets comprising an
AsciiStream object are interpreted as ASCII characters. In order to process an InputStream object as an input
argument to an executable SQL operation, an SQLJimplementation has to know both its length and the way
tointerpret itsoctets. Therefore, an InputStream object cannot be passed directly, but rather shall be aninstance
of AsciiStream, BinaryStream, or UnicodeStream.

See Also

— Subclause 12.2.2, “sglj.runtime.Binary Stream”
— Subclause 12.2.7, “sglj.runtime.UnicodeStream”

12.2.1.1 Constructors

12.2.1.1.1 AsciiStream (InputStream)

public AsciiStream (InputStreamin)

Creates an ASCII-valued InputStream object with an uninitialized length.

NOTE 30 — Thelength Javafield shall be set viaacall toset Lengt h() before an AsciiStream object is substituted for an input (or
inout) parameter in an invocation of an SQL operation.

Parameters

— |IN — the InputStream object to interpret as an Ascii Stream object.

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 167

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.1.1.2 AsciiStream (InputStream, int)

public AsciiStream (InputStreamin, int length)

Creates an ASCII-valued InputStream object of given length.

Parameters

— |IN — the InputStream object to interpret as an Ascii Stream object.

— length — the length in octets of the AcsiiStream object.

12.2.2 xglj.runtime.BinaryStream

j ava. | ang. Obj ect

+—java.i o. | nput Stream

+—java.io.FilterlnputStream

+—sqlj.runtine. St ream/ apper

+—sqglj.runtine. BinaryStream

public class BinaryStream
ext ends Streamh apper

BinaryStream (sglj.runtime.BinaryStream) isaclass derived from javaio.lnputStream. The octets comprising
a BinaryStream object are not interpreted as characters. In order to process an InputStream object as an input
argument to an executable SQL operation, an SQLJimplementation has to know both its length and the way
tointerpret itsoctets. Therefore, an InputStream object cannot be passed directly, but rather shall be an instance

of AsciiStream, BinaryStream, or UnicodeStream.

See Also

— Subclause 12.2.1, “sglj.runtime.Ascii Stream”
— Subclause 12.2.7, “ sglj.runtime.UnicodeStream”

168 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.2.1 Constructors

12.2.2.1.1 BinaryStream (InputStream)

public BinaryStream (InputStreamin)

Creates a Binary-valued InputStream object with an uninitialized length.

NOTE 31— Thelength Javafield shall be set viaacall toset Lengt h() before aBinaryStream object is substituted for an input (or
inout) parameter in an invocation of an SQL operation.

Parameters

— |IN — the InputStream object to interpret as a BinaryStream object.

12.2.2.1.2 BinaryStream (InputStream, int)

public BinaryStream (InputStreamin, int length)

Creates a binary valued InputStream object of given length.

Parameters

— IN — the InputStream object to interpret as a BinaryStream object.

— length — thelength in octets of the BinaryStream object.

12.2.3 xglj.runtime.DefaultRuntime

j ava. | ang. Onj ect

+—sqlj . runtine. Runti neCont ext

+—sqlj.runtine. Defaul t Runti ne

public class Defaul tRuntinme
ext ends Runti neCont ext

The DefaultRuntime class implements the expected runtime behavior defined by the abstract RuntimeContext
class for most Java Virtual Machine environments.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 169

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.3.1 Constructors

12.2.3.1.1 DefaultRuntime ()

public Defaul tRuntime ()

12.2.3.2 Methods

12.2.3.2.1 getDefaultConnection ()

public Connection getDefault Connection ()

The default data source defined in INDI is used to establish the default connection. If no such data sourceis
defined or the connection cannot be established, then null is returned.

Returns

— |If the default data source does not exist or cannot establish a connection, then null; otherwise, a default
Connection object, as defined by the default data source.

Overrides

— get Def aul t Connect i on() in class RuntimeContext

See Also

— Subclause 12.2.5.1.1, “DEFAULT_DATA_SOURCE”

12.2.3.2.2 getL oaderForClass (Class)

publi ¢ Loader getlLoaderForClass (Cass fordass)

Creates and returns a default Loader object that uses the class loader of the given class.

Parameters

— forClass — the class with which the resulting Loader object isto be associated.

170 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Returns

— A default Loader object for the given class.

Overrides

— get Loader For C ass() in class RuntimeContext

See Also

— Subclause 13.2.1, “sqllj.runtime.profile.DefaultL oader”

12.2.4 gglj.runtime.ExecutionContext

j ava. | ang. Obj ect

+—sqlj . runtine. Executi onCont ext

public class Executi onCont ext
ext ends Obj ect

An ExecutionContext object provides the execution context in which executable SQL operations are performed.
An execution context object contains a number of operations for execution control, execution status, and exe-
cution cancellation. Execution control operations modify the semantics of subsequent SQL operations executed
on this execution context object. Execution status operations describe the results of the last SQL operation
executed on this execution context object. Execution cancellation methods terminate the currently executing
SQL operation on this execution context object.

NOTE 32— Concurrently executing SQL operations are expected to use distinct execution context objects. The execution context class
implementing the ExecutionContext interface is not expected to support multiple SQL operations executing with the same execution
context object. The client isresponsible for ensuring the proper creation of distinct execution context objects where needed, or synchro-
nizing the execution of operations on a particular execution context object. It is aso assumed that generated calls to methods on this

class appear within a synchronized block to avoid concurrent calls. Recursive SQL execution calls on the same connection context
object are supported.

Providing runtime support of the ExecutionContext Java fields with the following routines, if set to anything
other than their default values, is not part of Core SQL J; it isimplementation-defined whether or not such
support is provided. If an implementation does not support an assigned setting, and an attempt is made to reg-
ister a statement with such an ExecutionContext, then an SQL Exception condition is thrown: OLB-specific
error — unsupported feature.

— getMaxFiddSize
— setMaxFieldSize
— getMaxRows
— setMaxRows;

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 171

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

— getQueryTimeout
— setQuery Timeout

See Also

— Subclause 12.1.1.2.5, “ getExecutionContext ()"

12.2.4.1 Variables

12.2.4.1.1 ADD BATCH_COUNT

public static final int ADD _BATCH_COUNT

Constant possibly returned by get Updat eCount indicating that the last statement encountered was added
to the existing statement batch rather than being executed.

See Also

— Subclause 12.2.4.3.15, “getUpdateCount ()”

122412 AUTO_BATCH

public static final int AUTO _BATCH

Constant passed to set Bat chLi mi t toindicate that implicit batch execution should be performed, and that
the actual batch sizeis at the discretion of the SQLJ runtime implementation.

See Also

— Subclause 12.2.4.3.21, “ setBatchLimit (int)”

122413 EXEC_BATCH_COUNT

public static final int EXEC BATCH COUNT

Constant possibly returned by get Updat eCount indicating that the last execution was a statement batch
execution.

172 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

See Also

— Subclause 12.2.4.3.3, “executeBatch ()"
— Subclause 12.2.4.3.15, “ getUpdateCount ()"

122414 EXCEPTION_COUNT

public static final int EXCEPTI ON_COUNT

Constant possibly returned by getUpdateCount indicating that an exception wasthrown before thelast execution
was successfully completed, or that no operation has yet been attempted on this execution context object.

See Also

— Subclause 12.2.4.3.15, “getUpdateCount ()”

122415 NEW_BATCH_COUNT

public static final int NEWBATCH COUNT

Constant possibly returned by get Updat eCount indicating that the last statement encountered was added
to anew statement batch rather than being executed.

See Also

— Subclause 12.2.4.3.15, “ getUpdateCount ()"

122416 QUERY_COUNT

public static final int QUERY_COUNT

Constant possibly returned by getUpdateCount indicating that the last execution produced a RT ResultSet object
or iterator.

See Also

— Subclause 12.2.4.3.15, “ getUpdateCount ()"

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 173

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

122417 UNLIMITED_BATCH

public static final int UNLIM TED BATCH

Constant passed to set Bat chLi mi t to indicate that no implicit batch execution should be performed upon
reaching a certain batch size.

See Also

— Subclause 12.2.4.3.21, “setBatchLimit (int)”

12.2.4.2 Constructors

12.2.4.2.1 ExecutionContext ()

publi ¢ ExecutionContext ()

The default constructor for the ExecutionContext class.

12.2.4.3 Methods

12.2.4.3.1 cancd ()

public void cancel () throws SQLException

Thecancel () method can be used by onethread to cancel an SQL operation that is currently being executed
by another thread using this execution context object. Note that this method has no effect if thereisno

RT Statement object currently being executed for this execution context object. If there is a pending statement
batch on this execution context object, the statement batch is canceled and emptied.

Throws

— SQLException — if unable to cancel

See Also

— Subclause 12.2.4.3.5, “executeUpdate ()"
— Subclause 12.2.4.3.4, “executeQuery ()"

174 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.4.3.2 execute()

publi ¢ bool ean execute () throws SQLException

Prior to statement execution, if there is a pending statement batch on this execution context object and one or
more of the following conditionsis true:

— Batching is currently disabled on this execution context object.

— Thecurrently registered RT Statement object is not batchable.

— Thecurrently registered RT Statement object is not batch compatible with the pending statement batch.
then the statement batch isimplicitly executed using Bat chCont ext . execut eBat ch() .

If batching is currently enabled on this execution context object and the currently registered RT Statement object
is batchable, then the statement is batched rather than executed. The pending statement batch is replaced by a
statement batch that includesthe currently registered RT Statement object, asreturned by RTSt at enrent . get -
Bat chCont ext () . Notethat inthis case, the statement may not return side channel JDBC ResultSet objects.
If the statement was added to the existing statement batch, then the update count isset to ADD_BATCH_COUNT.
Otherwise, if the statement was added to a new statement batch, then the update count is set to

NEW BATCH_COUNT.

Otherwise, a generic execute is performed on the currently registered RT Statement object. If anew statement
batch is created as aresult of executing the current RT Statement object, the current statement batch (if any) is
implicitly executed. Under some situations, asingle SQL CALL statement might return multiple JDBC
ResultSet objects. Theexecut e() ,get Next Resul t Set () ,andget Next Resul t Set (i nt) methods
alow navigation through multiple JDBC ResultSet objects.

Theexecut e() method executes the currently registered RT Statement object and returnstrueif it produced
any side-channel result sets, and otherwisereturnsfalse. Theget Next Resul t Set () method or get Nex-
t Resul t Set (i nt) method isused to obtain the next JDBC ResultSet object. When the RT Statement object
isreleased, the update count is set to QUERY _COUNT.

NOTE 33 — Thismethod is called by generated code. Most programs do not need to call it directly. Instead, they will use only get -
Next Resul t Set () or get Next Resul t Set (i nt) to navigate multiple JIDBC ResultSet objects.

If the current operation produces multiple JDBC ResultSet objects, it isnot released until all JDBC ResultSet objects have been processed
and get Next Resul t Set () or get Next Resul t Set (i nt) returnsnull. If this execution context object is used to execute an
SQL operation while IDBC ResultSet objects are still pending from the previous operation, or if an RT Statement object execution
completes while JIDBC ResultSet objects from arecursive call are still pending, the JDBC ResultSet objects are closed and discarded,
and resources are rel eased.

If this operation also produces side-channel update counts, they are discarded.

If an error occurs during execution of the SQL operation, the current RT Statement object is released and an SQL Exception is thrown.
Subsequent callsto get Next Resul t Set () or get Next Resul t Set (i nt) will return null.

It isassumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it is also
assumed that the previous call to register and the subsequent call to rel ease the current RT Statement object both appear within the same
synchronized block.

Returns

— |f the statement produced a side-channdl result set, then true; otherwise false.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 175

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Throws

— SQLException — if an error occurs during the execution of the currently registered RT Statement object
(for example, the expiration of the query timeout previously set by invoking set Quer yTi neout () on
this execution context object).

See Also

— Subclause 12.2.4.3.2, “execute ()"

— Subclause 12.2.4.3.18, “registerStatement (ConnectionContext, Object, int)”
— Subclause 12.2.4.3.12, “ getNextResultSet ()"

— Subclause 12.2.4.3.13, “getNextResultSet (int)”

12.2.4.3.3 executeBatch ()

public synchronized int[] executeBatch () throws SQLException

Executes the pending statement batch contained in this execution context object and returns the result as an
array of update counts. If no pending statement batch exists for this execution context object, null is returned.

Upon direct or exceptional return from this method, update count is set to EXEC_BATCH_COUNT. If this
method returns successfully, the batch update counts of this execution context object are updated to reflect the
return result.

Once this method is called, the statement batch is emptied even if the call resultsin an exception. If anew
statement batch is created as aresult of executing the current batch, the new batch isimplicitly executed. Sub-
sequent calls to this method return null until another batchable statement is added.

Note that exceptions returned by this method will generally beinstancesof j ava. sqgl . Bat chUpdat eEx-
cepti on.

Returns

— If no statement batch exists, then null; otherwise, an array of update counts containing one element for each
command in the batch.

The array is ordered according to the order in which commands wereinserted into the batch. Each element
either contains a non-negative update count, or the value —2 as a generic success indicator, or the value —3
asageneric failureindicator. Failure may also be indicated by an array that has fewer elements than the
number of commands in the batch. In this case, each element shall contain either a non-negative update
count or the value —2 as a generic success indicator.

176 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Throws

— SQLException — if a database access error occurs while executing the statement batch.

12.2.4.3.4 executeQuery ()

public RTResult Set executeQuery () throws SQ.Exception

Invokesthe execut eQuer y() method on the currently registered RT Statement object. Prior to statement
execution, if there is a pending statement batch on this execution context object then the statement batch is
implicitly executed using Bat chCont ext . execut eBat ch() . If anew statement batch is created as a
result of executing the current statement, the new batch isimplicitly executed. When the RT Statement object
isreleased, the update count is set to QUERY _COUNT.

NOTE 34 — Thismethod is called by generated code. Most programs do not need to call it directly.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it is also
assumed that the previous call to register and the subsequent call to rel ease the current RT Statement object both appear within the same
synchronized block.

Returns

— Theresult of calling executeQuery on the currently registered RT Statement object.

Throws

— SQLException — if an error occurs during the execution of the given RT Statement object

See Also

— Subclause 13.1.6.1.5, “executeRTQuery ()"
— Subclause 12.2.4.3.18, “registerStatement (ConnectionContext, Object, int)”

12.2.4.35 executeUpdate ()

public int executeUpdate () throws SQLException

Prior to statement execution, if there is a pending statement batch on this execution context object and any of
the following conditions are true:

— Batching currently disabled on this execution context object.
— Thecurrently registered statement is not batchable.
— Thecurrently registered RT Statement object is not batch compatible with the pending statement batch.

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 177

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

then the statement batch isimplicitly executed using Bat chCont ext . execut eBat ch() .

If batching is currently enabled on this execution context object and the currently registered RT Statement object
is batchable, then the statement is batched rather than executed. The pending statement batch is replaced by a
statement batch which includesthe currently registered RT Statement object, asreturned by RTSt at enent . get -
Bat chCont ext () . If the statement was added to the existing statement batch, update count is set to

ADD BATCH_COUNT. Otherwise, if the statement was added to a new statement batch, update count is set to
NEW BATCH_COUNT.

Otherwise, thisinvokesthe execut eUpdat e() method on the currently registered RT Statement object. If
anew statement batch is created as aresult of executing the current statement, the new batch isimplicitly exe-
cuted. When the RT Statement object is released, the update count will be updated accordingly.

NOTE 35 — Thismethod is called by generated code. Most programs do not need to call it directly.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it isalso
assumed that the previous call to register and the subsequent call to rel ease the current RT Statement object both appear within the same
synchronized block.

Returns

— The update count resulting from the execution of the currently registered RT Statement object.

Throws

— SQLException — if an error occurs during the execution of the given RT Statement object.

See Also

— Subclause 12.2.4.3.5, “executeUpdate ()"
— Subclause 12.2.4.3.18, “registerStatement (ConnectionContext, Object, int)”

12.2.4.3.6 getBatchLimit ()

synchroni zed public int getBatchLimt ()

Returns the current batch limit that was set for this execution context object.

Returns

— Case!
e If the maximum batch sizeis unlimited, then UNLI M TED_BATCH.
» If the maximum batch size is finite and implementation-dependent, then AUTO_BATCH,;

¢ Otherwise, amaximum batch size n>0.

178 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.4.3.7 getBatchUpdateCounts ()

public synchroni zed int[] getBatchUpdateCounts ()

Returns an array of update counts containing one element for each command in the last statement batch to
successfully complete execution. Returns null if no statement batch has completed execution.

Returns

— |If no statement batch has completed execution, then null; otherwise, an array of update counts resulting
from the last statement batch executed.

The array isordered according to the order in which commands were inserted into the batch. Each element
either contains a non-negative update count, or the value —2 as a generic success indicator, or the value —3
asageneric failureindicator. Failure may also be indicated by an array that has fewer elements than the
number of commands in the batch. In this case, each element shall contain either a non-negative update
count or the value —2 as a generic success indicator.

12.2.4.3.8 getFetchDirection ()

synchroni zed public int getFetchDirection () throws SQLException

Retrievesthe current fetch direction for scrollable iterator objects generated from this ExecutionContext object.
If this ExecutionContext object has not set afetch direction by calling set Fet chDi rect i on(), thenthe
value returned is the default specified in Subclause 12.2.4.3.22, “ setFetchDirection (int)”.

Returns

— The current fetch direction for scrollable iterator objects generated from this ExecutionContext object.

Throws

— SQLException — if a database error occurs

12.2.4.39 getFetchSize()

synchroni zed public int getFetchSize () throws SQ.Exception

Retrieves the number of rows that is the current fetch size for iterator objects generated from this Execution-
Context object. If this ExecutionContext object has not set afetch size by caling setFetchSize, then the value
returned is O (zero). If this ExecutionContext object has set a non-negative fetch size by calling the method
setFetchSize, then the return value is the fetch size specified on setFetchSize.

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 179

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Returns

— Thecurrent fetch size for iterator objects generated from this ExecutionContext object.

Throws

— SQLException — if a database error occurs

12.2.4.3.10 getMaxFieldSize ()

public synchroni zed int get MaxFi el dSi ze ()

The maximum Javafield size limit (in bytes) is the maximum amount of data returned for any column value
for SQL operations subsequently executed using this execute context object; it only appliesto BINARY,
VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR columns. These columns
can befetched into Java String, Byte array, or Stream objects. Thelimit affects both OUT parametersand | NOUT
parameters passed, and the result returned from any executable SQL operation. If the limit is exceeded, the
excess datais discarded.

By default, the maximum Javafield size limit is zero (unlimited).

Returns

— The current maximum Javafield size limit; O (zero) means unlimited.

12.2.4.3.11 getMaxRows ()

public synchronized int get MaxRows ()

The maximum rows limit is the maximum number of rows that any iterator or JDBC ResultSet returned by
SQL operations subsequently executed using this execution context object can contain. If the limit is exceeded,
the excess rows are dropped.

By default, the max rows limit is zero (unlimited).

Returns

— The current maximum rows limit; 0 (zero) means unlimited.

180 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.4.3.12 getNextResultSet ()

public synchroni zed Result Set get Next ResultSet () throws SQLException

Thismethod effectively invokest hi s. get Next Resul t Set (j ava. sql . St at enent . CLOSE_CUR-
RENT _RESULT) to return the currently registered RT Statement's next JDBC ResultSet (if any).

Returns

— If there are no further JIDBC ResultSet abjects, then null; otherwise, the next side-channel result set.

Throws

— SQLException if an error occurs obtaining the next JDBC ResultSet object

See Also

— Subclause 12.2.4.3.2, “execute ()"

— Subclause 12.2.4.3.13, “getNextResultSet (int)”
— Subclause 13.1.6.1.29, “getMaxRows ()"

— Subclause 13.1.6.1.34, “getResultSet ()"

12.2.4.3.13 getNextResultSet (int)

public synchroni zed Result Set get Next ResultSet (int closeType) throws SQLException

Moves to the currently registered RT Statement object's next JDBC ResultSet. The first time this method is
called after an SQL operation is executed, the first side-channel result set isreturned (if any). Further callsto
get Next Resul t Set (i nt) advanceto and return subsequent JDBC ResultSet objects of the currently
registered RT Statement. get Next Resul t Set (i nt) returns null if there are no further JDBC ResultSets;
null isaso returned if an SQL operation has not yet been executed on this execution context object.

If the constant j ava. sql . St at enent . CLOSE_CURRENT_RESULT is passed, then the JDBC ResultSet
returned by the last call to get Resul t Set () against the currently registered RT Statement is closed. If the
constantj ava. sql . St at ement . CLOSE_ALL_RESUL TS spassed, then all open JDBC ResultSet objects
previously obtained from the currently registered RT Statement are closed. If the constant

j ava. sql . St at ement . KEEP_CURRENT _RESULT ispassed, then thelast JDBC ResultSet obtained from
the currently registered RT Statement is | eft open.

NOTE 36 — If thelast SQL operation executed on this execution context object produced multiple JDBC ResultSet objects, itsresources
are not released until all JIDBC ResultSet objects have been processed and get Next Resul t Set () returnsnull. If this execution
context object is used to execute an SQL operation while IDBC ResultSet objects are still pending from the previous operation, or if a
statement execution completes while JDBC ResultSet objects from arecursive call are still pending, the JIDBC ResultSet objects are
closed and discarded, and resources are released.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 181

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

If this operation also produces side-channel update counts, they are discarded.

If an error occurs during acall to get Next Resul t Set (i nt) , the current JDBC ResultSet object is released and an SQL Exception
isthrown. Subsequent callsto get Next Resul t Set (i nt) return null.

Parameters
— closeType— one of thevaluesj ava. sql . St at enent . CLOSE_CURRENT_RESULT,

java.sqgl. Statenent. CLOSE_ALL_RESULTS, andj ava. sql . St at ement . KEEP_CUR-
RENT_RESULT

Returns

— If there are no further JIDBC ResultSet abjects, then null; otherwise, the next side-channel result set.

Throws

— SQLException if an error occurs obtaining the next JDBC ResultSet object

See Also

— Subclause 12.2.4.3.2, “execute ()"

— Subclause 12.2.4.3.12, “getNextResultSet ()"
— Subclause 12.1.5.2.4, “ getResultSet ()"

— Subclause 13.1.6.1.29, “getMaxRows ()"

— Subclause 13.1.6.1.34, “getResultSet ()"

12.2.4.3.14 getQueryTimeout ()

public synchroni zed int getQueryTi neout ()

The query timeout limit isthe maxiumum number of seconds SQL operations subsequently executed using this
execution context object are permitted to take to complete. If execution of the SQL operation exceeds the limit,
an SQLException isthrown.

By default, the query timeout limit is zero (unlimited).

Returns

— Thecurrent query timeout limit in seconds; O (zero) means unlimited.

182 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.4.3.15 getUpdateCount ()

public synchroni zed i nt getUpdateCount ()

Returnsthe update count, defined asthe number of rows updated by thelast SQL operation to compl ete execution
using this execution context object. 0 (zero) isreturned if the last SQL operation was not a DML statement.

QUERY_COUNT isreturned if the last SQL operation created an iterator object or JIDBC ResultSet object.

EXCEPTION_COUNT isreturned if an exception occurred beforethelast SQL operation completed execution,
or no operation has yet been attempted.

Returns

— Case:

» If thelast SQL operation was batchable and was added as the first member of a new statement batch,
then NEW BATCH_COUNT.

« If thelast SQL operation was batchable and was added to the current statement batch, then
ADD_BATCH_COUNT.

* If astatement batch has completed execution more recently than any unbatched statement, then
EXEC_BATCH_COUNT.

» Otherwise, the number of rows updated by the last operation.

12.2.4.3.16 getWarnings|()

publi ¢ synchroni zed SQ.Warni ng getWarnings ()

Returnsthe first warning reported by the last SQL operation to compl ete execution using this execution context
object. Subsequent warnings resulting from the same SQL operation are chained to this SQLWarning. The
SQLWarning chain returned represents those warnings that occured during the execution of the last SQL
operation and the subsequent binding of any output host variables.

NOTE 37 — If an iterator is being processed, then all warnings associated with iterator column reads are chained on theiterator object.

Returns

— If nowarnings occurred, then null; otherwise, the first SQLWarning.

12.2.4.3.17 isBatching ()

publi ¢ synchroni zed bool ean isBatching ()

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 183

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Returnstrueif batching is currently enabled for this execution context object, false if batching is disabled.
Note that the value returned reflects only whether it is possible to batch statements, but not whether a pending
statement batch exists.

Returns

— If batching enabled, then true; otherwise, false.

12.2.4.3.18 register Statement (ConnectionContext, Object, int)

publi c RTStatenent registerStatenent
(ConnectionContext connCtx, Object profileKey, int stmntNdx)
t hrows SQLException

Creates, registers and returns an RT Statement object. This method is called by generated code. Most programs
do not need to call it directly.

The RTStatement object is created by accessing the ConnectedProfile object within connection context object
“connCtx” that hasthe key “profileKey”. The RT Statement object at index “stmtNdx” in the ConnectedProfile
object is created using the get St at enent () method. If batching is currently enabled, then the current
statement batch is passed as an additional argument to the get St at errent () method. If there is no pending
statement batch, then the current statement batch passed to get St at enent () isnul | .

The RTStatement object created is registered and becomes the current RT Statement object of this execution
context object.

For each of the maximum rows, maximum Javafield size, and query timeout limits of this execution context
object, if thelimit has anon-default value, then the corresponding methods for setting these limits on the regis-
tered RT Statement object are invoked. An SQLException is thrown if the runtime class implementing

RT Statement does not support changing the limit to a non-default value.

The given connection context object's execution context object is not used by this method.

Note that if this method throws an exception, no RT Statement object will be registered.

NOTE 38 — It is assumed that this method is called within a block that is synchronized on this execution context object. Subsequent
callsto execute and release the RT Statement object returned should al so appear within the same synchronized block. If there is another
RT Statement object currently registered on this execution context object, it is assumed that this method is arecursive call initiated by
the currently registered RT Statement object. In such cases, state involving the currently registered RT Statement object is saved, and
the RT Statement object returned by this method becomes the currently registered RT Statement object. Once the execution of this new
RT Statement object has completed execution and and the object is rel eased, the previous RT Statement object isrestored asthe currently
registered RT Statement object.

Parameters

— connCtx — the connection context object that contains the profile object that contains the RT Statement
object to register

— profileKey — the key of the ConnectedProfile object within the connection context object

184 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

— stmtNdx — the zero-based index of the RT Statement object within the profile object to be registered

Returns

— The newly-created and -registered RT Statement object.

Throws

— SQLException — if there is another RT Statement object currently executing or if the maximum Javafield
size, maximum rows, or query timeout cannot be set on the registered RT Statement object

See Also

— Subclause 12.2.4.3.19, “releaseStatement ()”

— Subclause 13.1.2.1.4, “getStatement (int, Map)”

— Subclause 12.1.1.2.3, “getConnectedProfile (Object)”

— Subclause 13.1.2.1.5, “ getStatement (int, BatchContext, Map)”

12.2.4.3.19 releaseStatement ()

public void releaseStatenent () throws SQLException

Releases the currently registered RT Statement object, signaling that all execution related operations have
completed. Once this method has been executed, r egi st er St at erent can be called again. The SQL
warnings and update count are updated as reflected by the registered RT Statement object and the execution
RTResultSet objects.

If the execution of the currently registered RT Statement object produced multiple JDBC ResultSet objects and
not all JDBC ResultSet objects have been implicitly or explicitly closed, then this operation isano-op. In such
cases, this method is automatically called to release the RT Statement object once al JDBC ResultSet objects
have been processed and get Next Resul t Set () or get Next Resul t Set (i nt) returnsnull.

This method callsthe execut eConpl et e() method of the registered RT Statement object.
NOTE 39 — Thismethod is called by generated code. Most programs do not need to call it directly.

It is assumed that this method is called within a block that is synchronized on this execution context object. Furthermore, it isalso
assumed that the previous call to register and the subsequent call to rel ease the current RT Statement object both appear within the same
synchronized block.

Throws

— SQLException — if an error occurs retrieving the warnings

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 185

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.4.3.20 setBatching (boolean)

public synchroni zed void setBatching (bool ean doBat ch)

Enables or disables batching for statements executed on this execution context object. When batching is enabl ed,
batchable statements that are registered with this execution context object will be added to a statement batch
for deferred execution instead of being executed immediately. A statement batch can be executed explicitly
usingtheexecut eBat ch() command. Statement batches are al so executed implicitly when astatement that
cannot be added to the current statement batch is executed. If a statement being executed is batchable and
compatible with the current statement batch, it is added to the batch.

When batching is disabled, statements are executed as usual. Subsequent statements are not considered for
addition to the pending statement batch.

Thismethod only affects statements encountered after it is called. It does not affect statements that have previ-
ously been or are currently being executed, nor does it affect the pending statement batch.

Parameters
— doBatch — trueif batching should be enabled, false if batching should be disabled

12.2.4.3.21 setBatchLimit (int)

public synchroni zed void setBatchLimt (int batchLinmit)

Sets the maximum batch size. When batching is enabled and the maximum batch size is exceeded, implicit
batch execution is performed.

The following remarks assume that batching is enabled.

— When the constant UNLI M TED_BATCH s specified, the maximum batch size is unlimited, and can not
be exceeded. New ExecutionContext objects are always created with UNLI M TED_BATCH.

— When apositive, non-zero bat chLi mi t is specified, an implict batch execution will be performed
whenever the number of batched statements reachesbat chLi mi t .

— Whenthe constant AUTO_BATCHis specified, the maximum batch sizeisfinite but unspecified. Whenever
abatch-compatible statement is added to a batch, the SQL J runtime implementation may decide to do one
of the following:

* Add the statement to the batch.
» Execute the current non-empty batch and create a new singleton batch that contains the statement.

* Add the statement to the current batch and execute the batch. As a special case of this situation, given
an empty batch, the implementation may also simply go ahead and execute the statement.

— Theimplementation should reasonably avoid creating out-of-memory conditions due to implicit batching
with AUTO_BATCH.

186 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

This method only affects statements encountered after it is called. It does not affect statements that have previ-
ously been or are currently being executed, nor does it affect the pending statement batch.

Parameters

— batchLimit— UNLI M TED_BATCHif the maximum batch sizeisunlimited, AUTO_BATCHIif the maximum
batch size isfinite and implementation dependent, or n>0 for a maximum batch size of n.

12.2.4.3.22 setFetchDirection (int)

public synchroni zed void setFetchDirection (int direction) throws SQLException

Gives the SQLJ runtime a hint asto the direction in which rows of scrollable iterator objects are processed.
Thehint applies only to scrollableiterator objects created using this ExecutionContext object. The default value
issglj.runtime.ResultSetlterator FETCH_FORWARD.

Parameters

— direction — theinitial fetch direction for scrollable iterator objects generated from this ExecutionContext
object.

Throws

— SQLException — if adatabase error occurs or the given direction is not one of ResultSetltera-
tor. FETCH_FORWARD, ResultSetlterator. FETCH_REVERSE, or ResultSetlterator. FETCH_UNKNOWN.

12.2.4.3.23 setFetchSize (int)

synchroni zed public void setFetchSize (int rows) throws SQLException

Gives the SQLJ runtime a hint as to the number of rows that should be fetched when more rows are needed.
The number of rows specified affects only iterator objects created using this ExecutionContext object.

Parameters

— rows— thefetch size for result sets associated with iterator objects whose initialization involves use of
this ExecutionContext object.

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 187

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Throws

— SQLException— if adatabase error occursor the condition O (zero) <r ows, thent hi s. get MaxRows ()
isnot satisfied.

12.2.4.3.24 setMaxFieldSize (int)

publi ¢ synchroni zed voi d Set MaxFi el dSi ze (int nmax)

The maximum Javafield size limit (in bytes) is the maximum amount of data returned for any column value
for SQL operations subsequently executed using this execution context object; it only appliesto BINARY,
VARBINARY, LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR columns. These columns
can befetched into Java String, Byte array, or Stream objects. The limit affects both OUT parametersand | NOUT
parameters passed, and the result returned from any executable SQL operation. If the limit is exceeded, the
excess datais discarded. For maximum portability, use values greater than 256.

By default, the maximum Javafield size limit is zero (unlimited).

NOTE 40 — Support for setting MaxFieldSize to other than its default value is implementation-defined. If support for non-default
valuesis not provided and a subsequent attempt is made to register an RT Statement object with such an ExecutionContext object, then
an SQL Exception condition is thrown: OLB-specific error — unsupported feature.

Parameters

— max — the new maximum Javafield size limit; zero means unlimited

12.2.4.3.25 setMaxRows (int)

public synchroni zed voi d set MaxRows (i nt nax)

The maximum rows limit is the maximum number of rows that any iterator or JDBC ResultSet returned by
SQL operations subsequently executed using this execution context object can contain. If the limit is exceeded,
the excess rows are dropped.

By default, the maximum rows limit is zero (unlimited).

NOTE 41 — Support for setting MaxRows to other than its default value isimplementation-defined. If support for non-default values
is not provided, and a subsequent attempt is made to register an RT Statement object with such an ExecutionContext object, then an
SQL Exception condition is thrown: OLB-specific error — unsupported feature.

Parameters

— max — the new maximum rows limit; zero means unlimited

188 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.4.3.26 setQueryTimeout (int)

publi ¢ synchroni zed voi d set QueryTi neout (int seconds)

The query timeout limit isthe maxiumum number of seconds SQL operations subsequently executed using this
execution context object are permitted to take to compl ete. If execution of the SQL operation exceedsthe limit,
an SQL Exception is thrown.

By default, the query timeout limit is zero (unlimited).

NOTE 42 — Support for setting QueryTimeout to other than its default value is implementation-defined. If support for non-default
valuesis not provided, and a subsequent attempt is made to register an RT Statement object with such an ExecutionContext object, then
an SQL Exception condition is thrown: OLB-specific error — unsupported feature.

Parameters

— seconds — the new query timeout limit in seconds; zero means unlimited.

12.2.5 sglj.runtime.RuntimeContext

j ava. |l ang. Obj ect

+—sqlj . runtine. Runti neCont ext

public abstract class RuntinmeContext
ext ends nj ect

The RuntimeContext class defines system specific services to be provided by the runtime environment. The
RuntimeContext classisan abstract class the implementation of which might vary according to the Java Virtual
Machine environment.

12.25.1 Variables

122511 DEFAULT_DATA_SOURCE

public static final String DEFAULT_DATA SOURCE

The JNDI name of the data source used to create the default Connection object, j dbc/ def aul t Dat aSour ce.

See Also

— Subclause 12.2.5.3.1, “getDefaultConnection ()"

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 189

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

122512 DEFAULT_RUNTIME

public static final String DEFAULT_RUNTI ME

Thefully-qualified class name of the default runtime implementation used if no other implementation has been
defined for a Java Virtual Machine environment.

See Also

— Subclause 12.2.3.1.1, “DefaultRuntime ()"

122513 PROPERTY_KEY

public static final String PROPERTY_KEY

The key under which the RuntimeContext implementation class name is stored in the system properties.

12.2.5.2 Constructors

12.25.2.1 RuntimeContext ()

public RuntinmeContext ()

The default constructor for the RuntimeContext class

12.2.5.3 Methods

12.25.3.1 getDefaultConnection ()

public abstract Connection get Defaul t Connection ()

Returns the default Connection object, if one exists, or null otherwise. Some environments might have an
implicit Connection object available. For example, aJava Virtual Machine running in a database server might
have an implicit Connection object associated with the current session.

If the default data source is defined in JNDI, then it is used to establish the default Connection object.

190 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Returns

— If no default Connection object exists, then null; otherwise, the default Connection object.

See Also

— Subclause 12.2.5.1.1, “DEFAULT_DATA_SOURCE”

12.25.3.2 getL oaderForClass (Class)

public abstract Loader getlLoaderForC ass (Class ford ass)

Resources and classes |oaded from this Loader object are found in the same location that the given class was
found in. Note that the definition of location might vary depending on class loading and resolution semantics
of the runtime implementation.

It isassumed that the argument substituted for forClass contains enough information for aJava Virtual Machine
implementation to be able to determine the location in which to find related resources. Most Java Virtual
Machine implementations will be able to use the given class's class loader (or the system class loader, if the
classhasno loader). However, some Java Virtual Machine implementations might need additional information
to resolve resources. For example, a Java Virtual Machine running in a database server might use the schema
in which the given classis located to search for related resources.

Parameters

— forClass — the class with which the resulting Loader object is to be associated

Returns

— A Loader object associated with a class.

12.25.3.3 getRuntime ()

public static RuntimeContext getRuntinme ()

Returns a RuntimeContext object resembling the runtime context object associated with the current Java Virtual
Machine instance. Each Java Virtual Machine instance has a single unique runtime context object. Subsequent
invocations of this method within the same Java Virtual Machine instance will return the same object. The
appropriate RuntimeContext implementation is discovered by examining the value of the Runt i meCon-

t ext . PROPERTY_KEY system property. If this property is set, it indicates the full name of aclassthat is
ableto be instantiated to create a runtime context object. If no such property is defined, or if accessto this
system property is not allowed, then the class given by Runt i meCont ext . DEFAULT _RUNTI ME is used.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 191

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

NOTE 43 — All runtime implementations shall be able to be constructed viathe Cl ass. newl nst ance() method. That is, they
shall have a public niladic constructor.

Returns

— The RuntimeContext object associated with the current Java Virtual Machine

See Also

— Subclause 12.2.5.1.3, “PROPERTY_KEY”
— Subclause 12.2.5.1.2, “DEFAULT_RUNTIMFE”

12.2.6 sglj.runtime.StreamWrapper

j ava. | ang. Obj ect

+—java.i o. | nput Stream

+—java.io.FilterlnputStream

+—sqlj.runtine. St rean apper

public class Streamh apper
extends FilterlnputStream

This class wraps a particular InputStream object. It also extends the InputStream class, delegating method
invocations directly to the wrapped InputStream object for all methods. Additionally, it supports methods for
specifying the length of the wrapper InputStream object, which allows it to be passed as an argument to the
invocation of an SQL operation.

See Also

— javaio.lnputStream — a standard Java class

12.2.6.1 Constructors

12.2.6.1.1 StreamWrapper (InputStream)

protected StreamWapper (InputStreamin)

192 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Creates anew StreamWrapper object using the octets in the given InputStream object. The length of the
InputStream object is uninitialized.

Parameters

— in— the InputStream object to wrap.

12.2.6.1.2 StreamWrapper (InputStream, int)

protected StreamWapper (InputStreamin, int length)

Creates a new StreamWrapper object using the octets in the given InputStream object. The length of the
InputStream object isinitialized to the given length value.

Parameters

— in— the InputStream object to wrap.
— length — the length of the InputStream object in octets.

12.2.6.2 Methods

12.2.6.2.1 getlnputStream ()

public I nputStream getlnputStream ()

Returns the InputStream object that is being wrapped by this StreamWrapper object.
Returns

— The underlying InputStream object that is being wrapped.

12.2.6.2.2 getLength ()

public int getLength()

Returns the length in octets of the wrapped InputStream abject, as specified during construction or in the last
caltoset Lengt h().

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 193

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Returns

— Thelength in octets of the InputStream object.

12.2.6.2.3 setLength (int)

public void setLength (int length)

Sets the length Java field of the wrapped stream to be the given value. This does not affect the wrapped Input-
Stream object, but will affect the number of octetsread from it whenitis passed as an argument to an invocation
of an SQL operation.

Parameters

— length — the new length of the InputStream object in octets.

12.2.7 sglj.runtime.UnicodeStream

java. | ang. Qoj ect

+—java.io. | nput Stream

+—java.io.FilterlnputStream

+—sqlj.runtine. Stream apper

+—sqglj.runtine. Uni codeSt ream

public class Uni codeStream
ext ends StreanmV apper

UnicodeStream (sglj.runtime.UnicodeStream) isaclass derived from javaio.lnputStream. The octets comprising
aUnicodeStream object are interpreted as Unicode characters. When an InputStream is passed as an argument
to an invocation of an SQL operation, both the length of the InputStream object and the way to interpret its
octets shall be specified. Therefore, an InputStream object cannot be passed directly, but rather shall be an
instance of AsciiStream, BinaryStream or UnicodeStream.

See Also

— Subclause 12.2.1, “sglj.runtime.Ascii Stream”
— Subclause 12.2.2, “sglj.runtime.Binary Stream”

194 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

12.2.7.1 Constructors

12.2.7.1.1 UnicodeStream (I nputStream)

public UnicodeStream (InputStreamin)

Creates a Unicode-valued InputStream object with an uninitialized length.

NOTE 44 — Thelength Javafield shall be set by acall toset Lengt h() before a UnicodeStream object is substituted for an input
(or inout) parameter in an invocation of an SQL operation.

Parameters

— in— the InputStream object to interpret as a UnicodeStream object.

12.2.7.1.2 UnicodeStream (InputStream, int)

public UnicodeStream (InputStreamin, int length)

Creates a Unicode-valued InputStream object of given length.

Parameters

— in— the InputStream object to interpret as a UnicodeStream object.

— length — the length in octets of the UnicodeStream object.

12.2.8 xglj.runtime.Character Stream

j ava. | ang. Onj ect

+—j ava. i 0. Reader

+—java.io. FilterReader

+—sqlj.runtine. CharacterStream

public class CharacterStream
extends FilterReader

A class derived from java.io.Reader whose instances contain Unicode data. When an instance of this classis
passed as an input argument to an invocation of an SQL operation, the length of the Reader object shall be

©ISO/IEC 2003 — All rights reserved Package sglj.runtime 195

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

specified. Therefore, an instance of the Reader class cannot be passed directly, but rather shall be an instance

of CharacterStream.

12.2.8.1 Constructors

12.2.8.1.1 Character Stream (Reader)

public CharacterStream (Reader in)

Creates an instance of CharacterStream with an uninitialized length.

NOTE 45— Thelength Javafield shall be set by acall toset Lengt h() before use of a CharacterStream object asan input (or inout)

parameter in an invocation of an SQL operation.

Parameters

— in— the Reader to interpret as a CharacterStream object.

12.2.8.1.2 Character Stream (Reader, int)

public CharacterStream (Reader in, int length)

Creates an instance of CharacterStream of given length.

Parameters

— in— the Reader object to interpret as a Character Stream object.
— length — the length in characters of the CharacterStream object.

12.2.8.2 Methods

12.2.8.2.1 getReader ()

publi c Reader getReader ()
Returns the underlying Reader object wrapped by the CharacterStream object.

196 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

Returns
— The underlying Reader object that is being wrapped

12.2.8.2.2 getLength ()

public int getLength()

Returns the length in characters of the wrapped Reader object, as specified during construction or in the last
cal toset Lengt h() .

Returns

— Thelength in characters of the Reader object

12.2.8.2.3 setLength (int)

public void setLength (int length)

Setsthe length Javafield of the wrapped Reader object to be the passed value. This does not affect the wrapped
Reader object, but will affect the number of characters read from it when it is passed as an input argument to
an invocation of an SQL operation.

Parameters

— length — the length of the Reader object in characters.

12.2.9 xlj.runtime.SQL NullException

j ava. | ang. Qbj ect

+—j ava. | ang. Thr owabl e

+—j ava. | ang. Excepti on

I
+—j ava. sql . SQLExcepti on

I
+—sqglj.runtine. SQLNul | Excepti on

public class SQLNul | Excepti on
ext ends SQLException

©ISO/IEC 2003 — All rights reserved Package sqlj.runtime 197

I SO/I EC 9075-10:2003 (E)
12.2 SQLJ Runtime Classes

The SQLNullException class is a subclass of SQLException that is used in the case that the SQL null value
was attempted to be fetched into a Java host variable whose type is a Java primitive datatype. This exception
is thrown when such a condition occurs.

The SQLSTATE value for every instance of SQLNullException is'22002' (data exception — null value, no
indicator parameter).

12.2.9.1 Constructors

12.29.1.1 SQL NullException ()

public SQNul | Exception ()

Create an SQL NullException object. The SQL State Javafieldisinitialized to '22002', and the vendorCode Java
field is set to the SQL Exception default.

Conformance Rules

None.

198 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13 Package sglj.runtime.profile

The sglj.runtime.profile package defines the classes and interfaces that enable binary portable SQLJ programs.
It is distinguished from the package sglj.runtime because it defines classes that are used by SQLJ runtime
implementations, but are not otherwise visible to the SQLJ programmer.

13.1 SQLJ sglj.runtime.profile I nterfaces

13.1.1 sglj.runtime.profile.BatchContext

public interface BatchContext

A batch context object is used to group statements that are to be submitted to the database for execution as a
batch using a single round trip.

13.1.1.1 Methods

13.1.1.1.1 clearBatch ()

public abstract void clearBatch() throws SQLException

Removes all statements contained in this batch context object and releases all associated resources.

Throws

— SQLException — if a database access error occurs

13.1.1.1.2 executeBatch ()

public abstract int[] executeBatch () throws SQ.Exception

Executes the statements contained in this batch context object and returnsthe result as an array of update counts.
Thearray isordered according to the order in which commandswere inserted into the batch. Note that exceptions
returned by this method will generally beinstances of j ava. sql . Bat chUpdat eExcepti on.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 199

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Returns

— An array of update counts containing one element for each command in the batch. The array is ordered
according to the order in which commands were inserted into the batch. Each element either contains a
non-negative update count, or the value—2 as ageneric successindicator, or thevalue—3 asagenericfailure
indicator. Failure may aso beindicated by an array that has fewer el ements than the number of commands
in the batch. In this case, each element shall contain either a non-negative update count or the value -2 as
ageneric success indicator.

Throws

— SQLException — if a database access error occurs

13.1.1.1.3 setBatchLimit (int)

public abstract void setBatchLimt (int batchSize) throws SQLException

Sets the maximum batch size on this batch context object. When batching is enabled and the maximum batch
sizeisexceeded, implicit batch execution is performed. Thefollowing remarks assumethat batching isenabled.

— When the constant Execut i onCont ext . UNLI M TED_BATCH is specified, the maximum batch size
isunlimited, and can not be exceeded. New BatchContext objects are always created with UNLI M
| TED BATCH.

— When apositive, non-zero batchLimit is specified, an implict batch execution will be performed, whenever
the number of batched statements reaches bat chLi mi t .

— When the constant Execut i onCont ext . AUTO_BATCH is specified, the maximum batch size isfinite
but unspecified.

Parameters

— bat chLi mit —Executi onCont ext. UNLI M TED BATCHif the maximum batch sizeisunlimited,
Execut i onCont ext . AUTO_BATCHIif the maximum batch sizeisfinite and implementation dependent,
or n> 0 (zero) for amaximum batch size of n.

Throws

— SQLException — if aninvalid or unsupported batch sizeis specified

13.1.2 glj.runtime.profile.ConnectedProfile

public interface ConnectedProfile

200 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

A ConnectedProfile object represents a profile object that has been attached to a particular JIDBC Connection
object. Sinceit is attached to a Connection object, it is able to convert its contents into an executabl e statement
object on the associated Connection object. The implementation of this object might be customized for the
given data source, which allowsit to use optimizations that circumvent the JDBC dynamic SQL model. Profile
customization will typically involve implementation-dependent profile object transformations that allow more
efficient SQL execution such a precompilation of SQL text or use of stored procedures.

A ConnectedProfile object contains statements that correspond to entries at a particular index in the profile
object. The profile's Entrylnfo object at a particular index can be used to determine how the corresponding
statement returned by a ConnectedProfile object will be executed at runtime. The statement returned need only
respond to theexecut e() method indicated in the Entrylnfo object.

A customization may also provide means for specifying the user identifier used for privilege checking. By
default, the connection context user identifier of the Connection object associated with a ConnectedProfile
object is used as the current user identifier for execution of all SQL statements created by a connected profile.
Asan alternative, a customized user identifier can be provided during the customization of an SQL/OLB
application as additional input to a customizer and included in a customized profile in an implementation-
defined manner. At runtime, a registered Customization object can make the customized profile user identifier
available to the customization-specific ConnectedProfile (and RT Statement) objects in an implementation-
dependent manner, so that statements created by the ConnectedProfile use the customized profile user identifier
asthe current user identifier, instead of the connection context user identifier.

The profile's Entrylnfo object at a particular index also characterizes the statement type. A statement can be
either PREPARED or CALLABLE, the difference between the two being that CALLABLE statements are
permitted to have OQUT parameters whereas PREPARED statements will have only | N parameters.

All statements returned by a ConnectedProfile abject conform to the following requirements:

— The operation performed shall be equivalent to the operation that would have been performed if using
regular JIDBC and the text of the SQL statement directly.

— Any QUT parameters of the operation shall have been already registered for the statement returned
(CALLABLE statements only). The profile object describes each parameter to the operation in terms of
its Java class description, and provides additional SQL type information (i.e., STRUCT, DISTINCT,
JAVA_OBJECT) for Java classes that map to user-defined data types. It is up to the implementation to
properly register the SQL type for this class description as needed for the particular JIDBC (or implementa-
tion-dependent) driver used.

If the ConnectedProfile object is unable to create the desired statement, an exception is thrown. Note that a
particular profile customization object might employ an “eager” verification algorithm in which all entriesin
the profile object are verified against the Connection object when a ConnectedProfile object is created, or a
“lazy” verification algorithm in which statements are not verified until they are indexed viathis method. It is
up to the implementations of the Customization and ConnectedProfile interfaces to decide upon an appropriate
verification strategy.

See Also

— Subclause 13.2.2.3.13, “getStatementType ()"
— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”"
— Subclause 13.2.2.1.14, “PREPARED STATEMENT”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 201

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.2.3.3, " getExecuteType ()"

13.1.2.1 Methods

13.1.2.1.1 close()

public abstract void close () throws SQ.Exception

Closes this ConnectedProfile object, releasing any resources associated with it. cl ose() iscaled when the
connection context object associated with the profile object is closed.

Throws

— SQLException — if an error occurs while closing

13.1.2.1.2 getConnection ()

public abstract Connection getConnection ()

Returns

— The Connection object with which this ConnectedProfile object was created

See Also

— Subclause 12.1.1.2.3, “getConnectedProfile (Object)”

13.1.2.1.3 getProfileData ()

public abstract ProfileData getProfileData ()

Thetop level profile object that created this connected profile object can be retrieved by calling the get Pr o-
fil e() method on the resulting ProfileData object.

Returns

— The ProfileData object associated with this ConnectedProfile object.

202 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

See Also

— Subclause 12.1.1.2.3, “getConnectedProfile (Object)”
— Subclause 13.1.3.1.2, “getProfile (Connection, Profile)”

13.1.2.1.4 getStatement (int, Map)

public abstract RTStatenent getStatenment (int ndx, java.util.Map typeMap)
throws SQ.Exception

If the profile Entrylnfo object contains invalid information, then an SQL Exception condition is thrown: OLB-
specific error —invalid profile state. The Map object provided in the typeMap parameter is passed to the
returned RT Statement object in an implementation-defined manner.

Parameters

— ndx — the index of the statement to return, zero-based

— typeMap — ajava.util.Map object containing user-defined type mapping information of the connection
context class that is associated with the statement to be executed.

Returns

— A statement object representing the Entrylnfo object at index ndx in the profile object, where ndx is zero-
based.

Throws

— SQLException — if an error occurs preparing the statement

13.1.2.1.5 getStatement (int, BatchContext, Map)

public abstract RTStatenent getStatenent (int ndx, BatchContext batch
java.util.Map typeMap)
throws SQLException

Returns a statement object representing the Entrylnfo object at index ndx in the profile object, where ndx is
zero-based. The Map object provided in the typeMap parameter is passed to the returned RT Statement object
in an implementation-defined manner.

The passed batch context object is used by the statement to determine batch compatibility. If possible, the
statement will be added to the passed batch for deferred execution viaacall to RTSt at enent . get Bat ch-

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 203

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Cont ext () . If the passed batch isnul | , then the statement will create and return a new one-element batch
containing itself when get Bat chCont ext () issubsequently called on it.

If the profile Entrylnfo object contains invalid information, then an SQL Exception is thrown: OLB-specific
error —invalid profile state.

Parameters

— ndx — the index of the statement to return, zero-based
— batch — a pending statement batch with which to merge, if possible. This batch may be null.

— typeMap — ajava.util.Map object containing user-defined type mapping information of the connection
context class that is associated with the statement to be executed.

Returns

— A statement object representing the entry at index ndx in the profile object.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.1.6.1.44, “isBatchCompatible ()"
— Subclause 13.1.6.1.8, “getBatchContext ()"

13.1.3 sglj.runtime.profile.Customization

public interface Custom zation
extends java.io. Serializable

A profile Customization object is aserializable object that maps a particular JDBC Connection object and basic
profile object into a customized ConnectedProfile object. Because both profile objects and Customization
objects are serializable, new Customization objects can be added to profiles as needed anytime after the profile
object has been created. Thiswill most often happen during an “installation” phase after the application has
been trandated, but before the application is actually run.

Profiles might be customized in any number of ways. Some typical examples are:

— Transformation of SQL text into aformat that allows more efficient execution on a particular data source.
Precompilation and use of stored procedures are examples of this.

— Batch verification and/or preparation of profile Entrylnfo objects to avoid multiple data source round trips.

204 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— Distributed and/or remote loading of custom Entrylnfo objects.
— Custom type registration of data source-specific Entrylnfo object parameters.
— Behavioral unification of multiple JDBC drivers with which an application is to be deployed.

— Specification of auser identifier to be used for privilege checking of embedded statements at runtime.

See Also

— Subclause 13.2.3, “sglj.runtime.profile.Profile”

13.1.3.1 Methods

13.1.3.1.1 acceptsConnection (Connection)

publi c abstract bool ean acceptsConnection (Connection conn)

Parameters

— conn — the JDBC Connection object used in testing the ability to create a ConnectedProfile object.

Returns

— If this Customization object can create a ConnectedProfile object for the given JDBC Connection object,
then true; otherwise, false.

13.1.3.1.2 getProfile (Connection, Profile)

public abstract ConnectedProfile getProfile
(Connection conn, Profile baseProfile)
t hrows SQLException

If the Profile object identified by baseProfile cannot be connected, then an exception is thrown. The exception
might be the result of the Profile abject identified by baseProfile containing entries that cannot be prepared and
executed on the Connection object identified by conn. Depending on the implementation of the Customization
object, verification of Profile object entries might occur when the Profile object identified by baseProfileis
connected, or be deferred until an entry is directly accessed by the client.

Parameters

— conn — input JDBC Connection object

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 205

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— baseProfile — input base Profile

Returns

— A ConnectedProfile object for baseProfile on the given JDBC Connection object.

Throws

— SQLException — if the Profile object identified by baseProfile cannot be connected.

13.1.4 xglj.runtime.profile.Loader

public interface Loader

A profile.Loader object is used as the context for profile object instantiation rather than a Java class loader
object. Thisallowsflexibility to runtime environmentsin which class L oader objects cannot be properly defined
for al classes, and resource names would not otherwise be able to be resolved.

See Also

— Subclause 13.2.1, “sglj.runtime.profile.DefaultL oader”

13.1.4.1 Methods

13.1.4.1.1 getResourceAsStream (String)

public abstract |nputStream get ResourceAsStream (String name)

Get an InputStream object on agiven resource. Returnsnull if no resource with thisnameisfound. This method
is called when SeriaizedProfile objects are instantiated.

The way in which resources are located is determined solely by the Loader implementation.

Parameters

— name — the name of the resource

206 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Returns

— If an InputStream object on the resource identified by the name parameter can be found, then the InputStream
on that resource; otherwise null.

13.1.4.1.2 loadClass (String)

public abstract Cass |oadd ass (String classNane)
t hrows C assNot FoundExcepti on

Requeststhe L oader object to load a classwith the specified name. Thel oadd ass() methodiscalled when
aprofile object isinstantiated and when a profile object isinstantiated and the Java class of a Typelnfo object
needs to be loaded for the first time as part of the instantiation process.

L oaders should use a hashtable or other cache to avoid defining classes with the same name multiple times.

Parameters

— name — the fully qualified name of the desired Class.

Returns

— Theresulting Class.

Throws

— ClassNotFoundException — if the Loader object cannot find a definition for the class

See Also

— Subclause 13.2.3.2.11, “instantiate (Loader, InputStream)”
— Subclause 13.2.3.2.12, “instantiate (Loader, String)”

— Subclause 13.2.3.2.5, “getJavaType (String)”

— Subclause 13.2.3.2.6, “getJavaType (Typelnfo)”

13.1.5 gglj.runtime.profile RTResultSet

public interface RTResult Set

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 207

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Thisinterface defines the operations used for accessing an RTResultSet's data resulting from the execution of
an SQL query described by a profile Entrylnfo object. It is based strongly on the JDBC ResultSet interface,
and can be implemented using a JDBC ResultSet object. In general, any method with the same name as one of
those in the IDBC ResultSet interface is intended to have the same behavior. Methods with new names are
intended to have new behavior. Note, however, that all new methods can be implemented in terms of callsto
other methods in the JIDBC ResultSet interface. The primary difference between this interface and the JDBC
ResultSet interface is the addition of getter methods that throw exceptions on fetch of null primitives, and the
omission of named getters and result set metadata.

In an actual implementation of the SQL Jruntime, aclassimplementing the RTResultSet interface also maintains
aruntime type map object. Thistype map is ajava.util.Map object that contains type mapping information as
specified in [JDBC]. It is provided to the RTResultSet object at the time of its creation in an implementation-
defined manner, and is used for subsequent invocations of get Qbj ect () .

By partitioning new methods into a different namespace, it is possible for a JIDBC driver to implement both
the IDBC ResultSet interface and the RTResultSet interface, allowing more efficient runtime performance in
both the dynamic and static case.

The following tables describe the differences between the methods of the JDBC ResultSet interface and the
methods of and the RTResultSet interface.

Table5— Methodsretained from java.sgl.ResultSet

M ethod Retained

next()

close()
getArray(int)

getBlob(int)

getClob(int)

getWarnings()

clearWarnings()

getBytes(int)
getCursorName()

getDate(int)

getTime(int)

getTimestamp(int)

getString(int)

208 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

M ethod Retained

getRef (int)

getURL (int)

findColumn(String)

Table 6 — Methods not retained from java.sql.ResultSet

M ethod Removed

Replacement M ethod

getM etaData()

getArray(String)

getBlob(String)

getBoolean(int) get-
Boolean(String)

getBooleanNoNull(int)

getByte(int) getByte(String)

getByteNoNull(int)

getCharacter Stream(int)

getCharacter StreamWrapper(int)

getCharacter Stream(String)

getClob(String)

getShort(int) getShort(String)

getShortNoNull(int)

getint(int) getlnt(String)

getIntNoNull(int)

getLong(int) getL ong(String)

getLongNoNull(int)

getFloat(int) getFH oat(String)

getFloatNoNull (int)

getDoubl g(int) getDou-
ble(String)

getDoubleNoNull (int)

getObject(int) getOb-
ject(String)

getObject(int, Class)

wasNull(int)

getBooleanWrapper(int) getByteWrapper(int) getShortWrapper(int)
getIntWrapper(int) getL ongWrapper(int) getFloatWrapper(int) getDou-
bleWrapper(int)

©ISO/IEC 2003 — All rights reserved

Package sqglj.runtime.profile 209

1 SO/l EC 9075-10:2003 (E)

13.1 SQLJ glj.runtime.profile Interfaces

M ethod Removed

Replacement Method

getBigDecimal (int,int) get-
BigDecimal (String,int)

getBigDecimal (int)

getAsciiStream(int) getAsci-
i Stream(String)

getAsciiStreamWrapper(int)

getBinaryStream(int) getBina-
ryStream(String)

getBinary StreamWrapper(int)

getUnicodeStream(int) getUni-
codeStream(String)

getUni codeStreamWrapper(int)

getString(String)

getBytes(String)

getDate(String)

getTime(String)

getTimestamp(String)

getRef(String)

getURL (String)

Table 7 — Additional methods unique to RTResultSet

Additional Method

getJDBCResultSet()

isvalidRow()

getColumnCount()

isClosed()

NOTE 46 — The getX X X (String) methods were omitted because int-based column lookup is generally more efficient. Moreover, when
columns are looked up by name, thef i ndCol umm() method is used to find and cache the appropriate index before any getX XX calls

are made.

210 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.5.1 Methods

13.1.5.1.1 clearWarnings()

public abstract void clearWarnings () throws SQLException

After this call, getWarnings returns null until anew warning is reported for this iterator object.

Throws

— SQLException — if a database access error occurs

13.1.5.1.2 close()

public abstract void close () throws SQ.Exception

Thecl ose() method providesan immediate rel ease of an RTResultSet object's database and runtime resources
instead of waiting for thisto happen when it is automatically destroyed by garbage collection.

NOTE 47 — An RTResultSet object is also automatically closed when it is destroyed by garbage collection.

13.1.5.1.3 findColumn (String)

public abstract int findColum (String columNane) throws SQ.Exception

Map an RTResultSet object column nameto an RTResultSet object columnindex. Theindex of thefirst column
the name of which isacase-insensitive match of the given columnNameisreturned. If no such columnisfound,
then an SQL Exception is thrown: OLB-specific error —invalid column name.

NOTE 48 — Thismethod is called if and only if the profile Entrylnfo object for the statement object that produced this RTResultSet
object has aresult set type with vdlue NAMED_RESULT.

Parameters

— columnName — the name of the column

Returns

— The column index of the specified column

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 211

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.1.9, “NAMED_RESULT”"

13.1.5.1.4 getArray (int)

public abstract java.sql.Array getArray (int columlndex) throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
j ava. sql . Array object.

NOTE 49 — The implementation of thej ava. sql . Arr ay interface is based on array locators. The accessibility of the ARRAY
valuethroughthemethodsof j ava. sql . Ar r ay isonly guaranteed in the scope of thetransactioninwhichtheget Ar r ay () method
was executed.

NOTE 50 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object hasj avaTypeNane = java. sql . Array.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

212 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.5 getAsciiStreamWrapper (int)

public abstract Ascii Stream getAscii StreamWapper (int columlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
slj.runtime.Ascii Stream object. A column value can be retrieved as a stream of ASCII characters and then
read in chunks from the stream. This method is particularly suitable for retrieving large LONGVARCHAR
values. The driver will do any necessary conversion from the database format into ASCII.

NOTE 51 — All thedatain the returned stream shall be read prior to getting the val ue of any other column. The next call to aget method
implicitly closes the stream. Also, a stream might return O (zero) for avai | abl e() whether there is data available or not.

NOTE 52 — Aninvocation of thismethod is generated by the translator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = sglj.runtime.AsciiStream.
Note that if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first columnis 1 (one), the second is 2, etc.

Returns

— If thevalueisan SQL null value, then Java null; otherwise, a Java AsciiStream object that deliversthe
value of the column identified by columnindex as a stream of one-octet ASCII characters.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 213

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

13.1.5.1.6 getBigDecimal (int)

public abstract BigDecinmal getBigDecinmal (int columlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.math.BigDecimal object. Unike the corresponding JDBC method, this method does not have a scale
parameter. The value returned uses the default scale for the given column in the database.

NOTE 53 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = javamath.BigDecimal.
Note that if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType isNAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

13.1.5.1.7 getBinaryStreamWrapper (int)

public abstract BinaryStream getBi naryStreami apper (int colummlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.BinaryStream object. A column value can beretrieved as a stream of uninterpreted octets and then
read in chunks from the stream. This method is particularly suitable for retrieving large binary strings.

214 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

NOTE 54 — All thedatain the returned stream shall be read prior to getting the value of any other column. The next call to aget method
implicitly closes the stream. Also, a stream might return O (zero) for avai | abl e() whether thereis data available or not.

NOTE 55 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
inthe profile Entrylnfo object for the statement that produced this RTResultSet object hasjavaTypeName = sqlj.runtime.Binary Stream.
Note that if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType isNAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If thevalueisan SQL null value, then the Java null; otherwise, a BinaryStream object that delivers the
database column value as a stream of uninterpreted octets.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

13.1.5.1.8 getBlob (int)

public abstract Blob getBlob (int colummlndex) throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Blob object.

NOTE 56 — Theimplementation of thejava.sql.Blob interfaceisbased on large object locators. The accessibility of the database BLOB
valuethrough the methods of java.sgl.Blob isonly guaranteed in the scope of the transaction in which the getBlob method was executed.

NOTE 57 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.sgl.Blob. Note that if
the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 215

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.9 getBooleanNoNull (int)

public abstract bool ean get Bool eanNoNul |l (int col umml ndex)
t hrows SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
boolean.

NOTE 58 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = boolean. Note that if the
entry'sresultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typel nfo object. Otherwise,
if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to find the result
Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnlndex.

216 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.10 getBooleanWrapper (int)

publi c abstract Bool ean get Bool eanW apper (int col uml ndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
javalang.Boolean object.

NOTE 59 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Boolean. Note
that if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then the columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 217

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.11 getByteNoNull (int)

public abstract byte getByteNoNull (int columlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
byte.

NOTE 60 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = byte. Note that if the
EntryInfo object'sresultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, if the Entrylnfo object'sresultSetTypeisNAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

218 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.5.1.12 getBytes (int)

public abstract byte[] getBytes (int col umlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
byte]].

NOTE 61 — Aninvocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName=[byte. Note that if the
Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.13 getByteWrapper (int)

public abstract Byte getByteWapper (int colummlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
javalang.Byte object.

NOTE 62 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Byte. Note that
if the EntryInfo object's resultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 219

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “ getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

13.1.5.1.14 getCharacter StreamWrapper (int)

public CharacterStream get Character StreanWWapper (int col uml ndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.Character Stream object. A column value can be retrieved as a stream of Unicode characters and
then read in chunks from the stream. This method is particularly suitable for retrieving large character strings.
The driver will do any necessary conversion from the SQL character set into Unicode.

NOTE 63 — All the data in the returned CharacterStream object shall be read prior to getting the value of any other column. The next
call to aget method implicitly closes the CharacterStream object. Aninvocation of Char act er St r eam avai | abl e() might
return O (zero) whether there is data available or not.

NOTE 64 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
inthe profile Entrylnfo object for the statement that produced this RTResultSet object hasjavaTypeName = sglj.runtime.CharacterStream.
Note that if the EntryInfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

220 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex is the SQL null value, then the Java null; otherwise,
a CharacterStream object that delivers the value of the column identified by columnindex as a stream of
Unicode characters.

Throws

— java.sgl.SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.15 getClob (int)

public abstract Cob getdob (int columlndex) throws SQ.Exception
Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Clob object.

NOTE 65 — The implementation of the java.sgl.Clob interface is based on large object locators. The accessibility of the CLOB value
through the methods of java.sql.Clob is only guaranteed in the scope of the transaction in which the getClob method was executed.

NOTE 66 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Clob. Note that if
the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 221

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.16 getColumnCount ()

public abstract int getColumCount () throws SQ.Exception

Determine the number of columnsin this RTResultSet object. Thisisused to verify that the number of columns
in the RTResultSet object match the number expected by a strongly typed iterator object.

NOTE 67 — This method can be implemented in JDBC using the get Col urmCount () method of a JDBC ResultSet object's
MetaData object.

Returns

— The number of columnsin this RTResultSet object.

Throws

— SQLException — if a database access error occurs

13.1.5.1.17 getCursorName ()

public abstract String getCursorName () throws SQLException
Get the name of the implicit cursor used by this RTResultSet object.

222 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

In SQL, aresult table isretrieved through a cursor that is named. The current row of aresult can be updated or
deleted using a positioned update/del ete statement that references the cursor name.

JDBC drivers support this SQL feature by providing the name of the implicit cursor used by a JDBC ResultSet
object. The current row of aJDBC ResultSet object is also the current row of thisimplicit cursor. This method
is provided for interoperability with JDBC-based implementations.

NOTE 68 — If positioned update is not supported an SQL Exception is thrown.

NOTE 69 — This method is called only if the profile Entrylnfo object for the statement that produced this RTResultSet object has a
role with value POSI TIONED.

Returns

— The RTResultSet object's SQL cursor name.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.11, “getRole ()”
— Subclause 13.2.2.1.12, “POSITIONED”

13.1.5.1.18 getDate (int)

public abstract Date getDate (int col uml ndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Date abject.

NOTE 70 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.sgl.Date. Note that if
the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 223

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.19 getDoubleNoNull (int)

public abstract doubl e getDoubl eNoNull (int columlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
double.

NOTE 71 — Aninvocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = double. Note that if the
Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, if the Entrylnfo object's resultSetTypeisNAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— Thevalue of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “ getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”

224 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— Subclause 13.2.6.3.5, “getSQL Type ()”
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.20 getDoubleWrapper (int)

publi c abstract Doubl e get Doubl eWapper (int columml ndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
javalang.Double object.

NOTE 72 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Double. Note
that if the EntryInfo object'sresultSetTypeis POSITIONED _RESULT, then columnlindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.21 getFloatNoNull (int)

public abstract float getFloatNoNull (int colummlndex)
throws SQLException

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 225

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Get the value of the column identified by columnlindex in the current row of this RTResultSet object as a Java
float.

NOTE 73 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = float. Note that if the
EntryInfo object'sresultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, if the Entrylnfo object's resultSetTypeisNAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnlndex.

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.22 getFloatWrapper (int)

public abstract Float getFl oat Wapper (int col ummlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
javalang.Float object.

NOTE 74 — Aninvocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Float. Note that
if the EntryInfo object's resultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

226 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.23 getIntNoNull (int)

public abstract int getlntNoNull (int columlndex)
t hrows SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
int.

NOTE 75— Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
inthe profile Entrylnfo object for the statement that produced this RTResultSet object hasjavaTypeName = int. Notethat if the Entrylnfo
object'sresultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typel nfo object. Otherwise,
if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to find the result
Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnlndex.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 227

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.24 getIntWrapper (int)

public abstract |Integer getlntWapper (int columlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
javalang.Integer object.

NOTE 76 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = javalang.Integer. Note
that if the EntryInfo object'sresultSetTypeis POSITIONED _RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”

228 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.25 getJDBCResultSet ()

public abstract ResultSet getJDBCResultSet ()
throws SQLException

Returnsthe JDBC ResultSet object associated with this RTResultSet object. The returned ResultSet object shall
have normal JDBC functionality, asdefined by [JDBC] (in particular, primitive accessor methodswill not raise
an SQL Null Exception when SQL null values arefetched). Thismethod is provided to facilitate interoperability
with JDBC.

NOTE 77 — Support for this method is implementation-defined and not part of Core SQLJ. If this method is not supported, then an
SQL Exception will be thrown: OLB-specific error — unsupported feature.

If an implementation supports this method, then any synchronization between the RTResultSet object and the returned JDBC ResultSet
object isimplementation-defined.

For maximum portability, this method should be invoked before thefirst next () method invocation on the RTResultSet object. Once
the JDBC ResultSet object has been produced, all operations to fetch data should be through that JDBC ResultSet object.

Returns

— A JDBC ResultSet object representing this RTResultSet object.

Throws

— SQLException — if this RTResultSet object cannot be represented as a JDBC ResultSet

13.1.5.1.26 getLongNoNull (int)

public abstract |ong getLongNoNull (int columlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
long.

NOTE 78 — Aninvocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = long. Note that if the
Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 229

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— The value of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.27 getLongWrapper (int)

public abstract Long getLongWapper (int colummlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object asa
javalang.Long object.

NOTE 79 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.Long. Note that
if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

230 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.28 getObject (int, Class)

public abstract Object getbject
(int columml ndex, C ass objectType)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object asa
java.lang.Object. This method is used to read implementation-defined, user-defined data types with type SQL
STRUCT, DISTINCT, JAVA_OBJECT, or OTHER.

The static type of the Javalvalue into which the object returned by the invocation of this method is assigned
is passed as objectType. If the result Typelnfo object for the current column in the profile Entrylnfo object for
the statement that produced this RTResultSet object has SQL Type STRUCT, DISTINCT, or JAVA_OBJECT,
then the runtime type map TM of the RTResultSet object is non-null and has a map entry mapping the actual
SQL type nameto the Java class specified in the Class argument or to asubclass of that Java class. In this case,
theresult of get Obj ect () isequivalenttotheinvocationof Resul t Set . get Obj ect (col umml ndex,
TM , asdefined in [JDBC]. If the result Typelnfo object for the current column in the profile Entrylnfo object
for the statement that produced this RTResultSet object has SQL Type OTHER, then the runtime type map is
null. An exception isthrown if the abject returned is not assignable to an object with class objectType.

If the object type cannot be constructed or otherwise has invalid structure (such as an iterator whose named
accessor methods cannot be determined), then an SQL Exception condition is thrown: OLB-specific error —
invalid class declaration.

NOTE 80 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has SQL Type STRUCT, DISTINCT,
JAVA_OBJECT, or OTHER. In such cases, the javaTypeName indicates the expected Java Class of the object; the class cannot be
handled by any other getX XX method defined by this statement. Note that if the Entrylnfo object's resultSetType is POSI-
TIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object. Otherwise, if the Entrylnfo object's
resultSetTypeisNAMED_RESULT, then the name of the current column shall be used to find the result Typel nfo object with the same
name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 231

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— objectType — the class of the Java lvalue into which the returned value will be assigned

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.29 getRef (int)

public abstract Ref getRef (int columlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object asa
java.sgl.Ref object.

NOTE 81 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql.Ref. Note that if
the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

232 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.30 getShortNoNull (int)

public abstract short getShortNoNull (int columlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a Java
short.

NOTE 82 — Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = short. Note that if the
Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, if the Entrylnfo object's resultSetTypeisNAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— Thevalue of the column identified by columnindex.

Throws

— SQLNullException — if the value of the column indicated by columnindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “ getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 233

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.6.3.5, “getSQL Type ()”
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.31 getShortWrapper (int)

public abstract Short getShortWapper (int col umlndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
javalang.Short object.

NOTE 83 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = javalang.Short. Note that
if the Entrylnfo object's resultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, " getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.32 getString (int)

public abstract String getString (int columlndex)
throws SQLException

234 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Get the value of the column identified by columnlindex in the current row of this RTResultSet object as a Java
String.

NOTE 84 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.lang.String. Note that
if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo

object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— |If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.33 getTime (int)

public abstract Tinme getTime (int columl ndex)
throws SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Time object.

NOTE 85— Aninvocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.sql. Time. Note that
if the Entrylnfo object's resultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo

object. Otherwise, if the EntryInfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 235

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.34 getTimestamp (int)

public abstract Tinmestanp getTi mestanp (int col umlndex)
t hrows SQLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as a
java.sgl.Timestamp object.

NOTE 86 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
in the profile EntryInfo object for the statement that produced this RTResultSet object has javaTypeName = java.sgl.Timestamp. Note
that if the entry's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo object.
Otherwise, isthe Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to find the
result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If the value of the column identified by columnindex isan SQL null value, then the Java null; otherwise,
the value of the column identified by columnindex.

236 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.35 getUnicodeStreamWrapper (int)

public abstract Uni codeStream get Uni codeStreami apper (int col ummlndex)
throws SQ.Exception

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
sglj.runtime.UnicodeStream object. A column value can be retrieved as a stream of Unicode characters and
then read in chunks from the stream. This method is particularly suitable for retrieving large character strings.
The driver will do any necessary conversion from the SQL character set into Unicode.

NOTE 87 — All the datain the returned UnicodeStream object shall be read prior to getting the value of any other column. The next
call to aget method implicitly closes the UnicodeStream object. An invocation of Uni codeSt r eam avai | abl e() might return
0 (zero) whether there is data available or not.

NOTE 88 — An invocation of this method is generated by the tranglator if and only if the result Typelnfo object for the current column
inthe profile Entrylnfo object for the statement that produced this RTResultSet object hasjavaTypeName = sglj.runtime.UnicodeStream.
Note that if the Entrylnfo object's resultSetType is POSITIONED_RESULT, then columnindex can be used directly to find the result
Typelnfo object. Otherwise, if the EntryInfo object's resultSetType isNAMED_RESULT, then the name of the current column shall
be used to find the result Typelnfo object with the same name.

Parameters

— columnindex — the first column is 1 (one), the second is 2, etc.

Returns

— If thevalueisthe SQL null value, then the Javanull; otherwise, a Java UnicodeStream object that delivers
the value of the column identified by columnindex as a stream of two-octet Unicode characters.

Throws

— SQLException — if a database access error occurs

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 237

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.5.1.36 getURL (int)

public abstract java.net.URL getURL (int columml ndex)
throws SQ.Exception, java.net. Ml fornedURLException

Get the value of the column identified by columnindex in the current row of this RTResultSet object as an
j ava. net . URL object.

NOTE 89 — An invocation of this method is generated by the translator if and only if the result Typelnfo object for the current column
in the profile Entrylnfo object for the statement that produced this RTResultSet object has javaTypeName = java.net. URL. Note that
if the EntryInfo object's resultSetTypeis POSITIONED_RESULT, then columnindex can be used directly to find the result Typelnfo
object. Otherwise, if the Entrylnfo object's resultSetTypeis NAMED_RESULT, then the name of the current column shall be used to
find the result Typelnfo object with the same name.

Parameters

— columnindex — thefirst columnis 1 (one), the second is 2, etc.

Returns

— If thevalue of the result column identified by columnindex is not the SQL null value, then the value of the
result column identified by columnindex; otherwise, the Java null.

Throws

— SQLException — if adatabase access error occurs

— javanet.MalformedURL Exception — if the DATALINK URL value cannot be used to construct a
java.net.URL object.

13.1.5.1.37 getWarnings|()

public abstract SQ.Warning getWarnings () throws SQLException

The first warning reported by calls on thisiterator is returned. Subsequent iterator warnings will be chained to
this SQLWarning.

238 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

The warning chain is automatically cleared each time a new row is read.

NOTE 90 — Thiswarning chain only covers warnings caused by iterator methods. Any warning caused by statement execution (such
as fetching OUT parameters) will be chained on the ExecutionContext object.

Returns

— |f there are no errors, then null; otherwise, the first SQLWarning.

Throws

— SQLException — if a database access error occurs

13.1.5.1.38 isClosed ()

public abstract bool ean isC osed () throws SQLException

Test to seeif this RTResultSet object is closed.

Returns

— If the RTResultSet object is closed, then true; otherwise, false.

Throws

— SQLException — if a database access error occurs

13.1.5.1.39 isvalidRow ()

public abstract bool ean isValidRow ()
t hrows SQLException

Returnstrueif the RTResultSet object is currently positioned on arow, false otherwise. In particular, falseis
returned if the RTResultSet object is currently positioned beforeits first row, or after itslast row.

Returns

— |If the RTResultSet object is positioned on arow, then true; otherwise, false.

Throws

— SQLException — if a database access error occurs

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 239

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

13.1.5.1.40 next ()

public abstract bool ean next () throws SQ.exception

An RTResultSet object isinitially positioned beforeitsfirst row; the first call to next () makesthefirst row
the current row, the second call makes the second row the current row, €tc.

If an InputStream object from the previous row is open, it isimplicitly closed.

Returns

— If the new current row isvalid, then true; otherwise, false. If there are no more rows, then false.

Throws

— SQLException — if a database access error occurs

13.1.6 sglj.runtime.profile RT Statement

public interface RTStatenent

Thisinterface defines the operations used to execute an SQL statement described by a profile Entrylnfo object.
It is based strongly on the JDBC Statement, PreparedStatement and CallableStatement interfaces, and can be
implemented using one of these statements. In general, any method with the same name as one of those in the
JDBC Statement interfaces (i.e., Statement, PreparedStatement, and CallableStatement) isintended to havethe
same semantic behavior. Methods with new names are intended to have new behavior. Note, however, that all
new methods can be implemented in terms of calls to other methods in the JDBC statement interfaces. The
primary difference between this interface and the JDBC statement interfaces is the addition of getter methods
that throw exceptions on fetch of null primitives, and aredefinition of statement close semantics.

Inan actua implementation of the SQL Jruntime, aclassimplementing the RT Statement interface also maintains
aruntime type map object. Thistype map isajava.util.Map object that contains type mapping information as
specified in [JDBC]. It is provided to the RT Statement object at the time of its creation in an implementation-
defined manner, and is used for subsequent invocations of get bj ect () andset Obj ect () . Itisaso
passed in an implementation-defined manner to any RTResultSet object created as aresult of the execution of
the RT Statement object.

By partitioning new methods into a different namespace, it is possible for a JIDBC driver to implement both
the JDBC statement interfaces and this interface, allowing more efficient runtime performance in both the
dynamic and static case.

By default, the connection context user identifier of the connection context object associated with the Connect-
edProfile object that created the RT Statement object is used for privilege checking during execution of an

RT Statement object. If a customized profile user identifier has been provided during profile customization,
then that identifier is used as the current user identifier during execution of an RT Statement object instead of
the connection context user identifier.

240 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

The following tables describe the differences between the methods of the JDBC Statement interfaces and the
methods of the RT Statement interface. Table 8, “Methods retained from java.sgl.Statement”, identifies methods
that areretained fromj ava. sql . St at enent . Table 9, “Methods not retained from java.sgl.Statement”,
identifies methods not retained from java.sgl.Statement; most are simply removed, while oneis replaced by a
new method defined herein. Table 10, “ Methodsretained from java.sql.PreparedStatement”, identifies methods
that are retained from j ava. sql . Pr epar edSt at enent . Table 11, “Methods not retained from
java.sgl.PreparedStatement”, identifies methods not retained from j ava. sql . Pr epar edSt at enent ;
some are simply removed, while several are replaced by new methods defined herein. Table 12, “Methods
retained from java.sgl.CallableStatement” , identifies methods that are retained from

java. sql . Cal | abl eSt at enent . Table 13, “Methods not retained from java.sgl.CallableStatement”,
identifies methods not retained fromj ava. sql . Cal | abl eSt at enent ; some are simply removed, while
several are replaced by new methods defined herein. Table 14, “ Additional methods unique to RT Statement”,
identifies methods that are unique to RT Statement.

Table 8 — Methodsretained from java.sgl.Statement

M ethod Retained

cancel()

getMaxFieldSize()

setMaxFieldSize(int)

getMaxRows()

setMaxRows(int)

getM oreResults(int)

getQueryTimeout()

setQuery Timeout(int)

getUpdateCount()

getWarnings()

clearWarnings()

getResultSet()

clearBatch() BatchContext.clearBatch()

executeBatch() BatchContext.executeBatch()

addBatch(String)

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 241

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Table 9 — Methods not retained from java.sgl.Statement

Method Removed Replacement M ethod
setEscapeProcessing(boolean)
close() executeCompl ete()

execute(String)

executeQuery(String)

executeUpdate(String)

getMoreResults()

setCursorName(String)

Table 10 — Methods retained from java.sql.Prepar edStatement

Method Retained

addBatch() getBatchContext()

execute()

executeUpdate()

setArray(int, Array)

setBigDecimal (int, BigDeci-
mal)

setBlob(int, Blob)

setBoolean(int, boolean)

setByte(int, byte)

setBytes(int, bytel])
setClob(int, Clob)

setDate(int, java.sgl.Date)

setDouble(int, double)

242 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

13.1 SQ

I SO/IEC 9075-10:2003 (E)
LJ sglj.runtime.profile Interfaces

M ethod Retained

setFloat(int, float)

setint(int, int)

setLong(int, long)

setObject(int, Object)

setRef (int, Ref)

setShort(int, short)

setString(int, String)

setTime(int, java.sgl.Time)

setTimestamp(int,
java.sgl.Timestamp)

setURL (int, java.net.URL)

Table 11 — Methods not retained from java.sgl.Prepar edStatement

M ethod Removed

Replacement Method

setNull(int, int)

setBooleanWrapper(int, Boolean) setByteWrapper(int, Byte) setDou-

bleWrapper(int, Double) setFl oatWrapper (i

Int) setLongWrapper(int, Long) setShortWrapper(int, Short)

nt, Float) setlntWrapper(int,

setAscii Stream(int, Input-
Stream)

setASCl I StreamWrapper (int, Ascii Stream)

setBinaryStream(int, Input-
Stream)

setBinary StreamWrapper(int, BinaryStream)

setCharacterStream(int,
Reader)

setCharacterStreamWrapper(int, CharacterStream)

setUnicodeStream(int, Input-
Stream)

setUnicodeStreamWrapper(int, UnicodeStream)

clearParameters()

setObject(int, Object, int, int)

setObject(int, Object, int)

©ISO/IEC 2003 — All rights reserved

Package sqglj.runtime.profile 243

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Method Removed Replacement Method

executeQuery() executeRTQuery()

Table 12 — Methods retained from java.sgl.CallableStatement

Method Retained

getBlob(int)

getByte(int)
getArray(int)

getClob(int)

getDate(int)

getRef(int)

getString(int)

getTime(int)

getTimestamp(int)

getURL (int)

Table 13 — Methods not retained from java.sgl.CallableStatement
Method Removed Replacement M ethod
registerOutParameter(int, int)
registerOutParameter(int, int,
int)
getBoolean(int) getBooleanNoNull(int)
getByte(int) getByteNoNull(int)
getDoubl e(int) getDoubleNoNull (int)
getFloat(int) getFloatNoNull(int)
getint(int) getintNoNull (int)

244 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Method Removed Replacement Method

getL ong(int) getLongNoNull (int)

getShort(int) getShortNoNull(int)

getObject(int) getObject(int, Class)

wasNull() getBooleanWrapper(int) getByteWrapper(int) getDoubleWrapper(int)
getFloatWrapper(int) getl ntWrapper(int) getL ongWrapper(int) getShort-
Wrapper(int)

Table 14 — Additional methods unique to RT Statement

Additional Method

getJDBCPreparedStatement()

getJDBCCallableStatement()

isBatchable()

isBatchCompatible()

NOTE 91 — Escape processing is handled by the implementation-dependent customization. By default, it is on, since the SQL strings
stored in the profile Entrylnfo object are in escaped syntax. However, adriver might remove the escape clauses before application
runtime, in which case escape processing could be shut off by the statement implementation.

Execute methods that have an SQL String parameter are omitted, since the SQL string is known from the profile Entrylnfo object.
The cursor name does not need to be set explicitly, since POSITIONED statements are handled by passing the iterator object itself.

The registerOutParameter methods are omitted, since the types of the OUT parameters are stored in the profile object and can be
implicitly registered by the statement object implementation.

13.1.6.1 Methods

13.1.6.1.1 cancd ()

public abstract void cancel () throws SQLException

Cancel can be used by one thread to cancel an RT Statement object that is being executed by another thread.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 245

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

13.1.6.1.2 clearWarnings()

public abstract void clearWarnings ()
throws SQLException

After this call, getWarnings returns null until a new warning is reported for this RT Statement object.

Throws

— SQLException — if a database access error occurs

13.1.6.1.3 execute()

publi c abstract bool ean execute ()
throws SQLException

Some CALL statements return multiple results; the execute method handles these complex statements.

NOTE 92 — An invocation of this method is generated by the trandlator if and only if the execute type of the profile Entrylnfo object
for this RT Statement object has value EXECUTE and the role has avalue of CALL.

Returns

— |If the statement was executed without raising an exception, then true; otherwise, false.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.3, “getExecuteType ()"
— Subclause 13.2.2.1.5, “EXECUTE"

246 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.6.1.4 executeComplete ()

public abstract void executeConplete ()
throws SQLException

Called once the execution of this RT Statement object (and all the required gets) have been made. Thisisa
guaranteethat no further callswill be made to this RT Statement object by the codegen or runtime environment.
Onceexecut eConpl et e() hasbeen called, further callsto any other method are implementati on-dependent
and might result in an SQL Exception being thrown. Additionally, if this RTStatement object has previously
been added to a RTStatement object batch viaget Bat chCont ext () , then it should remain open and exe-
cutable until either Bat chCont ext . execut eBat ch() or Bat chCont ext . cl ear Bat ch() hasbeen
called.

Thismethod is distinguished from the IDBC cl ose() method because, unlikethe JIDBC cl ose() method,
this method will not close any ResultSet objects that have been opened by this RT Statement object. If this

RT Statement object is implemented using JDBC, then the underlying JDBC Statement object should not be
closed until all open RTResultSet abjects have been explicitly closed, and theexecut i onConpl et e()
method has been called.

Throws

— SQLException — if a database access error occurs

13.1.6.1.5 executeRTQuery ()

public abstract RTResultSet executeRTQuery ()
throws SQLException

The prepared SQL query described by the profile Entrylnfo object for this RT Statement object is executed and
its RTResultSet object is returned. The runtime type map of the RT Statement object is passed to the newly-
created RTResultSet object in an implementation-defined manner.

NOTE 93 — An invocation of this method is generated by the trandlator if and only if the execute type of the profile Entrylnfo object
for this RT Statement object has value EXECUTE_QUERY .

Returns

— An RTResultSet object that contains the data produced by the query (never null)

Throws

— SQLException — if a database access error occurs

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 247

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

See Also

— Subclause 13.2.2.3.3, “getExecuteType ()"
— Subclause 13.2.2.1.5, “EXECUTE"

13.1.6.1.6 executeUpdate ()

public abstract int executeUpdate ()
throws SQ.Exception

Execute the SQL operation described by the profile Entrylnfo object for this RT Statement object.

NOTE 94 — An invocation of this method is generated by the trandator if and only if the execute type of the profile EntryInfo object
for this RT Statement object has value EXECUTE_UPDATE.

Returns

— If the SQL statement is INSERT, UPDATE or DELETE, then the number of rows affected by the SQL
statement; otherwise, O (zero).

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.3, “getExecuteType ()"
— Subclause 13.2.2.1.5, “EXECUTE"

13.1.6.1.7 getArray (int)

public abstract java.sql.Array getArray (int paraneterlndex) throws SQLException

Get the value of the SQL ARRAY identified by parameterindex asaj ava. sql . Arr ay object.

NOTE 95 — Theimplementation of thej ava. sql . Arr ay interface is based on array locators. The accessibility of the ARRAY
valuethroughthemethodsof j ava. sql . Ar r ay isonly guaranteed in the scope of thetransactioninwhichtheget Ar r ay () method
was executed.

NOTE 96 — An invocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo object
for this RT Statement statement has the value CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the
Entrylnfo object has mode OUT or INOUT, andj avaTypeNane = java.sql.Array.

248 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.8 getBatchContext ()

public abstract BatchContext getBatchContext () throws SQLException

Returns a batch context object that can be used to execute this RT Statement object as part of a batch of
RTStatement objects. If this RT Statement object is compatible with the underlying batch context object as
defined by i sBat chConpat i bl e(), it isadded to the underlying batch context object. Otherwise a new
batch context object is created which initially contains only this RT Statement object. Such anew batch context
object isalso created when the batch context object passed intheget St at errent (i nt, Bat chCont ext)
method was nul | .

Theresultisundefined if thismethod is called on an RT Statement object that was not obtained by get St at e-
ment (i nt, Bat chCont ext), or if the RTStatement object is not batchable.

This method is called after all | N parameters and execution control attributes have been set, but before
RT Statement object execution.

Returns

— A batch context object that can be used to execute this RT Statement object as part of abatch of RT Statement
objects.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 249

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.1.6.1.43, “isBatchable ()"
— Subclause 13.1.6.1.44, “isBatchCompatible ()"
— Subclause 13.1.2.1.5, “getStatement (int, BatchContext, Map)”

13.1.6.1.9 getBigDecimal (int)

public abstract BigDecinmal getBigDecinmal (int parameter!|ndex)
throws SQ.Exception

Get the value of the SQL NUMERIC parameter identified by parameterindex as ajava.math.BigDecimal.
Unlike the corresponding JDBC method, this method does not have a scale parameter. The value returned uses
the scale of the SQL datatype of the given parameter.

NOTE 97 — Aninvocation of this method is generated by the tranglator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.math.BigDecimal.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “getStatementType ()”

250 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.10 getBlob (int)

public abstract Blob getBlob (int paraneterlindex) throws SQ.Exception

Get the value of SQL BLOB parameter identified by parameterindex as ajava.sgl.Blob object.

NOTE 98 — The implementation of the java.sql.Blob interface is based on large object locators. The accessibility of the BLOB value
through the methods of java.sql.Blob isonly guaranteed in the scope of thetransaction in which theget Bl ob() method was executed.

NOTE 99 — Aninvocation of this method is generated by the translator if and only if the statement type of the profile Entrylnfo object
for this RTStatement object has the value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex in the
Entrylnfo object has mode OUT or INOUT, and javaTypeName = java.sgl.Blob.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.11 getBooleanNoNull (int)

public abstract bool ean get Bool eanNoNul | (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL BIT parameter identified by parameterindex as a Java boolean.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 251

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

NOTE 100 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=boolean.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.12 getBooleanWrapper (int)

publi ¢ abstract Bool ean get Bool eanWapper (int paraneterlndex)
throws SQLException

Get the value of the SQL BIT parameter identified by parameterIndex as ajava.lang.Boolean.

NOTE 101 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterIndex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Boolean.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

252 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLNullException — if the parameter identified by parameterindex has the SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.13 getByteNoNull (int)

public abstract byte getByteNoNull (int paraneterl|ndex)
throws SQ.Exception

Get the value of the SQL TINYINT parameter identified by parameterindex as a Java byte.

NOTE 102 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=byte.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— Thevalue of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if a database access error occurs

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 253

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “getStatementType ()”

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.14 getBytes (int)

public abstract byte[] getBytes (int paraneterlndex)
throws SQLException

Get the value of the SQL VARBINARY parameter identified by parameterindex as an array of Java bytes.

NOTE 103 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRTStatement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=[byte.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

254 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.6.1.15 getByteWrapper (int)

public abstract Byte getByteWapper (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL TINYINT parameter identified by parameterindex as ajava.lang.Byte.

NOTE 104 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Byte.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterIndex; otherwise, the Javanull.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.16 getClob (int)

public abstract Clob getCdob (int paraneterlndex) throws SQ.Exception

Get the value of the SQL CLOB parameter identified by parameterindex as ajava.sgl.Clob object.

NOTE 105 — The implementation of the java.sql.Clob interface is based on large object |ocators. The accessibility of the CLOB value
through the methods of java.sgl.Clob isonly guaranteed in the scope of thetransactioninwhich theget Cl ob() method was executed.

NOTE 106 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for this RT Statement object has the value CALLABLE_STATEMENT and the parameter Typelnfo object at parameterIndex in the
Entrylnfo object has mode OUT or INOUT, and javaTypeName = java.sgl.Clob.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 255

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.17 getDate (int)

public abstract Date getDate (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL DATE parameter identified by parameterindex as ajava.sgl.Date.

NOTE 107 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.sgl.Date.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterIndex; otherwise, the Javanull.

256 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.18 getDoubleNoNull (int)

public abstract doubl e get Doubl eNoNull (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL DOUBLE PRECISION parameter identified by parameterlndex as a Java double.

NOTE 108 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRTStatement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=double.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— The value of the parameter identified by parameterlndex.

Throws

— SOQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 257

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.19 getDoubleWrapper (int)

publi ¢ abstract Doubl e get Doubl eWapper (int paraneterlndex)
throws SQLException

Get the value of the SQL DOUBLE PRECISION parameter identified by parameterindex asajava.lang.Double.

NOTE 109 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Double.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

258 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.6.1.20 getFloatNoNull (int)

public abstract float getFl oatNoNull (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL FLOAT parameter identified by parameterindex as a Javafloat.

NOTE 110— Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typelnfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=float.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— Thevalue of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.21 getFloatWrapper (int)

public abstract Float getFl oatWapper (int paraneterl|ndex)
throws SQ.Exception

Get the value of the SQL FLOAT parameter identified by parameterindex as ajavalang.Float.

NOTE 111 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Float.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 259

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.22 getlntNoNull (int)

public abstract int getlintNoNull (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL INTEGER parameter identified by parameterindex as a Javaint.

NOTE 112 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=int.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— Thevalue of the parameter identified by parameterindex.

260 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.23 getIntWrapper (int)

public abstract Integer getlntWapper (int paraneterlndex)
throws SQLException

Get the value of the SQL INTEGER parameter identified by parameterindex as ajavalang.Integer.

NOTE 113 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Integer.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 261

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.24 getJDBCCallableStatement ()

public abstract Call abl eStatenment get JDBCCal | abl eSt atenent ()
throws SQLException

Returns arepresentation of this RT Statement object asa JDBC CallableStatement object. Operations performed
on the returned CallableStatement object affect the state of this RT Statement object as well.

Returns

— A JDBC CallableStatement object representing this RT Statement object.

Throws

— SQLException — if this RT Statement object cannot be represented as a JDBC CallableStatement object

13.1.6.1.25 getJDBCPreparedStatement ()

public abstract PreparedStatenent get JDBCPreparedStatenent ()
throws SQLException

Returnsarepresentation of this RT Statement object asa JDBC PreparedStatement object. Operations performed
on the returned PreparedStatement object affect the state of this RTStatement object as well.

Returns

— A JDBC PreparedStatement object representing this RT Statement object.

Throws

— SQLException — if this RT Statement object cannot be represented as a JIDBC PreparedStatement object

262 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.6.1.26 getLongNoNull (int)

public abstract |ong getLongNoNull (int paraneterl|ndex)
throws SQ.Exception

Get the value of the SQL BIGINT parameter identified by parameterindex as a Javalong.

NOTE 114 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for this RT Statement object has value CALLABLE_STATEMENT and the parameter Typelnfo at parameterIndex in the EntryInfo
object has mode=OUT or INOUT, and javaTypeName=long.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— Thevalue of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.27 getLongWrapper (int)

public abstract Long getLongWapper (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL BIGINT parameter identified by parameterindex as ajava.lang.Long.

NOTE 115— Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for this RT Statement object has value CALLABLE_STATEMENT and the parameter Typelnfo at parameterIndex in the EntryInfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Long.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 263

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.28 getMaxFieldSize ()

public abstract int getMaxFieldSize ()
throws SQLException

The maxFieldSizelimit (in bytes) isthe maximum amount of datareturned for any column value; it only applies
to binary string and character string (BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR,
and LONGVARCHAR) columns. These columns can befetched into Java String, Byte array, or stream objects.
If the limit is exceeded, the excess datais discarded. The default maxFieldSize is 0 (zero).

Returns

— The maxFieldSize limit of this RTStatement object; 0 (zero) means unlimited.

Throws

— SQLException — if a database access error occurs

264 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.6.1.29 getM axRows ()

public abstract int get MaxRows ()
throws SQLException

Returns the maximum number of rows that can be contained by a ResultSet abject or by an RTResultSet object
created by executing this RT Statement object. If this maxRows limit is exceeded, then the excess rows are
dropped. The default maxRows valueis 0 (zero).

Returns

— The maxRows limit of this RT Statement object; 0 (zero) means unlimited.

Throws

— SQLException — if adatabase access error occurs

13.1.6.1.30 getM oreResults (int)

publi c abstract bool ean get MoreResults (int closeType)
t hrows SQLException

Movesto an RTStatement's next result. It returnstrueif thisresult isa JDBC ResultSet object. get Mor eRe-
sul ts(i nt) asooptionally closes JDBC ResultSet objects obtained with get Resul t Set () . Thereare
no moreresultsif andonly if (! get MoreResul ts(int) && (getUpdateCount() == -1)).

If the constant j ava. sql . St at enent . CLOSE_CURRENT_RESULT is passed, then the JDBC ResultSet
returned by thelast call to get Resul t Set () against the currently registered RT Statement is closed. If the
constantj ava. sql . St at ement . CLOSE_ALL_RESULTS s passed, then all open JDBC ResultSet objects
previously obtained from the currently registered RT Statement are closed. If the constant

j ava. sql . St at ement . KEEP_CURRENT _RESULT ispassed, then thelast JDBC ResultSet obtained from
the currently registered RT Statement is |eft open.

NOTE 116 — Invocation of this method occurs asaresult of the <embedded SQL Java program> having invoked get Next Resul t -
Set (i nt) against the ExecutionContext for which this RT Statement is the currently registered RT Statement.

Returns

— |f the next result is a ResultSet object, then true; if it is an update count or there are no more results, then
false.

Throws

— SQLException — if adatabase access error occurs

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 265

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

See Also

— Subclause 12.2.4.3.13, “ getNextResultSet (int)”
— Subclause 13.1.6.1.3, “execute ()"

— Subclause 13.2.2.3.3, “getExecuteType ()"

— Subclause 13.2.2.1.5, “EXECUTE”

13.1.6.1.31 getObject (int, Class)

public abstract Cbject gethject
(int paraneterlndex, C ass objectType)
throws SQLException

Get the value of the parameter identified by parameterindex as ajava.lang.Object object. This method is used
to fetch implementation-defined instances of user-defined types with SQL Type STRUCT, DISTINCT,
JAVA_OBJECT, or OTHER.

The objectType parameter gives the static type of the Javalvalue to which the value of the parameter indicated
by parameterIndex isto be assigned. If the Typelnfo profile Entrylnfo object for the parameter has SQL Type
STRUCT, DISTINCT, or JAVA_OBJECT, then the runtime type map TM of the RT Statement aobject is non-
null and has a map entry mapping the actual SQL type name to the Java class specified in the Class argument
or to asubclass of that Java class. In this case, the result of getObject is equivalent to the invocation of getOb-
ject(columnindex, TM), as defined in [JDBC]. If the Typelnfo profile Entrylnfo object for the parameter has
SQL Type OTHER, then the runtime type map is null. An exception is thrown if the object returned is not
assignable to an lvalue with static type objectType.

If an object of type objectType cannot be constructed or otherwise hasinvalid structure (as would be the case
with an iterator whose named accessor methods cannot be determined), then an SQL Exception conditionis
thrown: OLB-specific error —invalid class declaration.

NOTE 117 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object hasmode OUT or INOUT, and SQL Type STRUCT, DISTINCT, JAVA_OBJECT, or OTHER. In such cases, the javaTypeName

of the Typelnfo profile entry indicates the expected Java Class of the object; the class cannot be handled by any other getX XX method
defined by this RT Statement object. Accordingly, this method is used as the catch-all for any unrecognized types.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— objectType— the class of the Javalvalueto which the value of the parameter indicated by parameterindex
isto be assigned.

266 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException— if the class of the object returned is not assignment compatible with the given objectType
class, or if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “getStatementType ()”

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.32 getQueryTimeout ()

public abstract int getQueryTi meout ()
throws SQLException

The queryTimeout limit is the number of seconds that the SQL J runtime implementation will wait for an
invocation of execut e() to complete. If the limit is exceeded, an SQL Exception is thrown. The default
gueryTimeout is O (zero).

Returns

— The queryTimeout limit of this RT Statement object in seconds; 0 (zero) means unlimited.

Throws

— SQLException — if a database access error occurs

13.1.6.1.33 getRef (int)

public abstract Ref getRef (int paraneterlndex)
throws SQLException

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 267

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Get the value of an SQL REF parameter as ajava.sgl.Ref object.

NOTE 118 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for this RT Statement object has value CALLABLE_STATEMENT and the parameter Typelnfo at parameterindex in the Entryinfo
object has mode=OUT or INOUT, and javaTypeName=java.sql.Ref.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.34 getResultSet ()

public abstract ResultSet getResultSet ()
throws SQLException

Returns the current result of this RT Statement object as a ResultSet object. It is only called once per result if
using theexecut e() method.

NOTE 119 — Invocation of this method occurs as aresult of the <embedded SQL Java program> having invoked get Next Resul t -
Set (i nt) against the ExecutionContext for which this RT Statement is the currently registered RT Statement.

Returns

— If theresult of this RT Statement object is an update count or there are no more results, then null; otherwise,
the current result of this RT Statement object as a ResultSet object.

268 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.1.6.1.3, “execute ()"
— Subclause 13.2.2.3.3, “getExecuteType ()"
— Subclause 13.2.2.1.5, “EXECUTE"

13.1.6.1.35 getShortNoNull (int)

public abstract short getShortNoNull (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL SMALLINT parameter identified by parameterindex as a Java short.

NOTE 120 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=short.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— Thevalue of the parameter identified by parameterindex.

Throws

— SQLNullException — if the value of the parameter indicated by parameterindex isthe SQL null value

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 269

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.36 getShortWrapper (int)

public abstract Short getShortWapper (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL SMALLINT parameter identified by parameterIndex as ajava.lang.Short.

NOTE 121 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.lang.Short.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.37 getString (int)

public abstract String getString (int paraneterlndex)
t hrows SQLException

Get the value of the SQL character string (CHAR, VARCHAR, or LONGVARCHAR) parameter identified
by parameterindex as a Java String.

270 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

NOTE 122 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT and javaTypeName=java.lang.String.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— |If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.38 getTime (int)

public abstract Tinme getTime (int paraneterlndex)
throws SQLException

Get the value of the SQL TIME parameter identified by parameterindex as ajava.sgl.Time.

NOTE 123 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.sgl.Time.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 271

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”
— Subclause 13.2.2.3.13, “ getStatementType ()"

— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.39 getTimestamp (int)

public abstract Tinmestanp getTinestanp (int paraneterlndex)
throws SQ.Exception

Get the value of the SQL TIMESTAMP parameter identified by parameterindex as a java.sgl. Timestamp.

NOTE 124 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.sgl.Timestamp.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterIndex; otherwise, the Javanull.

Throws

— SQLException — if a database access error occurs

272 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”

— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT"
— Subclause 13.2.2.3.13, “getStatementType ()”

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.40 getUpdateCount ()

public abstract int getUpdateCount ()
throws SQLException

Returns the current result of this RT Statement object as an update count; if the result is a ResultSet object or
there are no more results, —1 isreturned. It is only called once per result.

NOTE 125 — Aninvocation of this method is generated by the translator if and only if the execute type of the profile Entrylnfo object
for this RT Statement object has value EXECUTE.

Returns

— If the current result of this RTStatement object is a ResultSet object or there are no more results, then —1;
otherwise, the current result as an update count.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.1.6.1.3, “execute ()"
— Subclause 13.2.2.3.3, “getExecuteType ()"
— Subclause 13.2.2.1.5, “EXECUTE"

13.1.6.1.41 getURL ()

public abstract int getURL (int paraneterl|ndex)
throws SQ.Exception, java.net. Ml fornedURLException

Get the value of an SQL DATALINK parameter identified by parameterindex as ajava.net. URL object.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 273

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

NOTE 126 — Aninvocation of thismethod isgenerated by thetrandator if and only if the statement type of the profile Entrylnfo object
for thisRT Statement object hasvalue CALLABLE_STATEMENT and the parameter Typel nfo object at parameterindex in the Entrylnfo
object has mode=OUT or INOUT, and javaTypeName=java.net.URL.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

Returns

— |If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

— javanet.MaformedURLException — if the DATALINK URL value cannot be used to construct a
javanet.URL object.

13.1.6.1.42 getWarnings()

public abstract SQ.Warni ng getWarnings ()
throws SQLException

Thefirst warning reported by invocations of methods on this Statement object isreturned. A Statement object's
execute methods clear its SQL Warning chain. Subsequent Statement warningswill be chained to this SQLWarn-

ing.
Thewarning chainisautomatically cleared eachtimeexecut e() ,execut eRTQuer y() ,orexecut eUp-
dat e() isinvoked on this RTStatement object.

NOTE 127 — If aResultSet object is being processed, then any warnings associated with ResultSet reads will be chained on the
ResultSet object and made available to the client on the associated iterator object.

Returns

— If thereis any outstanding SQLWarning, then the first SQLWarning; otherwise, null.

Throws

— SQLException — if a database access error occurs

274 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

See Also

— Subclause 13.1.6.1.3, “execute ()"
— Subclause 13.2.2.3.3, “getExecuteType ()"
— Subclause 13.2.2.1.5, “EXECUTE"

13.1.6.1.43 isBatchable ()

public abstract bool ean isBatchable () throws SQLException

Returnstrueif this RT Statement object is able to be added to a statement batch for deferred execution, false
otherwise. Batchable RT Statement objects are typically (but not exclusively) DDL, DML and stored procedures
with no OUT parameters. If this RT Statement object returns OUT parameters or produces one or more side-
channel result sets, then false is returned.

If statement batching is not supported by the runtime implementation, this method returns false.

Usethemethodi sBat chConpat i bl e() to determinewhether this RT Statement object is compatible with
the batch context object passed when this RT Statement object was created.

This method is called after all | N parameters and execution control attributes have been set, but before
RT Statement object execution.

Returns

— |If ableto be batched, then true; otherwise, false.

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.1.6.1.44, “isBatchCompatible ()"
— Subclause 13.1.6.1.8, “ getBatchContext ()"

13.1.6.1.44 isBatchCompatible ()

public abstract bool ean isBatchConpatible () throws SQLException

Returnstrueif this RT Statement object is compatible with the underlying batch context object, and false oth-
erwise.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 275

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Theunderlying batch context object isthe batch context object that was passed to Connect edPr of i | e. get -
St at enent () when this RT Statement object was created. If no such batch context object was passed, false
isreturned. The behavior of this method is undefined in the following cases.

— The RTStatement object was not obtained with get St at enent (i nt, Bat chCont ext) .
— The RTStatement object is not batchable.

In general, RT Statement objectswith one or more | N parametersare only compatible with batch context objects
that contain other instances of the same RT Statement object. RT Statement objects without | N parameters are
only compatible with batch context objects that contain other RT Statement objects without | N parameters.

This method is called after all | N parameters and execution control attributes have been set, but before
RT Statement object execution.

Returns

— If compatible with the underlying batch context object, then true; otherwise, false.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.1.6.1.43, “isBatchable ()"
— Subclause 13.1.6.1.8, “ getBatchContext ()"
— Subclause 13.1.2.1.5, “getStatement (int, BatchContext, Map)”

13.1.6.1.45 aetArray (int, Array)

public abstract void setArray (int paranmeterlndex, java.sqgl.Array x) throws SQ.Exception

Set the parameter identified by parameterindex to aj ava. sql . Arr ay object.

NOTE 128 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName = java.sgl.Array.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

276 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Returns

— If the value of the parameter identified by parameterindex is not the SQL null value, then the value of the
parameter identified by parameterindex; otherwise, the Java null.

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.46 setAsciiStreamWrapper (int, AsciiStream)

public abstract void setAsciiStreamW apper (int param ndex, AsciiStreamx)
throws SQLException

Set the parameter identified by parameterindex to an sglj.runtime.Ascii Stream value. The driver convertsthis
to an SQL character string value. If the given valueis Javanull, then the parameter identified by parameterIndex
is set to the SQL null value.

If avery large ASCII valueisinput to a character string parameter, it might be more practical to send it viaa
javaio.InputStream. JDBC reads the data from the stream as needed, until it reachesthe end of the stream. The
JDBC driver does any necessary conversion from ASCI| to the database char format.

NOTE 129 — The AsciiStream class implements java.io.lnputStream, and adds a Java field, length, which is used to determine the
number of octetsin the stream. The Ascii Stream classtypically wraps a standard Java stream class or a custom subclass that implements
the InputStream interface.

NOTE 130 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=sqglj.runtime.Ascii Stream.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 277

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()”

13.1.6.1.47 setBigDecimal (int, BigDecimal)

public abstract void setBi gDeci mal
(int paraneterlndex, BigDecimal x)
throws SQ.Exception

Set the parameter identified by parameterindex to ajava.math.Bigdecimal value. Thedriver convertsthisto an
SQL NUMERIC value. If the given value is Java null, then the parameter identified by parameterindex is set
to the SQL null value.

NOTE 131 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.math.BigDecimal.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.48 setBinaryStreamWrapper (int, BinaryStream)

public abstract void setBinaryStream apper (int param ndex, BinaryStream x)
throws SQ.Exception

278 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Set the parameter identified by parameterlndex to an sglj.runtime.BinaryStream value. The driver convertsthis
to an SQL binary string value. If the given value is Javanull, then the parameter identified by parameterlndex
is set to the SQL null value.

If avery large binary valueisinput to a binary string parameter, it might be more practical to send it viaa
javaio.lnputStream. JDBC will read the data from the stream as needed, until it reaches the end of the stream.

NOTE 132 — The BinaryStream class implements java.io.InputStream, and adds a Java field, length, which is used to determine the
number of octetsin the stream. The BinaryStream classtypically wraps a standard Java stream class or a custom subclass that implements
the InputStream interface.

NOTE 133 — Aninvocation of thismethod is generated by thetrandlator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=sqj.runtime.BinaryStream.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.6.1.49 setBlob (int, Blob)

public abstract void setBlob (int paraneterlndex, Blob x) throws SQ.Exception

Set the parameter identified by parameterindex to a Java Blob object.

NOTE 134 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterlndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName = java.sql.Blob.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 279

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.50 setBoolean (int, boolean)

public abstract void setBool ean
(int paraneterlndex, boolean x)
throws SQLException

Set the parameter identified by parameterindex to a Java boolean value. The driver converts thisto an SQL
BIT(1) value.

NOTE 135— Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=boolean.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— x — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “ getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

280 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

13.1.6.1.51 setBooleanWrapper (int, Boolean)

public abstract void set Bool eanW apper
(int paraneterlndex, Boolean x)
throws SQ.Exception

Set the parameter identified by parameterindex to ajava.lang.Boolean value. The driver converts thisto an
SQL BIT value. If the given value is Java null, then the parameter is set to the SQL null value.

NOTE 136 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Boolean.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.52 setByte (int, byte)

public abstract void setByte
(int paraneterlndex, byte x)
throws SQLException

Set the parameter identified by parameterlndex to aJavabyte value. The driver convertsthistoan SQL TINYINT
value.

NOTE 137 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=byte.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 281

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.53 setBytes (int, byte)

public abstract void setBytes
(int paraneterlndex, byte x[])
throws SQLException

Set the parameter identified by parameterindex to a Java array of bytes. The driver convertsthisto an SQL
binary string (VARBINARY or LONGVARBINARY/, depending onthe argument'ssizerelativeto thedriver's
limitson VARBINARY values). If thegiven valueis Javanull, then the parameter identified by parameterindex
is set to the SQL null value.

NOTE 138 — Aninvocation of thismethod is generated by thetrandlator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=[byte.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

282 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.54 setByteWrapper (int, Byte)

public abstract void setByteW apper
(int paraneterlndex, Byte x)
throws SQ.Exception

Set the parameter identified by parameterindex to ajavalang.Byte value. The driver converts thisto an SQL
TINYINT vaue. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 139 — Aninvocation of thismethod is generated by the trandlator if and only if the parameter Typelnfo object at parameterlndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Byte.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.55 setCharacter StreamWrapper (int, Character Stream)

public void setCharacterStreamWapper (int columlndex, CharacterStreamx)
throws SQLException

Set the parameter identified by parameterindex to an sglj.runtime.Character Stream object. The driver converts
thisto an SQL LONGVARCHAR value when it sendsit to the database. If the given value is Java null, then
the parameter identified by parameterindex is set to the SQL null value.

If avery large Unicode value isinput to aLONGVARCHAR parameter, it might be more practical to send it
as an instance of java.io.Reader. JDBC will read the data from the stream as needed, until it reaches the end of

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 283

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

the stream. The JDBC driver will do any necessary conversion from Unicode to the appropriate SQL character
Set.

NOTE 140 — The CharacterStream class implements java.io.Reader, and adds a Java field, length, which is used to determine the
number of charactersin the stream. The CharacterStream classtypically wraps a standard Java Reader object or an instance of acustom
subclass that implements the Reader interface.

NOTE 141 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and has javaTypeName = sqlj.runtime.Character-
Stream.

Parameters

— parameterlndex — thefirst columnis 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

Throws

— java.sgl.SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, " getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()”

13.1.6.1.56 setClob (int, Clob)

public abstract void setCob (int paraneterlndex, Cob x) throws SQ.Exception

Set the parameter identified by parameterindex to a Java Clab object.

NOTE 142 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName = java.sql.Clob.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— x — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

284 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.57 setDate (int, Date)

public abstract void setDate
(int paraneterlndex, Date x)
throws SQLException

Set the parameter identified by parameterlndex to ajava.sgl.Date value. The driver convertsthisto an SQL
DATE vaue. If the given valueis Java null, then the parameter identified by parameterindex is set to the SQL
null value.

NOTE 143 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterlndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.sql.Date.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.58 setDouble (int, double)

public abstract void setDouble

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 285

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

(int paraneterlndex, double x)
throws SQ.Exception

Set the parameter identified by parameterindex to a Java double value. The driver converts thisto an SQL
DOUBLE PRECISION value.

NOTE 144 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=double.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.59 setDoubleWrapper (int, Double)

public abstract void setDoubl eW apper
(int paraneterlndex, Double x)
throws SQLException

Set the parameter identified by parameterlndex to ajava.lang.Doublevalue. The driver convertsthisto an SQL
DOUBLE PRECISION value. If the given value is Java null, then the parameter identified by parameterl ndex
is set to the SQL null value.

NOTE 145 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Double.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

286 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.60 setFloat (int, float)

public abstract void setFl oat
(int paraneterlndex, float x)
throws SQLException

Set the parameter identified by parameterlndex to aJavafloat value. Thedriver convertsthistoan SQL FLOAT
value.

NOTE 146 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=float.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— x — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “ getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 287

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

13.1.6.1.61 setFloatWrapper (int, Float)

public abstract void setFl oat Wapper
(int paraneterlndex, Float x)
throws SQ.Exception

Set the parameter identified by parameterindex to ajava.lang.Float value. The driver convertsthisto an SQL
FLOAT value. If the given valueis Javanull, then the parameter identified by parameterindex is set to the SQL
null value.

NOTE 147 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Float.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.62 setint (int, int)

public abstract void setlnt
(int paraneterlndex, int x)
throws SQLException

Set the parameter identified by parameterindex to aJavaint value. The driver convertsthisto an SQL INTEGER
value.

NOTE 148 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=int.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

288 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.63 setintWrapper (int, Integer)

public abstract void setlntWapper
(int paraneterlndex, Integer x)
throws SQLException

Set the parameter identified by parameterlndex to ajava.lang.Integer value. The driver convertsthisto an SQL
INTEGER value. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 149 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Integer.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.1, “getJavaTypeName ()”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 289

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.64 setLong (int, long)

public abstract void setlLong
(int paranmeterlndex, long X)
throws SQLException

Set the parameter identified by parameterIndex to aJavalong value. Thedriver convertsthisto an SQL BIGINT
value.

NOTE 150 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=long.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “ getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.65 setLongWrapper (int, Long)

public abstract void setLongW apper
(int paraneterlndex, Long X)
throws SQ.Exception

Set the parameter identified by parameterindex to ajava.lang.Long value. The driver converts thisto an SQL
BIGINT value. If the given value is Java null, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 151 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Long.

290 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterl ndex

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.66 setMaxFieldSize (int)

public abstract void setMaxFiel dSize (int nax)
throws SQLException

ThemaxFieldSizelimit (in bytes) isthe maximum amount of datareturned for any column value; it only applies
to binary string and character string (BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR,
and LONGVARCHAR) columns. Such columns can be fetched into Java String, Byte array, or stream objects.
If thelimit is exceeded, the excess data is discarded.

NOTE 152 — The effect of setting MaxFieldSize to other than its default value isimplementation-defined. If support for non-default
valuesis not provided, then this method throws an SQL Exception and if subsequent attempts are made to register this RT Statement
object with an ExecutionContext, then an SQL Exception condition is thrown: OLB-specific error — unsupported feature.

Parameters

— max — the new max column size limit; zero means unlimited

Throws

— SQLException — if a database access error occurs

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 291

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

13.1.6.1.67 setMaxRows (int)

public abstract void set MaxRows (int nmax)
throws SQ.Exception

Sets the maxRows limit of this RTStatement object. The maxRows limit is the maximum number of rows that
can be contained by a ResultSet object or by an RTResultSet object created by executing this RT Statement
object. If the limit is exceeded, then the excess rows are dropped.

NOTE 153 — Support for setting MaxRows to other than its default value isimplementation-defined. If support for non-default values
is not provided, then this method throws an SQL Exception, and if subsequent attempts are made to register this RT Statement object
with an ExecutionContext, then an SQL Exception condition is thrown: OLB-specific error — unsupported feature.

Parameters

— max — the new max row limit; zero means unlimited

Throws

— SQLException — if a database access error occurs

13.1.6.1.68 setObject ()

public abstract void setCbject
(int paraneterlndex, Qbject x)
throws SQLException

Set the parameter identified by parameterindex to a Java object value. If the Typelnfo object for this parameter
in the profile Entrylnfo object has SQL Type STRUCT, DISTINCT, or JAVA_OBJECT, then the runtime
implementation uses this SQL Type when sending the parameter to the database, following the semantics
described for the execution of set Qbj ect () in[JDBC]. Otherwise, the driver usesthe type SQL OTHER.
If the given value is Java null, then the parameter identified by parameterindex is set to the SQL null value.

Thismethod can also be used to passimplementati on-defined user-defined datatypes, by using aDriver-specific
Javatype.

NOTE 154 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
inthe profile Entrylnfo object for this RT Statement object hasmode IN or INOUT, and SQL Type STRUCT, DISTINCT, JAVA_OBJECT,
or OTHER. In such cases, the javaTypeName indicates the expected Java Class of the object; the class cannot be handled by any other
setX XX method defined by this RT Statement object. Accordingly, this method is also used as the catch-all for any unrecognized types.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

292 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.69 setQueryTimeout (int)

public abstract void setQueryTimeout (int seconds)
throws SQ.Exception

Sets the queryTimeout limit of this RT Statement object. The queryTimeout limit is the maximum number of
seconds the SQL J runtime implementation will wait for aninvocation of execut e() to complete. If thelimit
is exceeded, an SQLException isthrown.

NOTE 155 — Support for setting QueryTimeout to other than its default value isimplementation-defined. If support for non-default
valuesis not provided, this this method throws an SQL Exception, and if subsequent attempts are made to register this RT Statement
object with an ExecutionContext, then an SQL Exception condition is thrown: OLB-specific error — unsupported feature.

Parameters

— seconds — the new query timeout limit in seconds; zero means unlimited

Throws

— SQLException — if a database access error occurs

13.1.6.1.70 setRef (int, Ref)

public abstract void setRef
(int paraneterlndex, Ref x)
throws SQ.Exception

Set the parameter identified by parameterindex to ajava.sgl.Ref value. The driver convertsthisto an SQL REF
value when it sendsit to the database. If the given valueis Java null, then the parameter identified by parame-
terIndex is set to the SQL null value.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 293

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

NOTE 156 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.sql.Ref.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.71 setShort (int, short)

public abstract void set Short
(int paraneterlndex, short x)
throws SQLException

Set the parameter identified by parameterindex to a Java short value. The driver converts thisto an SQL
SMALLINT value.

NOTE 157 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterlndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=short.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

294 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.72 setShortWrapper (int, Short)

public abstract void set Short W apper
(int paraneterlndex, Short x)
throws SQLException

Set the parameter identified by parameterIndex to ajava.lang.Short value. The driver converts this to an SQL
SMALLINT value. If the given valueis Javanull, then the parameter identified by parameterindex is set to the
SQL null value.

NOTE 158 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.Short.

Parameters

— parameterindex — the first parameter is 1 (one), the second is 2, etc.

— x — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.73 setString (int, String)

public abstract void setString

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 295

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

(int paraneterlndex, String x)
throws SQLException

Set the parameter identified by parameterindex to ajavalang.String value. The driver converts thisto an SQL
character string value (CHARACTER VARYING or LONGVARCHAR, depending on the argument's size
relative to the driver'slimitson CHARACTER VARYING) when it sendsiit to the database. If the given value
is Java null, then the parameter identified by parameterindex is set to the SQL null value.

NOTE 159 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameter| ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.lang.String.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()”

13.1.6.1.74 setTime (int, Time)

public abstract void setTine
(int paraneterlndex, Tine x)
throws SQLException

Set the parameter identified by parameterindex to ajava.sgl.Time value. The driver converts thisto an SQL
TIME value. If the given valueis Java null, then the parameter identified by parameterindex is set to the SQL
null value.

NOTE 160 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.sql.Time.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — the value of the parameter identified by parameterl ndex

296 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()”
— Subclause 13.2.6.3.3, “getMode ()"

13.1.6.1.75 setTimestamp (int, Timestamp)

public abstract void setTi mestanp
(int paraneterlndex, Tinmestanp x)
throws SQLException

Set the parameter identified by parameterindex to ajava.sgl. Timestamp value. The driver convertsthisto an
SQL TIMESTAMP value. If the given value is Java null, then the parameter identified by parameterindex is
set to the SQL null value.

NOTE 161 — Aninvocation of thismethod is generated by the trandlator if and only if the parameter Typelnfo object at parameterlndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.sql.Timestamp.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if adatabase access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()"

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.6.3.3, “getMode ()"

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 297

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

13.1.6.1.76 setUnicodeStreamWrapper (int, UnicodeStream)

public abstract void setUni codeStreamN apper (int paran ndex, UnicodeStream x)
throws SQLException

Set the parameter identified by parameterindextoansql j . runti me. Uni codeSt r eamvalue. The driver
converts thisto an SQL character string value. If the given value is Java null, then the parameter identified by
parameterindex is set to the SQL null value.

If avery large Unicode string value isinput to an SQL character string parameter, it might be more practical
to send it viaajavaio.lnputStream. JDBC will read the data from the stream as needed, until it reaches end of
file. The JDBC driver will do any necessary conversion from Unicode to the appropriate SQL character set.

NOTE 162 — The UnicodeStream class implements java.io.InputStream, and adds a Java field, length, which is used to determine the
number of octetsin the stream. The UnicodeStream classtypically wraps astandard Java stream class or acustom subclassthat implements
the InputStream interface.

NOTE 163 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile Entrylnfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=sqj.runtime.UnicodeStream.

Parameters

— parameterlndex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

See Also

— Subclause 13.2.2.3.6, “getParaminfo (int)”
— Subclause 13.2.6.3.5, “getSQL Type ()”
— Subclause 13.2.6.3.1, “getJavaTypeName ()"

13.1.6.1.77 setURL (int, URL)

public abstract void set URL
(int paraneterlndex, java.net.URL X)
throws SQLException

Set the parameter identified by parameterindex to ajava.net.URL value. The driver convertsthisto an SQL
DATALINK value. If the given value is Java null, then the parameter identified by parameterindex is set to
the SQL null value.

298 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ gglj.runtime.profile Interfaces

NOTE 164 — Aninvocation of thismethod is generated by thetranslator if and only if the parameter Typelnfo object at parameterl ndex
in the profile EntryInfo object for this RT Statement object has mode=IN or INOUT, and javaTypeName=java.net.URL.

Parameters

— parameterIndex — the first parameter is 1 (one), the second is 2, etc.

— X — thevalue of the parameter identified by parameterlndex

Throws

— SQLException — if a database access error occurs

13.1.7 sglj.runtime.profile.SerializedProfile

public interface SerializedProfile

A classimplementing the SerializedProfile interface is able to provide an InputStream object from which a
SerializedProfile object can be read. Instances of the SerializedProfile interface can be loaded and used by the
Profile.instantiate() method. Thisaobject provides ahook by which profile objects can be loaded
by non-standard means.

NOTE 165 — Asan example of wherethiswasfound useful, it was discovered that a particular version of aweb browser did not support
loading of a serialized object as an applet resource. In this case, the SerializedProfile object was encoded as a static string on a class
implementing SerializedProfile object, and the class packaged with the applet in place of the original SerializedProfile object.

See Also

— Subclause 13.2.3.2.11, “instantiate (L oader, InputStream)”
— Subclause 13.2.3.2.12, “instantiate (Loader, String)”

13.1.7.1 Methods

13.1.7.1.1 getProfileAsStream ()

public abstract |nputStream getProfil eAsStream ()
throws | OException

Returns an InputStream object from which a SerializedProfile object can be read. The first object on the
InputStream object returned is expected to be a SerializedProfile object.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 299

I SO/IEC 9075-10:2003 (E)
13.1 SQLJ glj.runtime.profile Interfaces

Returns

— An InputStream object containing a SerializedProfile object.

Throws

— |OException — if the stream could not be created

Conformance Rules

None.

300 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2 SQLJ sglj.runtime.profile Classes

13.2.1 sglj.runtime.profile.DefaultL oader

j ava. |l ang. Obj ect

+—sqlj.runtine. profile. Defaul t Loader

public class Defaul t Loader
ext ends nj ect
i mpl ement s Loader

The default profile.Loader implementation. The DefaultL oader class provides methods that implement the
L oader interface by deferring to awrapped class L oader argument.

13.2.1.1 Constructors

13.2.1.1.1 DefaultL oader (ClassL oader)

publi ¢ Defaul tLoader (C assLoader | oader)

Creates a default profile.Loader object the implementation of which will defer to the given classloader. If the
given Loader object is Javanull, the system Loader object is used instead.

Parameters

— loader — the class Loader object to use for loading classes and resources; if the system ClassL oader object
should be used, then null

13.2.1.2 Methods

13.2.1.2.1 getResourceAsStream (String)

public I nput Stream get ResourceAsStream (String nane)

Createsthe named resource as an InputStream object using the underlying class Loader object'sget Resour ce-
As St rean() method, or Cl assLoader . get Syst enResour ceAsSt r ean() if the underlying class
Loader object isnull.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 301

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

Parameters

— name — the name of the resource

Returns

— If resource is found, then the InputStream object on the resource; otherwise, null.

See Also

— Subclause 13.2.1.2.1, “getResourceAsStream (String)”
— getSystemResourceAsStream — a standard Java class

13.2.1.2.2 loadClass (String)

public O ass |loadC ass (String className)
t hrows O assNot FoundExcepti on

L oadsthe class named in the className parameter using the underlying class Loader object's| oadCl ass()
method; if the underlying class Loader object isnull, then Cl ass. f or Namre() .

Parameters

— className — the fully qualified name of the desired class to be |oaded.

Returns

— Theclass that is|oaded.

Throws

— ClassNotFoundException — if the underlying L oader object cannot find a definition for the class

See Also

— Subclause 13.1.4.1.2, “loadClass (String)”

— forName — the forName(String) method in java.lang.Class, a standard Java class

302 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2 gglj.runtime.profile.Entrylnfo

j ava. | ang. Ooj ect

+—sqlj.runtine.profile.Entrylnfo

public abstract class Entrylnfo
ext ends Obj ect
i mpl ements java.io.Serializable, ObjectlnputValidation

A profile EntryInfo object contains the constant information describing an SQL operation constructed at SQLJ
tranglation time, including the SQL string in JIDBC format, the return type of the operation, the type of each
bind parameter, and the way in which the operation is to be executed at runtime.

13.2.2.1 Variables

13.22.1.1 BLOCK

public static final int BLOCK

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a<compound statement>.

See Also

— Subclause 13.2.2.3.11, “getRole ()”

132212 CALL

public static final int CALL

Constant possibly returned by get Rol e() indicating the operation described by this Entrylnfo object isa

<call statement>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 303

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.1.3 CALLABLE_STATEMENT

public static final int CALLABLE STATEMENT

Constant possibly returned by get St at enent Type() indicating that the RT Statement objects associated
with this Entrylnfo object might include OUT parameters (and calls to getX XX methods).

See Also

— Subclause 13.2.2.3.13, “ getStatementType ()"

132214 COMMIT

public static final int COWMT

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a<commit statement>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.22.1.5 EXECUTE

public static final int EXECUTE

Constant possibly returned by get Execut eType() indicating that the runtime RT Statement objects associated
with this EntryInfo object are executed viathe execut e() method. This constant is used only if the runtime
dynamically determines whether or not an operation described by this Entrylnfo object returns a JDBC
ResultSet object. An Entrylnfo object of thistype is expected to be rare since most SQL environments should
be ableto deduce whether an operation described by this Entrylnfo object might return aJDBC ResultSet object
or not.

See Also

— Subclause 13.1.6.1.3, “execute ()"
— Subclause 13.2.2.3.3, “getExecuteType ()"

304 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.22.1.6 EXECUTE_QUERY

public static final int EXECUTE _QUERY

Constant possibly returned by get Execut eType() indicating that the runtime RT Statement objects associated
with this Entrylnfo object are permitted to be executed viathe execut eRTQuer y() method. Such

RT Statement objects awaysreturn an iterator object that isdescribed by theget Resul t Set | nf o() method
of this Entrylnfo object.

See Also

— Subclause 13.1.6.1.5, “executeRTQuery ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.2.3.3, “getExecuteType ()"

13.22.1.7 EXECUTE_UPDATE

public static final int EXECUTE_UPDATE

Congtant possibly returned by get Execut eType() indicating that the runtime RT Statement objects associated
with this Entrylnfo object are permitted to be executed viatheexecut eUpdat e() method. Such RT Statement
objectsreturn no iterators; thus getResultSetInfo(), when invoked against such an Entrylnfo objet, returns null.

See Also

— Subclause 13.1.6.1.6, “executeUpdate ()"
— Subclause 13.2.2.3.3, “getExecuteType ()"

13.22.1.8 ITERATOR_CONVERSION

public static final int | TERATOR CONVERSI ON

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object
contains an <iterator conversion clause>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 305

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.22.19 NAMED_RESULT

public static final int NAMED RESULT

Constant possibly returned by get Resul t Set Type() indicating that this Entrylnfo object produces an
iterator object the columns of which are bound by name to the columns of the <query clause> described by this
Entrylnfo object. If theresult typeisNAMED_RESULT, then get Resul t Set | nf o() returnsaTypelnfo
object theget Narre() method of which reflects the name of the column expected, and with which get Exe-
cut eType() awaysreturns EXECUTE_QUERY.

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.2.3.3, “getExecuteType ()"

13.2.2.1.10 NO_RESULT

public static final int NO RESULT

Constant possibly returned by get Resul t Set Type() indicating that this Entrylnfo object doesnot produce
an iterator object. If the result type indicates NO_RESULT, then get Resul t Set | nf o() aways returns
null, get Resul t Set Count () awaysreturns 0 (zero), and get Execut eType() awaysreturns EXE-
CUTE_UPDATE.

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.2.3.7, “ getResultSetCount ()"
— Subclause 13.2.2.3.3, “getExecuteType ()"

13.2.2.1.11 OTHER

public static final int OTHER

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object
cannot be categorized by any of the other constant rolesreturned by get Rol e() . Thevalue of OTHER defines
an upper limit for future role constants that might be added to the Entrylnfo class. Thus, any implementation-
defined role constants should be defined with values greater than the value of OTHER.

306 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.12 POSITIONED

public static final int PGSITI ONED

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a <delete statement: positioned> or an <update statement: positioned>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.13 POSITIONED_RESULT

public static final int POSITI ONED_RESULT

Constant possibly returned by get Resul t Set Type() indicating that this Entrylnfo object produces an
iterator object the columns of which are bound by position to the columnsin the operation described by this
Entrylnfo object. If the result type indicates POSITIONED RESULT, then get Resul t Set | nf o() for a
particular index returns a Typelnfo object describing the column type expected at that index in the operation
described by this Entrylnfo object, and get Execut eType() alwaysreturns EXECUTE _QUERY .

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.2.3.3, “getExecuteType ()"

13.2.2.1.14 PREPARED_STATEMENT

public static final int PREPARED_STATEMENT

Constant possibly returned by get St at enent Type() indicating that the RT Statement objects associated
with this Entrylnfo object do not have any OUT parameters. The effects of acall to aagetX XX method against
an RTStatement object associated with this Entrylnfo object isimplementation-dependent.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 307

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.2.2.3.13, “ getStatementType ()"

13.2.2.1.15 QUERY

public static final int QUERY

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a<query clause>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.16 QUERY_FOR_UPDATE

public static final int QUERY_FOR_UPDATE

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a<guery clause> populating a ForUpdate iterator.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.17 RELEASE_SAVEPOINT

public static final int RELEASE_SAVEPO NT

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a <release savepoint statement>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

308 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.1.18 ROLLBACK

public static final int ROLLBACK

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a<rollback statement>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.19 SAVEPOINT

public static final int SAVEPO NT

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a <savepoint statement>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.20 SET_TRANSACTION

public static final int SET_TRANSACTI ON

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a <set transaction statement>. For such an EntryInfo object, the get Descr i pt or () method returns an
sglj.runtime.profile.SetTransactionDescriptor that further describesthe transaction access mode and isolation
level.

See Also

— Subclause 13.2.2.3.11, “getRole ()"
— Subclause 13.2.2.3.2, “getDescriptor ()”
— Subclause 13.2.2.3.14, “ getTransactionDescriptor ()"

— Subclause 13.2.5, “sglj.runtime.profile.SetTransactionDescriptor”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 309

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.1.21 SINGLE_ROW_QUERY

public static final int SINGLE_ROW QUERY

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a <select statement: single row>.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.22 STATEMENT

public static final int STATEMENT

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
an SQL statement not categorized by other roles (e.g., DML, DDL, etc).

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.23 UNTYPED_SELECT

public static final int UNTYPED_SELECT

Constant possibly returned by get Rol e() indicating that the operation described by this Entrylnfo object is
a<query clause> that is assigned to a weakly-typed iterator object.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.1.24 VALUES

public static final int VALUES

Constant possibly returned by get Rol e() indicating the operation described by this Entrylnfo object isa
<function clause>.

310 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.2 Constructors

13.2.2.2.1 Entrylnfo()

public Entrylnfo ()

The default constructor for the Entrylnfo class

13.2.2.3 M ethods

13.2.2.3.1 executeTypeToString (int)

public abstract String executeTypeToString (int executeType)

If the executeTypeisnot avalid execute type, a string representation of executeTypeasanint isreturned. This
method is most often used in debugging profile Entrylnfo object representations.

Parameters

— executeType — the execute type to be translated

Returns

— A string representation of an execute type constant.

See Also
— Subclause 13.2.2.3.13, “ getStatementType ()"

13.2.2.3.2 getDescriptor ()

public abstract Object getDescriptor ()

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 311

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

Returns an object that describes any additional information particular to this Entrylnfo object. The object
returned will vary according to the role of the RT Statement object associated with this Entrylnfo object.

Returns

— Case:

» If theroleof thisEntrylnfo objectisPOSITIONED, then an Integer the value of which isthe one-based
index of the <dynamic parameter specification> corresponding to the cursor name that appearsin the
WHERE CURRENT OF clausein this Entrylnfo object.

For example, if the SQL stringisUPDATE TAB SET COL1=? WHERE CURRENT OF ?,then2
would be returned. The index can be passed to get Par anl nf o() to describe the cursor type.

o Iftheroleof thisEntrylnfo objectisSET_TRANSACTION, then asglj.runtime.profile.SetTransac-
tionDescriptor that describes the access mode and isolation level of the <set transaction statement>.

» If therole of this EntryInfo object is neither POSITIONED nor SET_TRANSACTION, then anull
descriptor.

See Also

— Subclause 13.2.2.3.11, “getRole ()"
— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.2.3.14, “ getTransactionDescriptor ()”

— Subclause 13.2.5, “sglj.runtime.profile.SetTransactionDescriptor”

13.2.2.3.3 getExecuteType ()

public abstract int getExecuteType ()

Describes the way in which all the executable RT Statement object associated with this Entrylnfo object are
executed at runtime.

Returns

— One of the constants EXECUTE_UPDATE, EXECUTE_QUERY, and EXECUTE.

See Also

— Subclause 13.2.2.1.7, “EXECUTE_UPDATE"
— Subclause 13.2.2.1.6, “EXECUTE_QUERY”
— Subclause 13.2.2.1.5, “EXECUTE"

312 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.4 getLineNumber ()

public abstract int getLineNunber ()

Thevaluereturned istheline number of thelineinthe original sourcefile, asgiven by theget Sour ceFi | e()
method of the ProfileData object for this Entrylnfo object. Source file lines are numbered starting at 1 (one).
If line number information is not available, then O (zero) is returned.

Returns

— The starting line number of the operation described by this Entrylnfo object.

See Also
— Subclause 13.2.4.2.3, “getSourceFile ()"

13.2.2.3.5 getParamCount ()

public abstract int getParanCount ()

Returns

— The number of parameters for this Entrylnfo object (O (zero) or greater).

13.2.2.3.6 getParaminfo (int)
public abstract Typelnfo getParami nfo (int ndx)

Parameters

— ndx — theindex of the parameter to describe, range 1 (one) to get Par antCount ()

Returns

— If ndx isout of range, then null; otherwise, a description of the parameter at index ndx.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 313

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.7 getResultSetCount ()

public abstract int getResultSetCount ()

Returns the number of columnsin the iterator object produced by this Entrylnfo object, which is always non-
negative. If the operation described by this Entrylnfo object does not produce an iterator object or produces a
JDBC ResultSet object, O (zero) isreturned. Otherwise, get Resul t Set | nf o() can be used to determine
the type of each result column.

Returns

— |f there are no columnsin the iterator object or if a JDBC ResultSet object is produced, then 0 (zero); oth-
erwise, the number of columnsin the iterator produced by this Entrylnfo object.

See Also

— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.2.3.10, “getResultSetType ()”

13.2.2.3.8 getResultSetInfo (int)

public abstract Typelnfo getResultSetinfo (int ndx)

Returns adescription of theiterator object column at index ndx. Thismight be useful to JDBC implementations
that are ableto preregister query result types. get Resul t Set | nf o(i). get node() awaysreturnsOUT.
To determine whether the results are bound by name or by position, use get Resul t Set Type() .

NOTE 166 — If get Resul t Set Count returns O (zero), this method always returns null.

Parameters

— ndx — the index of the iterator object column to describe, range 1 (one) to the value returned by get Re-
sul t Set Count () .

Returns

— If ndx isout of range, then null; otherwise, a description of the iterator object column at index ndx.

See Also

— Subclause 13.2.6.3.4, “getName ()"
— Subclause 13.2.2.3.10, “getResultSetType ()”

314 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.39 getResultSetName ()

public abstract String getResultSetNanme ()

Returnsthe name of the Java Class associated with the strongly typed iterator object populated by thisEntryInfo
object. If thisentry does not populate a strongly-typed iterator object (e.g., resultSetType=NO_RESULT), null
isreturned.

Theget JavaType() method of aprofile object can be used to load the class represented by the iterator
name using the current profile.L oader object.

Returns

— The name of the Java Class representation of the type.

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.3.2.5, “getJavaType (String)”
— Subclause 13.2.3.2.6, “getJavaType (Typelnfo)”

13.2.2.3.10 getResultSetType ()

public abstract int getResultSetType ()

Describes the type of iterator object that is produced by this operation described by this Entrylnfo object, if
any. This method should be used to determine how the results described by get Resul t Set | nf o() areto
be interpreted.

Returns

— One of the constants NAMED_RESULT, NO_RESULT, and POSITIONED_RESULT.

See Also

— Subclause 13.2.2.3.8, “getResultSetInfo (int)”

— Subclause 13.2.2.1.9, “NAMED_RESULT”

— Subclause 13.2.2.1.10, “NO_RESULT”

— Subclause 13.2.2.1.13, “POSITIONED_RESULT”

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 315

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.11 getRole ()

public abstract int getRole ()

Returnstherole of the operation described by this Entrylnfo object. Therole categorizesthe operation described
by this Entrylnfo object, and is used to determine how the operation described by this Entrylnfo object isto be
treated at runtime.

NOTE 167 — Regardless of the role of the operation described by this Entrylnfo object, get Par amet er | nf o() calsare always
permitted to be used to describe any parameters for the operation described by this Entrylnfo object.

Returns

— One of the constants BLOCK, CALL, COMMIT, ITERATOR_CONVERSION, OTHER, POSITIONED,
QUERY, QUERY_FOR_UPDATE, RELEASE_SAVEPOINT, ROLLBACK, SAVEPOINT,
SET_TRANSATION, SINGLE_ROW_QUERY, STATEMENT, UNTYPED_SELECT, or VALUES.

— If not one of the specified constants, then avalue that islarger than the value of the constant OTHER. Such
aresult indicates an implementation-defined role that might not be reliably processed by al implementations.

See Also

— Subclause 13.2.2.1.1, “BLOCK”

— Subclause 13.2.2.1.2, “CALL”

— Subclause 13.2.2.1.4, “COMMIT”

— Subclause 13.2.2.1.8, “ITERATOR_CONVERSION”
— Subclause 13.2.2.1.11, “OTHER”

— Subclause 13.2.2.1.12, “POSITIONED”

— Subclause 13.2.2.1.15, “QUERY”

— Subclause 13.2.2.1.16, “QUERY_FOR_UPDATE"
— Subclause 13.2.2.1.17, “RELEASE_SAVEPOINT”
— Subclause 13.2.2.1.18, “ROLLBACK”

— Subclause 13.2.2.1.19, “SAVEPOINT”

— Subclause 13.2.2.1.20, “SET_TRANSACTION”"
— Subclause 13.2.2.1.21, “SINGLE_ROW_QUERY”
— Subclause 13.2.2.1.22, “STATEMENT”

— Subclause 13.2.2.1.23, “UNTYPED_SELECT”

— Subclause 13.2.2.1.24, “VALUES’

316 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.12 getSQL String ()

public abstract String getSQString ()

Returnsin JDBC format the text of the operation to be performed that is described by this Entrylnfo object.
All host variable references are replaced with <dynamic parameter specification>. Any INTO listsare removed.
A positional update includesaclause of theform “WHERE CURRENT OF ?7’. Commentsand hints are preserved
asthey appeared in the original source file. Function and procedure calls are in the JIDBC prescribed format:
{ call proc(?) },and{ ? = call fn(?) }.

Returns

— Thetext of the operation described by this Entrylnfo object to be performed, in JDBC format.

13.2.2.3.13 getStatementType ()

public abstract int getStatenentType ()

Describes the type of SQL statement.

Returns

— One of the constants PREPARED_STATEMENT and CALLABLE_STATEMENT.

See Also

— Subclause 13.2.2.1.14, “PREPARED_STATEMENT”
— Subclause 13.2.2.1.3, “CALLABLE_STATEMENT”

13.2.2.3.14 getTransactionDescriptor ()

public SetTransacti onDescriptor getTransactionDescriptor ()

Returns

— If therole of this Entrylnfo object is SET_TRANSACTION, then a descriptor that contains the access
mode and isolation level of the <set transaction statement>; otherwise, null.

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 317

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.2.2.1.20, “SET_TRANSACTION”
— Subclause 13.2.2.3.2, “getDescriptor ()”

13.2.2.3.15 isDefinedRole (int)

public abstract bool ean isDefinedRole (int role)

A defined roleis arole that has been defined with a constant Javafield in this class. An enumeration of such
constantsisfound in theget Rol e() method specification.

Parameters

— role— theroleto be tested

Returns

— If the argument substituted for role represents a defined role, then true; otherwise, false.

See Also

— Subclause 13.2.2.3.11, “getRole ()"

13.2.2.3.16 isValidDescriptor (Object, int)

public abstract bool ean isValidDescriptor (oject descriptor, int role)

The expected descriptor types are defined by the getDescriptor method. Note that in the case of user defined
roles, any descriptor value is permitted.

Parameters

— descriptor — the Object to be tested

— role— the role associated with the descriptor

Returns

— If thegiven descriptor is of valid type (and value) for an Entrylnfo object that hasthe given role, thentrue;
otherwise, false.

318 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.2.2.3.2, “getDescriptor ()"

13.2.2.3.17 isValidExecuteType (int)

publi c abstract bool ean isVali dExecuteType (int execType)

Valid execute type values are those that might be returned by the get St at enent Type() method.

Parameters

— execType — the execute type to be tested

Returns

— |If the argument substituted for execType represents a valid execute type, then true; otherwise, false.

See Also

— Subclause 13.2.2.3.3, “getExecuteType ()"

13.2.2.3.18 isValidResultSetType (int)

public abstract bool ean isValidResultSetType (int resultSetType)
Valid result set type values are those that might be returned by the get Resul t Set Type() method.

Parameters

— resultSetType — the result set type to be tested

Returns

— |If the argument substituted for resultSetType represents avalid result set type, then true; otherwise, false.

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()”

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 319

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.19 isvValidRole (int)

public static boolean isValidRole (int role)

Valid role values are any roles that are defined, or any values greater than the OTHER constant.

Parameters

— role— theroleto be tested

Returns

— |If the argument substituted for role represents avalid role, then true; otherwise, false.

See Also

— Subclause 13.2.2.3.11, “getRole ()"
— Subclause 13.2.2.3.15, “isDefinedRole (int)”
— Subclause 13.2.2.1.11, “OTHER”

13.2.2.3.20 isvValidStatementType (int)

public abstract bool ean isValidStatenentType (int statenmentType)

Valid statement type values are those that might be returned by the get St at enrent Type() method.

Parameters

— statementType — the statement type to be tested

Returns

— |If theargument substituted for statementType represents avalid statement type, then tr ue; otherwise, false.

See Also

— Subclause 13.2.2.3.13, “ getStatementType ()"

320 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.21 resultSetTypeToString (int)

public abstract String resultSetTypeToString (int type)

If type isthe integer value of a named result set type constant, then the name of that constant is returned as a
string; otherwise, the string representation of the integer value isreturns. This method is most often used in
debugging profile Entrylnfo object representations.

Parameters

— type— theresult set type to be trandated

Returns

— A string representation of type.

See Also

— Subclause 13.2.2.3.10, “getResultSetType ()"
— Subclause 13.2.2.3.18, “isValidResultSetType (int)”

13.2.2.3.22 roleToString (int)

public abstract String roleToString (int role)

If roleistheinteger value of a named role constant, then the name of that constant is returned as a string; oth-
erwise, the string representation of the integer value is returned. This method is most often used in debugging
profile Entrylnfo object representations.

Parameters

— role— theroleto be trandated

Returns

— A string representation of role.

See Also

— Subclause 13.2.2.3.11, “getRole ()"
— Subclause 13.2.2.3.19, “isValidRole (int)”

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 321

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.2.3.23 statementTypeToString (int)

public abstract String statenentTypeToString (int type)

If typeistheinteger value of a named type constant, then the name of that constant is returned as a string;
otherwise, the string representation of the integer valueisreturned. Thismethod is most often used in debugging
profile Entrylnfo object representations.

Parameters

— type — the statement type to be translated

Returns

— A string representation of a statement type constant.

See Also

— Subclause 13.2.2.3.13, “getStatementType ()"
— Subclause 13.2.2.3.20, “isVaidStatementType (int)”

13.2.2.3.24 validateObject ()

public abstract void validateObject () throws |nvalidObjectException

Validatestheinternal state of this Entrylnfo object. An exception isthrown if this Entrylnfo object contains
invalid state. Note that whenever an Entrylnfo object is deserialized, it automatically registers validation of
itself viathismethod to ensure that internal stateis maintained across serialization. Thismethod does not validate
the contained Typel nfo objects for results or parameters.

It isrecommended that subclasses use this method immediately after object construction to validate the Entrylnfo
object.

Throws

— InvalidObjectException — if this object isinvalid

13.2.3 sglj.runtime.profile.Profile

j ava. |l ang. Obj ect

322 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

+—sqlj.runtine.profile.Profile

public abstract class Profile
ext ends Obj ect
i mpl ements java.io. Serializable

A Profile object is aresource that contains the constant information describing a collection of SQL operations.
It also provides a mechanism to add a JDBC Connection object to a profile object, and in so doing, creates a
ConnectedProfile object that can be used to create executable RT Statement objects corresponding to the SQL
operations contained within the profile object.

A prafile object might have a number of associated ConnectedProfile objects, each of which represents a cus-
tomization for a particular data source Connection object. Profile customization typically involves implemen-
tation-dependent profile transformations that allow more efficient SQL execution, such as precompilation of
SQL text or use of stored procedures. A profile object resolves a ConnectedProfile object from a data source
Connection abject viathe use of aprofile Customization object. A profile object maintainsaset of Customization
objects in much the same way that the JDBC DriverManager manages a set of JDBC drivers. A profile object
that has no Customization objects defaults to a JDBC-based dynamic SQL ConnectedProfile object implemen-
tation.

13.2.3.1 Constructors

13.2.3.1.1 Profile (Loader)

public Profile (Loader |oader)

Creates anew Profile object associated with the given Loader object. If the given profile.Loader object is Java
null, then a DefaultL oader object that uses the system ClassL oader object is used.

A profile object is an abstract object that only directly implements and manages those methods involving a
profile.Loader object. All other methods are implemented by subclasses.

NOTE 168 — This method is only used for creating new profile objects. To instantiate an existing profile object, usethei nst anti -
at e() method.

Parameters

— loader — the profile.Loader object to associate with this Profile object.

See Also

— Subclause 13.2.3.2.11, “instantiate (L oader, InputStream)”
— Subclause 13.2.3.2.12, “instantiate (Loader, String)”
— Subclause 13.2.1.1.1, “DefaultL oader (ClassL oader)”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 323

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.3.2 Methods

13.2.3.2.1 deregister Customization (Customization)

public abstract void deregi sterCustonization (Custom zation custoni zation)

Drop a Customization object from the profile object's list.

Parameters

— customization — the Customization object to be dropped

Throws

— lllegal ArgumentException — if the Customization object identified by the customization argument is not
currently registered

13.2.3.2.2 getConnectedProfile (Connection)

public abstract ConnectedProfile getConnectedProfile (Connection conn)
throws SQLException

Resolves the contents of this profile object with the given JDBC Connection object and returns the result. The
implementation of this method returns the ConnectedProfile object associated with the first registered Cus-
tomization object that accepts the given Connection object. If no Customization object is found that accepts
the Connection object , then a default ConnectedProfile object implementation based on JDBC dynamic SQL
isreturned.

An exception isthrown if a Customization object that accepts the Connection object is found but is unableto
create a ConnectedProfile object. For example, a profile object contains entries that cannot be executed on the
particular Connection object.

Parameters

— conn — the JDBC Connection abject over which to perform operations

Returns

— Theresult of attaching this profile object to the given Connection object.

324 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

Throws

— SQLException — if a ConnectedProfile object cannot be created for the given Connection object

See Also

— Subclause 13.1.3, “sglj.runtime.profile.Customization”

13.2.3.2.3 getContextName ()

public abstract String getContextNane ()

Returns the fully qualified name of the connection context object for this profile object. Each profile object is
associated with a particular connection context class.

Returns

— Thefully qualified name of the connection context object for this profile object.

13.2.3.2.4 getCustomizations ()

public abstract java.util.Enumeration getCustom zations ()

Returns

— A java.util.Enumeration object consisting of all Customization objects currently registered with this profile
object.

13.2.3.25 getJavaType (String)

public abstract O ass getJavaType (String classNane)

Returns a Java Class representation of the given type name loaded using this profile object's profile.L oader
object. This profile object's profile.Loader object is used to load new class instances (for non-primitive types).
If the class cannot be loaded, a NoClassDefFoundError is thrown.

If className starts with “[”, then it isinterpreted as an array name. Note that, unlike Java Virtual Machine
array naming, array names passed to this method are expected to havetheform “[” + <COMPONENTNAME>.
Accordingly, an array of array of int is named “[[int”.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 325

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

Parameters

— className — the name of the Java class to load

Returns

— A Java Class representation of the type whose name is given in the className parameter.

See Also

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.2.3.9, “getResultSetName ()”
— Subclause 13.2.1.2.2, “loadClass (String)”

13.2.3.2.6 getJavaType (Typelnfo)

public abstract O ass getJavaType (Typelnfo type)

Returns a Java Class representation of the given Typel nfo object loaded using this profile object's profile.L oader
object. Each type appears in the original source file as a Java expression (variable) or cursor column the type
of which can be determined at compile time. The returned class can be used to determine an appropriate JDBC

mapping into an SQL type.

This profile object's profile.Loader object is used to load new class instances (for non-primitive types). The
classisloaded based on the name of the Javatype given by the Typelnfo object. If the class cannot be loaded,
aNoClassDefFoundError is thrown. This happens only when the classes with which the profile object was
created are not available to the profile object's profile.L oader object.

Parameters

— type— the Typelnfo object describing the Java classto load

Returns

— A Java Class representation of the type.

See Also

— Subclause 13.2.6.3.1, “getJavaTypeName ()"
— Subclause 13.2.1.2.2, “loadClass (String)”

326 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.3.2.7 getLoader ()

public abstract Loader getlLoader ()

Returns

— The profile.Loader object used to instantiate this profile object.

13.2.3.2.8 getProfileData ()

public abstract ProfileData getProfileData ()

Returns

— A ProfileData object describing each of the SQL operations contained in this profile object.

13.2.3.2.9 getProfileName ()

public abstract String getProfileNane ()

Returns

— Thefully qualified name of this profile object.

13.2.3.2.10 getTimestamp ()

public abstract long getTinestanp ()

Returns the creation time of this profile object, as given by System.currentTimeMillis. A profile object for a
particular application and context might evolve over time. Thetimestamp isintended to properly identify which
profile object should be used.

Returns

— Thetimestamp of this profile object.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 327

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.3.2.11 instantiate (Loader, I nputStream)

public abstract Profile instantiate
(Loader |oader, InputStreamserProfile)
t hrows O assNot FoundException, | OException

Instantiates a profile object from a serialized format stored in the given InputStream object using the given
profile.Loader object. If the given profile.Loader object is Javanull, a DefaultL oader that uses the system
ClassL oader object is used.

Thisroutineis generally used at installation time to create a profile object from serialized form in a resource
file. The profile object will often be customized, and then reserialied to the same resourcefile. Theinstallation
process relies on knowing the resource file with which a particular profile object is associated.

NOTE 169 — The given InputStream object is closed by this method, even if an exception is thrown.
Parameters

— loader — the profile.Loader object from which the profile object should be created

— serProfile - an InputStream object containing a profile object in serialized format

Returns

— Theinstantiated Profile object.

Throws

— ClassNotFoundException — if a SerializedProfile object could not be found

— |OException — if an 1/O error occurs

See Also

— Subclause 13.2.1, “sqlj.runtime.profile.DefaultL oader”

13.2.3.2.12 ingtantiate (Loader, String)

public abstract Profile instantiate
(Loader |oader, String profileName)
throws | OException, C assNot FoundException

Instantiates a profile object corresponding to the given profile name using the given profile.Loader object. If
the given profile.Loader object is Javanull, a DefaultL oader abject that uses the system ClassL oader object is
used.

328 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

In general, profile objects are not instantiated directly by the programmer. Instead, they are employed by the
runtimeimplementation and generated code. It isthe responsibility of the runtime and generated code to ensure
that the profile.Loader object used to find a profile object is able to unambiguously resolve the profile name
associated with aparticular application. For example, if aparticular application isloaded from aJAR file, then
the profile objects associated with that application will be loaded from the same JAR file.

The profile object is created based on a name relative to a profile.Loader object. This name should be a dot-
separated name such as“ab.c”.

The given name can indicate either a serialized object or a class. The profileName value isfirst treated asa
serialized object name and then as a class name.

When profileName is treated as a serialized object name, it is converted to aresource pathname and the suffix
“.ser” isadded. An attempt to load a serialized object from that resource follows.

When profileName is treated as a class hame, the type of the class |oaded is considered. If the class represents
an sglj.runtime.profile.Profile class or subclass, then the classisinstantiated and the result returned. If the class
loaded implements the sglj.runtime.profile.SerializedProfile interface, then the classisinstantiated as a Serial -
izedProfileobject andtheget Pr of i | eAsSt r ean{) method iscalled to read and instantiate a profile object
from the resulting stream. If the class |oaded does not adhere to one of these cases, then an exception isthrown.

For example, given aprofileName of “x.y”, this method first tries to read a serialized object from the resource
“xly.ser” and if that fails, then it tries to load the class “x.y” and create an instance of that class. Note that if a
serialized object and a class have the same profileName value, only the seriaized object isinstantiated and
returned.

A new profile object is created each time the instantiate method is called. Thus, an invocation given the same
profile.Loader object and profile name as aprevioudly instantiated profile object does not return the same profile
object as the previous invocation but rather instantiates a new profile object.

Parameters

— loader — the profile.Loader object from which the profile object is created.

— profileName — the name of the profile object within the profile.Loader object (for example,
“sqlj.app.profilel”).

Returns

— Theinstantiated Profile object.

Throws

— ClassNotFoundException — if the class or a serialized object could not be found

— |OException — if an I/O error occurs

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 329

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.1.7, “sqlj.runtime.profile.SerializedProfile”
— Subclause 13.2.1, “sglj.runtime.profile.DefaultL oader”

13.2.3.2.13 register Customization (Customization)

public abstract void registerCustom zation (Custonmi zation custom zation)

Registersthe Customization object for thisprofile object. The Customization object provided in the customization
argument is added after all currently registered Customization objects.

Generally, aruntime environment does call this method directly. Rather, this method might be called by cus-
tomization utilities that operate on application profile objects during an “installation” phase.

Parameters

— customization — the Customization object to register

Throws

— NullPointerException — if customization is null

13.2.3.2.14 register Customization (Customization, Customization)

public abstract void registerCustom zation
(Custom zati on newCustoni zati on,
Cust oni zati on next Customi zation)

Registers a Customization object for this profile object. The Customization object provided in the newCus-
tomization argument is added to the list of Customization objectsimmediately before the Customization object
identified in the nextCustomization argument. If the Customization object provided in the nextCustomization
argument is not currently registered, then an exception is thrown.

Generaly, aruntime environment does call this method directly. Rather, this method might be called by cus-
tomization utilities that operate on application profiles during an “installation” phase.

Parameters

— newCustomization — the Customization object to register

— nextCustomization — the Customization object before which to add the newCustomization

330 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

Throws

— NullPointerException — if newCustomization is null

— Illegal ArgumentException — if the Customization object identified by the nextCustomization argument
isnot currently registered

13.2.3.2.15 replaceCustomization (Customization, Customization)

public abstract void replaceCustoni zation
(Custom zation newCustoni zati on,
Cust omi zati on ol dCustomi zation)

Registers a Customization object for this profile object. The Customization object provided in the newCus-
tomization argument is added to thelist in place of the Customization object identified by the oldCustomization
argument. The Customization object provided in the newCustomization argument retainsin thelist the position
of the Customization object identified by the ol dCustomization argument. If the Customization object identified
by the oldCustomization argument is not currently registered, then an exception is thrown.

Generaly, aruntime environment does not call this method directly. Instead, this method might be called by
customization utilities that operate on application profile objects during an “installation” phase.

Parameters

— newCustomization — the Customization object to register

— oldCustomization — the Customization object to replace

Throws

— NullPointerException — if newCustomization is null

— Illegal ArgumentException — if the object identified by the oldCustomization argument is not currently
registered

13.2.4 sglj.runtime.profile.ProfileData

j ava. |l ang. Obj ect

+—sqglj.runtine.profile.Profil eData

public abstract class Profil eData
ext ends Obj ect
i mpl ements java.io. Serializable

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 331

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

The ProfileData class provides methods to manage a collection of profile object entries, where each Entrylnfo
object describesan SQL operation. A ProfileData object representsthe SQL resources of aparticular connection
context object defined within an application module.

13.2.4.1 Constructors

13.24.1.1 ProfileData ()

public ProfileData ()
The default constructor for the ProfileData class

13.2.4.2 Methods

13.2.4.2.1 getEntrylnfo (int)

public abstract Entrylnfo getEntrylnfo (int ndx)

Returns a description of the Entrylnfo object at index ndx in this profile object.

Parameters

— ndx — theindex of the Entrylnfo object to describe, range O (zero) to size-1.

Returns

— A description of the Entrylnfo object at index ndx in this profile object.

13.2.4.2.2 getProfile()

public abstract Profile getProfile ()

Returns the Profile object with which this object is associated.

Returns

— The Profile object with which this object is associated.

332 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.4.2.3 getSourceFile()

public abstract String getSourceFile ()

Gives the name of the source file from which thie Profile object was generated. The name returned includes
the file extension, but no path information (e.g., “MyFile.sglj™).

Returns

— |If the name of the source file from which this Profile object was generated is available, then that name;
otherwise, null.

132424 size()

public abstract int size ()

Returns the number of entriesin this profile object.

Returns

— The number of entriesin this profile object.

13.2.5 gglj.runtime.profile.SetTransactionDescriptor

j ava. | ang. Qbj ect

+—sqglj.runtine.profile.Set Transacti onDescri ptor

public class SetTransacti onDescri ptor
ext ends Obj ect
i mpl erents java.io. Serializable

An sglj.runtime.profile.SetTransactionDescriptor object describes the access mode and isolation level of a
<set transaction statement>.

See Also

— Subclause 13.2.2.3.2, “getDescriptor ()"

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 333

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.5.1 Variables

13.25.1.1 READ_NONE

public static final int READ NONE

Constant possibly returned by get AccessMde() indicating that no access modeis specified for the trans-
action.

See Also

— Subclause 13.2.5.3.1, “getAccessMode ()"

13.25.1.2 READ_ONLY

public static final int READ ONLY

Constant possibly returned by get AccessMode() indicating transaction read-only access mode.

See Also

— Subclause 13.2.5.3.1, “getAccessMode ()"

13.25.1.3 READ_WRITE

public static final int READ WRI TE

Constant possibly returned by get AccessMode() indicating transaction read-write access mode.

See Also

— Subclause 13.2.5.3.1, “getAccessMode ()"

334 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.5.2 Constructors

13.25.2.1 SetTransactionDescriptor (int, int)

public SetTransacti onDescriptor (int accessMbde, int isolationLevel)

Creates a new set transaction descriptor with the given access mode and isolation level. If the <set transaction
statement> associ ated with this SetTransactionDescriptor object does not contain a<transaction access mode>,
then accessMode READ_NONE isused; if the <set transaction statement> associated with this SetTransaction-
Descriptor object does not contain an <isolation level>, then isolationLevel TRANSACTION_NONE is used.

Parameters

— accessMode — the access mode for this SetTransactionDescriptor object

— isolationLevel — theisolation level for this SetTransactionDescriptor object

13.2.5.3 Methods

13.25.3.1 getAccessMode ()

public int getAccesshMde ()

Returns the access mode of this SetTransactionDescriptor object.

Returns
— One of the constants READ_NONE, READ_ONLY, or READ_WRITE.

NOTE 170 — READ_NONE indicates that an access mode was not explicitly specified for this SetTransactionDescriptor object.
See Also

— Subclause 13.2.5.1.1, “READ_NONFE"
— Subclause 13.2.5.1.2, “READ_ONLY”
— Subclause 13.2.5.1.3, “READ_WRITE”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 335

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.25.3.2 getlsolationLevel ()

public int getlsolationLevel ()

Returns the isolation level this SetTransactionDescriptor object.

Returns

— Oneof the constants TRANSACTION_READ_COMMITTED, TRANSACTION_READ_UNCOMMIT-
TED, TRANSACTION_REPEATABLE_READ, TRANSACTION_SERIALIZABLE, and TRANSAC-
TION_NONE.

NOTE 171 — TRANSACTION_NONE indicates that an isolation level was not explicitly specified for this SetTransactionDe-
scriptor object.

13.2.6 sglj.runtime.profile. Typelnfo

j ava. |l ang. Obj ect

+—sqlj.runtine.profile. Typelnfo

public abstract class Typelnfo
ext ends nj ect
i mpl ements java.io. Serializable, bjectlnputValidation

A Typelnfo object describes the type of a parameter passed to an SQL operation or column of a ResultSet
produced by an SQL operation. The type consists of the Javatype of the actual Java expression that appearsin
the original source file, its corresponding JDBC SQL type, then the name of the variable or column producing
the type (if available), and its parameter mode.

See Also

— Subclause 13.2.3.2.6, " getJavaType (Typel nfo)”

13.2.6.1 Variables

13.26.1.1 IN

public static final int IN

IN parameter mode, same value as DatabaseM etaData.procedureColumnin

336 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— procedureColumnin — the procedureColumnin Javafield in java.sgl.DatabaseM etaData, a standard
JDBC class

13.2.6.1.2 INOUT

public static final int |NOUT
INOUT parameter mode, same value as DatabaseM etaData. procedureCol umnl nOut

See Also

— procedureColumninOut — the procedureColumninOut Javafield in java.sgl.DatabaseM etaData, a
standard JDBC class

13.2.6.1.3 OUT

public static final int OUT

OUT parameter mode, same val ue as DatabaseM etaData. procedureColumnOut

See Also

— procedureColumnOut — the procedur eColumnOut Javafieldinjava.sgql.DatabaseM etaData, a standard
JDBC class

13.2.6.2 Constructors

13.2.6.2.1 Typelnfo ()

public Typelnfo ()

Default constructor for the Typelnfo class

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 337

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.6.3 Methods

13.2.6.3.1 getJavaTypeName ()

public abstract String getJavaTypeNane ()

Returns the name of the Java Class representation of the type. Each type appearsin the original source file as
aJavaexpression (variable) or cursor column the type of which can be determined at compile time. This name
can be used to determine an appropriate JDBC mapping to an SQL type.

Some customizations work with type names, while others query the reflection of complete classes. Theget -
JavaType() method of aprofile object can be used to create a class reflection from a Typelnfo object.
get JavaTypeNane() isguaranteedtosucceed, whileget JavaType() mightresultinaNoC assDef -
FoundEr r or if the classesin question have not been distributed with the profile object.

In most cases, the namereturned isthe sameastheresult of callingpr of i | e. get JavaTye(type). get -
Nare() . Primitive types have their ssimple names (e.g., i nt), classes are fully qualified (e.g.,

j ava. sql . Dat e), and nested classes are delimited with '$' (e.g., x. y. Qut er O ass$l nner C ass).
However, array naming does not follow the conventionsof C ass. get Nane() . If the namereturned represents
an array, then the string “[” is prefixed onto the full name of the component type. For example, an array of
array of String would havethename[[j ava. | ang. Stri ng.

Returns

The name of the Java Class representation of the type of a parameter passed to an SQL operation or column
of aResultSet object produced by an SQL operation.

See Also

— Subclause 13.2.3.2.6, “getJavaType (Typelnfo)”

13.2.6.3.2 getMarkerindex ()

public abstract int getMarkerlndex ()

Gives the zero-based index of the <dynamic parameter specification> for this Typilnfo object, assuming it
represents a parameter.

Returns

— |If this Typelnfo object does not represent a parameter, then —1; otherwise, the zero-based index of the
<dynamic parameter specification> for this parameter in the SQL string.

338 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

See Also

— Subclause 13.2.2.3.12, “getSQL String ()”

13.2.6.3.3 getMode()

public abstract int gethMde ()

Returns the parameter mode of this parameter.

Returns

— One of the constants IN, OUT, or INOUT.

13.2.6.3.4 getName ()

public abstract String getNane ()
Returns the name of the variable or column producing this Typelnfo object.

If this Typel nfo object is used to describe aparameter to an SQL operation (similar to Entrylnfo.getParamlinfo),
then get Nane() returnsthe name of the variable associated with this parameter in the original sourcefile. If
the name of the variable cannot be determined or cannot be expressed in terms of asimple name, then Java null
isreturned. If the parameter is acomplex expression, then Javanull is returned.

If this Typelnfo object is used to describe a column of an iterator object produced by an SQL operation (like
Entryl nf o. get Resul t Set | nf o()), thenget Nanme() will returnthe name of the columnintheiterator
object to which this Typelnfo object is bound. If the column name cannct be determined, then Javanull is
returned. This nameisrequired to match the name of a column in the result of an SQL operation if and only if
the Entrylnfo object indicates that results are bound by name.

Returns

The name of the variable or column producing this type.

See Also

— Subclause 13.2.2.3.6, “getParamlinfo (int)”
— Subclause 13.2.2.3.8, “getResultSetInfo (int)”
— Subclause 13.2.2.3.10, “getResultSetType ()”

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 339

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.6.35 getSQLType()

public abstract int getSQ.Type ()

Returns the default mapping of the Java Class of the parameter passed to an SQL operation or column of a
ResultSet object produced by an SQL operation, represented by this Typel nfo object asan SQL type, asdefined
injava.sgl.Types. The Java Class represented by this type is mapped into an SQL type as defined by the IDBC
default mappings. In the case that [JDBC] defines a mapping from Javatype into SQL type, that mapping is
used. For example, if the Javaclassis Double, Types.DOUBLE is returned. For user-defined data types that
are covered by aproperty definition in the associated connection context type map, thisfield contains the SQL
type (i.e., STRUCT, DISTINCT, or JAVA_OBJECT) corresponding to the Java type name as defined in that
property definition. If the property definition for the Javatype does not specify an SQL Type, then the following
default mechanism is used for determining the SQL type: If the Javatype of the <embedded Java expression>
or result set column implements the interface java.sgl.SQL Data, then the SQL Type field is set to STRUCT;
otherwise, itissetto JAVA_OBJECT. If no property entry isfound in the connection context type map for the
given Javatype name, or no type map has been associated with the connection context class, and if no JDBC-
recommended conversion exists for the class specified, then the SQL type Types.OTHER isreturned. Profile
Customi zation objects can be used to properly handle classes that would otherwise not be recognized by default
JDBC mappings. They can aso be used to override the default mappings.

Default conversions are described in [JDBC], Appendix B, “Data Type Conversion Tables’.

Returns

The default mapping of the Java Class of the parameter passed to an SQL operation or column of a ResultSet
object produced by an SQL operation, represented by this Typelnfo object as an SQL type.

See Also

— Types— thejava.sgl.Types class, astandard JDBC class

13.2.6.3.6 getSQL TypeName ()

public abstract String get SQLTypeNane ()

Returns

If the SQL Type field of the Typelnfo object is either STRUCT, DISTINCT, or JAVA_OBJECT, then this
method returns a String giving the user-defined name of the SQL type corresponding to the Javatype of the
<embedded Java expression> or result set column, as defined by the associated connection context type map.

See Also

— Types— thejava.sgl. Types class, astandard JDBC class

340 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.6.3.7 isvValidMode (int)

public static boolean isValidMdde (int node)

Valid SQL mode values are those constants that might be returned by the get Mode() method.

Parameters

— mode — the mode type to be tested

Returns

— |f mode represents a valid mode type, then true; otherwise, false.

See Also

— Subclause 13.2.6.3.3, “getMode ()"

13.2.6.3.8 isvalidSQL Type (int)

public static boolean isValidSQType (int sqgl Type)

Valid SQL type values are those constants that are defined in the classjava.sgl. Types. An implementation may
define its own SQL types in addition to those found in java.sgl.Types. In such cases, this method will return
false.

Parameters

— sl Type — the SQL type to be tested

Returns

— |If sglType represents avalid SQL type, then true; otherwise, false.

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()”
— Types— thejava.sgl.Types class, astandard JDBC class

©ISO/IEC 2003 — All rights reserved Package sglj.runtime.profile 341

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.6.3.9 modeToString (int)

public static String nodeToString (int node)

Glves astring representation of the given mode. This method is most often used in debugging profile object
Entrylnfo object representations.

Parameters

— mode — the mode type to be tested

Returns

— If moderepresents avalid mode, then astring representation of the corresponding mode constant; otherwise,
a string representation of mode.

See Also

— Subclause 13.2.6.3.3, “getMode ()"
— Subclause 13.2.6.3.7, “isVaidMode (int)”

13.2.6.3.10 SQLTypeToString (int)

public static String SQTypeToString (int sql Type)

Givesastring representation of the given SQL type. This method ismost often used in debugging profile object
Entrylnfo object representations.

Parameters

— sl Type — the SQL type to be trandlated

Returns

— If sglTypeisvalid, then astring representation of the corresponding SQL type constant; otherwise, astring
representation of sql Type's value.

See Also

— Subclause 13.2.6.3.5, “getSQL Type ()"
— Subclause 13.2.6.3.8, “isValidSQL Type (int)”

342 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
13.2 SQLJ glj.runtime.profile Classes

13.2.6.3.11 validateObject ()

public void validateCbject () throws InvalidCbject Exception

Validatestheinternal state of this Typelnfo object. An exception isthrown if this Typelnfo object contains
invalid state. Note that whenever a Typel nfo object is deserialized, it automatially registers validation of itself
viathis method to ensure that internal state is maintained across serialization.

Throws

— InvalidObjectException — if this Typelnfo object isinvalid

Conformance Rules

None.

©ISO/IEC 2003 — All rights reserved Package sqglj.runtime.profile 343

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

344 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

14 sglj.runtime.profile.util.ProfileCustomizer

public interface Profil eCustoni zer

A profile customizer is a JavaBean component, as defined by [JavaBeang], that customizes a profile to allow
implementati on-dependent features, extensions and/or behavior. A classisaprofile customizer if it implements
thePr of i | eCust omi zer interface, provides an accessible parameterless constructor, and conformsto the
JavaBeans APl to expose its properties.

Most profile customizers extend the functionality of a profile by creating and registering an appropriate pro-
file.Customization object with the profile. However, it is not required that all profile customizersinstall cus-
tomization objects. Some customizers might only inspect the contents of a profile to verify conformance with
aparticular SQL dialect. Other customizers might install profile specific datainto a schemato be accessed at
runtime without modifying the profile itself.

Profile Customizer Usage

Because profile customizers are JavaBeans components, they can be used within generic tools that operate on
profiles. A ProfileCustomizer object istypically created and used by a profile customization utility with the
following steps.

— A profile customizer bean is created by name using acall toBeans. i nst anti at e().

— The customizer's properties are discovered using the JavaBeans | nt r ospect or class. Each property
valueis set according to the caller's needs, using that property's read and write methods.

— Thecustomizer'saccept sConnect i on() methodiscalled to verify whether or not it can be used with
aparticular JIDBC connection. If no connection isto be used, null is passed as the argument to this method.

— Thecustomizer'scust on ze() method iscalled, passing the profile object to customize, a JDBC con-
nection object, and an error log.

— Thecust o ze() method returnstrueif the profile object is changed, falseif the profile object is
unchanged.

— Log entries added by the customizer during the cust oni ze() call are reported as appropriate by the
calling utility.

— A successfully updated profile abject is repackaged with the application by the calling utility. Successfully
updated profile objects returns tr ue and there are no errors reported in the error log.

The same profile customizer can be used to customize different profile objects and/or customize the same
profile object using different properties and/or database connections. Any properties affecting the current
cust om ze() call isset before the call is made. connection objects for which accept sConnect i on()
has previously returned true.

©ISO/IEC 2003 — All rights reserved sglj.runtime.profile.util.ProfileCustomizer 345

1 SO/l EC 9075-10:2003 (E)

| nter preting Customize Results

A profile object istypically saved every time it has been updated. Before saving the profile object, it can be
customized further using other customizers or settings. A profile object should only be saved or customized
further if it isin an appropriate state. The following table summarizes the possible outcomes of acall to cus-
t om ze() and the corresponding state of the profile. Warnings and informational messages logged during a
calltocust om ze() donot affect the state of the profile object. Table 15, “ Customize Result Interpretation”,
specifies the interpretation of Customize Results.

Table 15 — Customize Result I nter pretation

Cugomize | Did Should Isit Safe | Comment

Return Cugomize | the to

Value Log an Profile be | Customize

Error? Saved? Further?

true no yes yes Customization successfully updated profile object

false no no yes Customization successful but did not requireaprofile
change

true yes no no Customization unsuccessfully updated profile object.
The profile object contains erroneous data

false yes no yes Customization unsuccessful but did not update profile
object

Customizer Properties

A profile customizer uses the JavaBeans component model to describe the propertiesit contains. The beans

I nt rospect or classisused to discover al properties supported by a profile customizer. A property's read
method (if available) is used to query the property's current value. A property's write method (if available) is
used to set the property to anew value. No explicit processing of a property file or argument array is required
on the part of the profile customizer. Becausethel nt r ospect or classisused to discover properties, aprofile
customizer can publish its propertiesin many ways. Most classesthat implement the ProfileCustomizer interface
use the JavaBeans default get XXX() and set XXX() method patterns to publish properties. A custom
Beanl nf o class could also be used if the default property mappings are insufficient. Note that profile cus-
tomizers without properties do not require any special modification.

See Also

— Subclause 13.1.3, “sglj.runtime.profile.Customization”
— instantiate— thei nst anti at e() method injava.beans.Beans, a standard Java class

— Introspector — the java.beans.I ntrospector class, a standard Java class

346 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/I EC 9075-10:2003 (E)
14.1 Methods

— Beaninfo — the java.beans.Beanl nfo class, a standard Java class

14.1 Methods

14.1.1 acceptsConnection (Connection)

public abstract bool ean AcceptsConnection (Connection conn)

Returnstrueif this ProfileCustomizer object is able to customize profile objects using conn; otherwise, returns
false. A null argumentindicates that customization will be performed “ offline” (without a connection).

Most customizers customize profiles strictly offline (accepting only null argumentsto accept sConnec-

ti on()) or strictly online (accepting only non-null arguments). For those customizersthat are able to operate
both online and offline, this method returns tr ue for both null and non-null arguments. The definition of what
constitutes an acceptable non-null argument is determined by the customizer implementation. Some accept
only connectionsto a particular SQL implementation. Others accept only connections created by a particular
JDBC driver.

This method allows customizers to be pooled and queried dynamically as to whether or not they can perform
aparticular customization, in much the same way that JDBC drivers are pooled with the driver manager and
report whether or not they understand a particular URL.

Parameters

— conn — the JDBC connection object to use during customization. Null indicates offline customization

Returns

— If customization can be performed using conn, then true; otherwise, false.

14.1.2 customize (Profile, Connection, ErrorLog)

public abstract bool ean custom ze
(Profile profile, Connection conn, ErrorLog |og)

Customizesthe Profile object provided in the profile argument. If the Profile object is modified by theinvocation
of cust om ze() , thentrueisreturned; otherwise, falseisreturned. The value returned indicates whether or
not the Profile object needs to be reserialized to save its state.

This method can register or deregister one or more customization objects with the Profile object. The Profile
object might have been previously customized by this method. Typical customization objectsareinstalled only
once, and thus any previously registered customization objects might be removed or overwritten.

©ISO/IEC 2003 — All rights reserved sglj.runtime.profile.util.ProfileCustomizer 347

I SO/I EC 9075-10:2003 (E)
14.1 Methods

connisused to perform any database installation required for customization. Only connection objectsfor which
accept sConnecti on() hasprevioudy returned true are acceptable. A null argument indicates that the
profile object is customized offline and does not require any database access.

log is used to report information, warnings, and errors that arise from theinvocation of cust omi zat i on() .
Logging an error indicates that the invocation is unsuccessful.

Parameters

— profile— the profile object to customize
— conn — a JDBC connection object to be used in the customization process

— log — an ErrorLog object into which error messages are written

Returns

— If profile was changed, then true; otherwise, false.

Conformance Rules

None.

348 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

15 Statuscodes

1 SO/l EC 9075-10:2003 (E)

This Clause modifies Clause 23, “ Satus codes’ , in | SO/IEC 9075-2.

15.1 SQLSTATE

This Subclause modifies Subclause 23.1, “ SQLSTATE” , in |SO/IEC 9075-2.

Table 16, “ SQLSTATE classand subclassvalues’ , modifies Table 32, “ SQLSTATE classand subclassvalues” ,
in ISO/IEC 9075-2.

Table 16 — SQL STATE class and subclass values

15.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
All alternatives from 1SO/IEC
9075-2
X OLB-specific error 46 (no subclass) 000
invalid class declaration 120
invalid column name 121
invalid number of columns 122
invalid profile state 130
unsupported feature 110

©ISO/IEC 2003 — All rights reserved

Status codes 349

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

350 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

16 Conformance

16.1 Claimsof conformanceto SQL/OLB

I SO/I EC 9075-10:2003 (E)
16.1 Claimsof conformanceto SQL/OLB

In addition to the requirements of 1SO/IEC 9075-1, Clause 8, “Conformance’, aclaim of conformance to this

part of 1ISO/IEC 9075 shall:

1) Claim conformance to Feature JOO1, “Embedded Java’.

16.2 Additional conformancerequirementsfor SQL/OLB

There are no additional conformance requirements for this part of |SO/IEC 9075.

16.3 Implied featurerelationships of SQL/OLB

Table 17 — Implied featurerelationships of SQL/OLB

Feature Feature Name
1D

Implied
Feature
ID

Implied Feature Name

(none)

©ISO/IEC 2003 — All rights reserved

Conformance 351

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

352 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

Annex A

(informative)

SQL Conformance Summary

This Annex modifies Annex A, “ SQL Conformance Summary” , in | SO/IEC 9075-2.
The contents of this Annex summarizes all Conformance Rules, ordered by Feature ID and by Subclause.
1) Specifications for Feature JOO1, “Embedded Java’:

a) Subclause 8.2, “<embedded SQL Java program>":

i) Without Feature JOO01, “Embedded Java’, conforming SQL language shall not specify an
<embedded SQL Java program>.

2) Specifications for Feature JO02, “ ResultSetlterator access to JDBC ResultSet”:
a) Subclause 11.4, “<iterator declaration clause>":

i) Without Feature JO02, “ ResultSetlterator accessto JDBC ResultSet”, conforming SQL language
shall not contain an invocation of thesql j . runti nme. Resul t Set | t er at or interface's
public method get Resul t Set () orthesql j.runtime. profil e. RTResul t Set
interface's public method get JDBCResul t Set () .

3) Specifications for Feature JO03, “ Execution control”:
a) Subclause 11.9, “<executable clause>":

i) Without Feature JO03, “Execution control”, conforming SQL language shall not contain an
invocation of thesql j . runti me. Execut i onCont ext class's public methods setM ax-
FieldSize(int), setM axRows(int), or setQueryTimeout(int) that sets the corresponding Exe-
cut i onCont ext Javafield to anything other than its default value, and shall not contain an
attempt is made to register astatement with such an Execut i onCont ext (which, asspecified
under Code Generationinthis Subclause, invokesthesql j . runti ne. profil e. RTSt at e-
ment interface's methods of the same name).

4) Specifications for Feature JO04, “ Batch update”:
a) Subclause 11.9, “<executable clause>":

i) Without Feature JO04, “Batch update”, conforming SQL langauge shall not contain aninvocation
of an implementation of thesql j . runti me. Execut i onCont ext class's public methods
execut eBat ch() ,get Bat chLi m t (),get Bat chUpdat eCount s() ,i sBat chi ng(),
set Bat chi ng(bool ean) ,orset Bat chLi mit(int).

5) Specifications for Feature JOO5, “ Call statement”:

a) Subclause 11.11, “<statement clause>":

©ISO/IEC 2003 — Al rights reserved SQL Conformance Summary 353

1 SO/l EC 9075-10:2003 (E)

)] Without Feature JO05, “ Call statement”, conforming SQL language shall not contain a <statement
spec clause> that contains a <call statement>.

6) Specifications for Feature JO06, “ Assignment Function statement”:
a) Subclause 11.25, “<function clause>":

i) Without Feature JO06, “ Assignment Function statement”, conforming SQL language shall not
contain a <function clause>.

7) Specifications for Feature J007, “ Compound statement”:
a) Subclause 11.27, “<compound statement>":

i) Without Feature JOO7, “ Compound statement”, conforming SQL language shall not contain a
<compound statement>.

8) Specifications for Feature JOO8, “ Datalinks via SQL language”:
a) Subclause 10.2.4, “<java datatype>":

)] Without Feature JO08, “Datalinks via SQL language’, conforming SQL language shall not
contain a <java datatype> that specifiesj ava. net . URL.

b) Subclause 10.2.6, “<embedded Java expression>":

)] Without Feature JO08, “Datalinks via SQL language”, conforming SQL language shall not
contain an <embedded Java expression> whose Javatypeisj ava. net . URL.

9) Specifications for Feature JO09, “Multiple Open ResultSets’:
a) Subclause 11.9, “<executable clause>":

i) Without Feature JO09, “Multiple Open ResultSets’, conforming SQL language shall not contain
an invocation of an implementation of thesql j . runti me. Execut i onCont ext classs
public method getNextResultSet(int) with any value other than j ava. sql . St at e-
ment . CLOSE_CURRENT_RESULT.

10) Specifications for Feature S071, “SQL paths in function and type name resolution”:
a) Subclause 10.2.8, “<declaration with clause>":

i) Without Feature S071, “SQL paths in function and type name resolution”, conforming SQL
language shall not contain a <predefined connection with keyword> that simply contains path.

11) Specifications for Feature S241, “Transform functions”:
a) Subclause 10.2.8, “<declaration with clause>":

i) Without Feature S241, “Transform functions’, conforming SQL language shall not contain a
<predefined connection with keyword> that is transformGroup.

i) Without Feature S241, “Transform functions’, conforming SQL language shall not contain a
user-defined type map specified using a <predefined connection with keyword> that simply
containstypeM ap and that contains a property group specification.

354 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

Annex B
(informative)

I mplementation-defined elements

This Annex modifies Annex B, “ |mplementation-defined elements’ , in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of |SO/IEC 9075 asimplemen-
tation-defined.

1)

2)

3)

4)

5)

6)

7)

Subclause 3.1.1, “Definitions provided in Part 10”:

a) Thepreparation needed, prior to execution of an SQLJapplication, that is not addressed by either SQLJ
tranglation or customization is implementation-defined.

Subclause 4.2, “ Embedded syntax”:

a) Whether aportion of the name space is reserved by an implementation for the names of procedures,
subroutines, program variables, branch labels, <SQL -client modul e definition>s, or <externally-invoked
procedure>s for <embedded SQL host program>s other than <embedded SQL Java program>sis
implementation-defined; if a portion of the name spaceis so reserved, the portion reserved isimplemen-
tation-defined.

Subclause 4.4.1, “Unicode support”:

a) When moving character data between an SQL/OLB implementation and an SQL-server, support for
implicit conversions other than the implicit conversion between Java string data and UTF8, UTF16,
and/or UCS2 isimplementation-defined.

Subclause 4.9, “ Default connection context”:

a) The specification of the default connection context is implementation-defined. If the name
jdbc/defaultDataSource is not defined to INDI then the database connection used by the default con-
nection context is implementation-defined.

Subclause 4.10, “ Schema checking using exemplar schemas”:

a) The mechanism used to provide an SQLJ translator with a mapping of connection context classes to
exemplar schemas is implementation-defined.

Subclause 4.13, “ SQL execution control and status’:

a) Runtimesupport of the sglj. runtime. ExecutionContext class methods setMaxRows, setMaxFieldSize,
and setQueryTimeout if invoked to set an ExecutionContext object's corresponding underlying values
to anything other than their default values is implementation-defined.

Subclause 4.18.1, “Creating an SQL J iterator from a JDBC ResultSet object”:

©ISO/IEC 2003 — All rights reserved Implementation-defined elements 355

1 SO/l EC 9075-10:2003 (E)

a) Given aJDBC ResultSet object rs, once an iterator object is created due to r s having been referenced
in an <iterator conversion clause> the result of invoking methods against r sisimplementation-defined.

8) Subclause 4.18.2, “ Obtaining a JDBC ResultSet object from an SQL Jiterator object”:

a) Support for the sglj. runtime. ResultSetlterator interface method getResultSet is runtime implementation-
defined.

b) If an SQLJruntime supports the sglj. runtime. ResultSetlterator interface method getResultSet then
any synchronization between an iterator object and the JDBC ResultSet object produced by invoking
getResultSet against that iterator object is runtime implementation-defined.

9) Subclause 4.18.4, “Iterator and JDBC ResultSet resource management”:

a) If invocation of aResultSetlterator object'sisClosed method would return the valuetr ue, then the effect
of invoking any methods other than isClosed and close against that object isimplementation-defined.

b) Thesemanticsof calling close on aJDBC ResultSet abject that has already been closed isimplementa-
tion-defined.

10) Subclause 9.9, “EntryInfo overview”:
a) TheRoleOTHER isreserved for SQLJ<executable clause> extensionsthat areimplementation-defined.
11) Subclause 9.10, “Typelnfo overview”:

a) The established default mapping between Java types and JDBC-defined SQL type constants might be
disregarded or remapped by implementation-defined profile customizations.

12) Subclause 10.2.8, “<declaration with clause>":
a) The support for each <predefined iterator with keyword> isimplementation-defined.
13) Subclause 11.3, “Generated connection class’:

a) If the connection context object isn't created using <data source constructors> or <url constructors>
that have a user parameter and a user name isn't provided as part of the info parameter, and if the con-
nection context object isn't created using the constructor that takes an existing connection context
object, and if the connection context object isn't created using the constructor that takes an existing
JDBC Connection object then the connection context user identifier is implementation-defined.

b) The opaque profile key object returned by invocation of a generated connection class's getProfileKey
method, and subsequently used in the generated connection class's getProfile and getConnectedProfile
methods, is implementation-defined.

14) Subclause 11.9, “<executable clause>":
a) The class name of the default connection context is implementati on-defined.
15) Subclause 11.24, “<query clause>":

a) When processing a<sort specification list>, at least one of whose <sort key>s contain acolumn reference
that isnot acolumn of theresult of evaluating the <query expression>, and isnot equivalent to a<value
expression> immediately contained in any <derived column> in the <select list> of the <query
expression>, then the <column name> for any <derived column> that does not have a <column name>

356 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

isimplementation-defined, except that it can not be equal to any other <column name> of any other
<derived column> in the <select list> of the <query expression>.

b) Whether asort key valuethat isnull isconsidered greater or lessthan anon-null valueisimplementation-
defined, but all sort key values that are null shall either be considered greater than all non-null values
or be considered less than all non-null values.

16) Subclause 11.26, “<iterator conversion clause>":

a) Given aJDBC ResultSet object rs, once an iterator object is created due to rs having been referenced
in a<result set expression> the result of invoking methods against r s isimplementation-defined.

17) Subclause 11.27, “<compound statement>":

a) If an <embedded Java expression> containing an <Lval expression> has either an implicit or explicit
<parameter mode> of OUT or INOUT in agiven <SQL procedure statement> then let LV denote the
location of the <Lval expression>. If another <embedded Java expression> containing an <Lval
expression> has either animplicit or explicit <parameter mode> of IN or INOUT in a subsequent <SQL
procedure statement> and the location of the <Lval expression> is LV, then the value of the <Lval
expression> is implementation-defined.

18) Subclause 12.1.6, “sglj.runtime.Scrollable”:

a) Theeffect of an update operation being performed against a Scrollableiterator object isimplementation-
defined.

19) Subclause 12.2.4, “sglj.runtime.ExecutionContext”:

a) Runtimesupport of thesqglj. runtinme. Executi onCont ext class methods setMaxRows,
setMaxFieldSize, and setQueryTimeout if invoked to set an Execut i onCont ext object's corre-
sponding underlying values to anything other than their default values is implementation-defined.

20) Subclause 12.2.4.3.24, “setMaxFieldSize (int)":

a) Support for setting an ExecutionContext object's MaxFieldSize to other than its default valueis
implementation- defined.

21) Subclause 12.2.4.3.25, “setMaxRows (int)":

a) Support for setting an ExecutionContext object's MaxRowsto other than its default value isimplemen-
tation- defined.

22) Subclause 12.2.4.3.26, “setQuery Timeout (int)”:

a) Support for setting an ExecutionContext object's QueryTimeout to other than its default valueis
implementation- defined.

23) Subclause 13.1.2, “ sglj.runtime.profile.ConnectedProfile’:

a) During customization, the user identifier for inclusion in a customized profile, to be used for runtime
privilege checking, may be specified in an implementation-defined manner.

24) Subclause 13.1.2.1.4, “ getStatement (int, Map)”:

a) TheMap object provided in the typemap parameter is passed to the returned RT Statement object in an
implementation-defined manner.

©ISO/IEC 2003 — All rights reserved Implementation-defined elements 357

1 SO/l EC 9075-10:2003 (E)

25) Subclause 13.1.2.1.5, “getStatement (int, BatchContext, Map)”:

a) TheMap object provided in the typemap parameter is passed to the returned RT Statement object in an
implementation-defined manner.

26) Subclause 13.1.5, “sglj.runtime.profile. RTResultSet”:

a) Themanner in which ajava. util. Map object is provided to a RTResultSet object at the time of that
RTResultSet object's creation isimplementation-defined.

27) Subclause 13.1.5.1.25, “getJDBCResultSet ()”:
a) Support for an RTResultSet object's getJDBCResultSet method is implementation-defined.

b) If animplementation does provide support for an RTResultSet object's getJDBCResultSet method,
then any synchronization between the RTResultSet object and the returned JDBC ResultSet object is
implementation-defined.

28) Subclause 13.1.6, “sglj.runtime.profile.RT Statement”:

a) Themanner inwhich ajava. util. Map object is provided to a RTStatement object at the time of that
RT Statement object's creation is implementation-defined

b) The manner in which an RTStatement object's java. util. Map object is provided to a RTResultSet
object created as the result of execution of that RT Statement object is implementation-defined.

29) Subclause 13.1.6.1.5, “executeRTQuery ()":

a) The manner in which an RT Statement object's java. util. Map object is provided to a RTResultSet
object is implementation-defined

30) Subclause 13.1.6.1.66, “ setMaxFieldSize (int)”:

a) Theeffect of setting an RT Statement object's MaxFieldSize to other than its default value isimplemen-
tation- defined.

31) Subclause 13.1.6.1.67, “setMaxRows (int)":

a) Support for setting an RT Statement object's MaxRowsto other than its default valueisimplementation-
defined.

32) Subclause 13.1.6.1.69, “setQueryTimeout (int)”:

a) Support for setting an RT Statement object's QueryTimeout to other than its default valueisimplemen-
tation- defined.

33) Subclause E.4.14, “ Example program”:

a) AnSQLJtrandator can perform syntactic and semantic checking based on an exemplar schema provided
as a connection context class in an implementation-defined manner.

358 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

Annex C
(informative)

I mplementation-dependent elements

This Annex modifies Annex C, “ Implementation-dependent elements” , in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of |SO/IEC 9075 asimplemen-
tation-dependent.

1)

2)

3)

4)

5)

6)

7)

8)

Subclause 4.12.4, “ Connection resource management”:

a) If invocation of a ConnectionContext object's isClosed method would return the value true, then the
effect of invoking any methods other than isClosed and close against that object isimplementation-
dependent.

Subclause 9.4, “ Profile overview”:
a) Customization objects are implementation-dependent.

b) Thedeployment tool, or customizer, used to load the profile, ingpect and precompile the SQL operations
it contains, register an appropriate customization object and store the profile back to disk isimplemen-
tation-dependent.

Subclause 9.7.1, “Profile customization process’:

a) Creating the database connection with which aprofile will be customized isimplementati on-dependent.
Subclause 10.1.1, “Temporary variable names’:

a) Theeffect of violating SQL J's reserved variable name space is implementation-dependent.
Subclause 10.1.2.1, “Internal classes’:

a) Theeffect of violating SQLJs reserved internal class name space is implementation-dependent.
Subclause 11.3, “Generated connection class’:

a) If agenerated connection class's getProfileKey method is called with a profile loader PL and a profile
name PN and a profile key object does not already exist for the profile named PN |oaded with profile
loader PL, then the profile key object that is returned is implementati on-dependent.

Subclause 11.9, “<executable clause>":

a) If aruntime exception condition is raised during the execution of an <executable clause>, then the
values of any OUT or INOUT <embedded Java expression>s are implementation-dependent.

Subclause 11.14, “<select statement: single row>":

©ISO/IEC 2003 — All rights reserved I mplementation-dependent elements 359

1 SO/l EC 9075-10:2003 (E)

a) If <select statement: single row> isnot contained in an <embedded SQL Java program>, then the order
of assignment of valuesto targetsin the <select target list> isimplementation-dependent.

9) Subclause 11.15, “<fetch statement>":

a) If <fetch statement> isnot contained in an <embedded SQL Javaprogram>, then the order of assignment
of valuesto targetsin the <fetch target list> is implementati on-dependent

b) If the execution of a <fetch statement> resultsin arow not found, then the values of the <embedded
Java expression>s contained in the <fetch target list> are implementati on-dependent.

10) Subclause 11.24, “<query clause>":

a) If <query clause> does not contain an <order by clause>, or contains an <order by clause> that does
not specify the order of the rows completely, then the rows of the table have an order that is defined
only to the extent that the <order by clause> specifies an order and is otherwise implementation-
dependent.

b) The order of the Typelnfo objectsin the Result Set Info of the Result Set Column Javafields of Profile
EntryInfo for a<query clause> whose associated iterator object isa<named iterator> isimplementation-
dependent.

11) Subclause 12.1.3, “sqlj.runtime.NamedIterator”:

a) After invocation of a Namediterator object'snext () method has returned false, the behavior of any
subsequent invocations of that object's named accessor methods i s implementati on-dependent.

12) Subclause 12.1.5.2, “Methods’:

a) After invocation of a ResultSetlterator object'si sCl osed() method hasreturned true, the behavior
of any subsequent invocations of that ResultSetlterator object's methods is implementation-dependent

13) Subclause 12.1.5.2.3, “getFetchSize ()":

a) If aResultSetlterator object has not had its fetch size set by invocation of its setFetchSize method, or
has afetch size of 0 (zero), then the value resulting from invocation of getFetchSizeisimplementation-
dependent

14) Subclause 12.1.5.2.6, “getSensitivity ()"

a) If SQLJruntime does not support this ResultSet iterator object's declared sensitivity <with value> of
SENSITIVE or INSENSITIVE, then the result of invoking getSensitivity against that ResultSet iterator
object is implementation- dependent.

15) Subclause 12.1.5.2.10, “setFetchSize (int)”:

a) If theint value specified in invocation of setFetchSize against this ResultSet iterator object isO (zero),
then the fetch size used isimplementati on-dependent.

16) Subclause 13.1.2, “sqlj.runtime.profile.ConnectedProfile’:

a) Atruntimearegistered Customization object can make auser identifier, stored in acustomized profile,
the user identifier for privilege checking of that profile object's statements in an implementation-
dependent manner.

17) Subclause 13.1.6, “sqlj.runtime.profile.RT Statement”:

360 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

a) The processing of escape clauses during customization is implementation-dependent.
18) Subclause 13.1.6.1.4, “executeComplete ()”:

a) Once a RTStatement object's executeComplete method has been called, the effect of further callsto
any of its other methods are implementati on-dependent.

19) Subclause 13.2.2.1.14, “PREPARED_STATEMENT”:

a) Theeffects of acall to any getX XX method of an RT Statement object whose associated Entrylnfo
object'sget St at enent Type() method returns PREPARED_STATEMENT isimplementation-
dependent.

©ISO/IEC 2003 — All rights reserved I mplementation-dependent elements 361

1 SO/l EC 9075-10:2003 (E)

This page intentionally left blank.

362 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

Annex D
(informative)

SQL feature taxonomy

This Annex describes ataxonomy of features of the SQL language.

1 SO/l EC 9075-10:2003 (E)

Table 18, “ Feature taxonomy for optional features’, contains ataxonomy of the features of the SQL language
that are specified in this part of optional 1SO/IEC 9075. In this table, the first column contains a counter that
can be used to quickly locate rows of the table; these val ues otherwise have no use and are not stable — that
is, they are subject to change in future editions of or even Technical Corrigendato I SO/IEC 9075 without

notice.

The“Feature ID” column of this table specifies the formal identification of each feature and each subfeature
contained in the table.

The“Feature Description” column of thistable contains abrief description of the feature or subfeature associated
with the Feature ID value.

Table 18 — Featur e taxonomy for optional features

Feature [FeatureName
ID
1 JOoo1 Embedded Java
2 Joo2 ResultSetlterator accessto JDBC ResultSet
3 Joo3 Execution control
4 J0o4 Batch update
5 JO05 Call statement
6 J0O06 Assignment Function statement
7 Joo7 Compound statement
8 Joos Datalinksvia SQL language
9 J0O09 Multiple Open ResultSets

©ISO/IEC 2003 — All rights reserved

SQL featuretaxonomy 363

1 SO/l EC 9075-10:2003 (E)

Table 18, “Feature taxonomy for optional features’, does not provide definitions of the features; the definition
of thosefeaturesisfound in the Conformance Rulesthat are further summarized in Annex A, “ SQL Conformance
Summary”.

364 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.1 Design goals

Annex E
(informative)

SQLJ tutorial

E.1 Design goals

The following items represent the major design features of this part of |SO/IEC 9075.
— Provide a concise, legible mechanism for embedded database access via SQL.
— Syntactic and semantic check of SQL statements prior to program execution.

SQL J can use a database connection at translate timeto check embedded SQL statements to make sure that
they are syntactically and semantically correct.

— Allow the syntax and semantics of SQL statements to be | ocati on-independent.

The syntax and semantics of SQL statementsin an SQL J program do not depend on the configuration under
which SQLJis running. This makesit possible to implement SQL J programs that run on the client, the
database side, or in amiddletier.

— Providefacilities that enable the programmer to move between the SQLJ and JDBC environments by
sharing connection handles.

— Providefor binary portability of translated and compiled Java SQL -client applications such that they can
be used transparently with multiple SQL-servers. In addition, binary portability profilesallow for customiza-
tion and optimization of SQL statementswithin an SQL Japplication. (See Clause 9, “Binary portability”.)

E.2 Advantagesof SQLJ over JDBC

JDBC provides acomplete, low-level SQL interface from Javato relational databases. SQLJisdesigned tofill
acomplementary role by providing a higher-level programming interface to relational databasesin such a
manner as to free the programmer from the tedious and complex programming interfaces found in lower-level
APIs.

The following are some mgjor differences between the two:

— SQLJ source programs are smaller than equivaent JIDBC programs since the translator can implicitly
handle many of the tedious programming chores that dynamic interfaces shall make explicit.

— SQLJ programs can use trandl ate time database connections to type check SQL code. JDBC, being acom-
pletely dynamic API, can not.

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 365

I SO/IEC 9075-10:2003 (E)
E.2 Advantagesof SQLJ over JDBC

SQLJ programs allow direct embedding of Java host expressions within SQL statements. JDBC requires
a separate call statement for each bind variable and specifies the binding by position number.

SQL Jenforces strong typing of query outputs and val ues returned and allowstype checking on calls. JDBC
passes values to and from SQL without compile time type checking.

SQL Jprovidessimplified rulesfor calling SQL stored procedures and functions. [JDBC] requiresageneric
call to a stored procedure (or function), fun, to have the following syntax:

prepStnt.prepareCall ("{call fun(...)}"); /1 For stored procedures
prepStnt.prepareCall ("{? = call fun(...)}"); /'l For stored functions
SQLJ provides simplified notations:

#sql { CALL fun(...) }; /1 Stored procedure
/'l Declare x

#sql x = { VALUES(fun(...)) }; /1 Stored function
/1 VALUES is an SQL construct

E.3 Consistency with existing embedded SQL languages

Programming languages containing embedded SQL are called host languages. Java differsfrom the traditional
host languages (Ada, C, COBOL, Fortran, MUMPS (M), Pascal, PL/I) in ways that significantly affect its
embedding of SQL.

Javahas automatic storage management (also known as* garbage collection”) that simplifiesthe management
of storage for data retrieved from databases.

All Javatypes representing composite data, and data of varying sizes, have adistinguished value nul | ,
which can be used to represent the SQL NULL value, giving Javaprogramsan alternativeto NULL indicators
that are afixture of other host languages.

Javais designed to support programs that are automatically heterogeneously portable (also called “ super
portable” or simply “downloadable”). That, al ong with Java'stype system of classes and interfaces, enables
component software. In particular, an SQL Jtrandlator, written in Java, can call componentsthat are special-
ized by database implementations, in order to leverage the existing authorization, schema checking, type
checking, transactional, and recovery capabilities that are traditional of databases, and to generate code
optimized for particular databases.

Javais designed for binary portahility in heterogeneous networks, which promises to enable binary porta-
bility for database applications that use SQL.

SQL Jextendsthetraditional concept of embedded host variables by allowing generalized host expressions.

366 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.4 Examples

E.4 Examples

E.41 Host variables

The following query contains host variable : x (which isthe Javavariable, Javafield, or parameter x visible
in the scope containing the query):

SELECT COL1, COL2 FROM TABLE1l WHERE :x > COL3

E.4.2 Host expressions

Host expressions are evaluated from left to right and can cause side effects. For example:

SELECT COL1, COL2 FROM TABLEl WHERE : (x++) > COL3

Host expressions are aways passed to and retrieved from the SQL-server using pure value semantics. For
instance, in the above example, the value of x++ is determined prior to statement execution and its determined
valueisthe value that is passed to the SQL-server for statement execution.

SELECT COL1, COL2 FROM TABLEL1 WHERE : (x[--i]) > COL3

In the above example, prior to statement execution, thevalue of i isdecremented by 1 (one) and then the value
of thei -th element of x is determined and passed to the SQL -server for statement execution.

Consider the following example of an SQL/PSM <assignment statement>:
SET :(z[i++]) = :(x[i++]) + :(y[i++])
Assumethat i hasaninitial value of 1 (one). Host expressions are evaluated in lexical order.

Therefore, the array index used to determine the location in the array z is 1 (one), after which the value of i
isincremented by 1 (one). Consegently, the array index used to determine the location in the array x is 2, after
which thevalue of i isincremented by 1 (one). As aresult, the array index used to determine the location in
thearray y is 3, after which thevalue of i isincremented by 1 (one). Thevaue of i inthe Java spaceis now
4. The statement is then executed. After statement execution, the output valueis assigned to z[1] .

Assignmentsto output host expressions are also performed in lexical order. For example, consider thefollowing
call to astored procedure f 00 that returns the values 2 and 3.

CALL foo(:QUT x, :QUT x)

After execution, x hasthe value 3.

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 367

I SO/IEC 9075-10:2003 (E)
E.4 Examples

E.4.3 SQLJ clauses

Thefollowing SQLJ clauseis permitted to appear wherever a Java statement can legally appear and its purpose
isto delete al of the rows in the table named TAB:

#sql { DELETE FROM TAB };

The following Java method, when invoked, insertsits argumentsinto an SQL table. The method body consists
of an SQLJ executable clause containing the host expressionsx, y, and z.

void m(int x, String y, float z) throws SQ.Exception

{
#sql { INSERT I NTO TAB1 VALUES (:x, :y, :z) };

}

The following method sel ects the address of the person whose name is specified by the input host expression
nane and then retrieves an associated address from the assumed table PEOPLE, with columns NAME and
ADDRESS, into the output host expressions addr , where it is then permitted to be used, for example, in acall
toSystemout. println:

void print_address (String nane) throws SQLException
{

String addr;
#sql { SELECT ADDRESS | NTO : addr
FROM PECPLE

VWHERE : name = NAME };

E.4.4 Database connection context

In the following SQLJ clause, the connection context is the value of the Java variable myconn.

#sql [myconn] { SELECT ADDRESS | NTO : addr
FROM PEOPLE
VWHERE : name = NAME } ;

The following illustrates an SQL J connection clause that defines a connection context class named “1 nven-
tory”:

#sqgl context I|nventory;

E.4.5 Default connection context

If an invocation of an SQLJ trandlator indicates that the default connection context classis class G een, then
all SQLJclausesthat use the default connection will betransated asif they used the explicit connection context
object G een. get Def aul t Cont ext () . For example, the following two SQL J clauses are equivaent if
the default connection context classis class G- een:

368 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.4 Examples

#sql { UPDATE TAB SET COL = :x };
#sql [G een.getDefaul tContext()] { UPDATE TAB SET COL = :X };

Programs are permitted to install aconnection context object asthe default connection by callingset Def aul t -
Cont ext . For example:

G een. set Def aul t Cont ext (new Green(argv[0], autoConmit));

ar gv[0] isassumed to contain aURL. aut oConmi t isaboolean flag that istrueif auto commit mode
should be on, and false otherwise.

E.4.6 lterators

E.4.6.1 Positional bindingsto columns

The following is an example of an iterator class declaration that binds by position. It declares an iterator class
called By Pos, with two columns of types St ri ng andi nt .

#sqgl public iterator ByPos (String, int);

Assume a table PEOPL E with columns FULLNANME and Bl RTHYEAR:

CREATE TABLE PEOPLE (FULLNAVE VARCHAR(50),
BI RTHYEAR NUMERI C(4, 0))

An iterator object of type By Pos is used in conjunction with a FETCH. . . | NTOstatement to retrieve data
from table PEOPLE, asillustrated in the following example:

{

By Pos positer; /1 declare iterator object
String nane = null;
i nt year = 0;

/1 populate it
#sql positer = { SELECT FULLNAME, BI RTHYEAR
FROM PECPLE };
#sql { FETCH :positer |INTO :name, :year };
while (!positer.endFetch())
{
Systemout.println(nane + " was born in " + year);
#sqgl { FETCH :positer INTO :nane, :year };
}
}

The predicate method endFet ch() of theiterator object returnstrueif no more rows are available from the
iterator (specifically, it becomes true following the first FETCH that returns no data).

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 369

I SO/IEC 9075-10:2003 (E)
E.4 Examples

Thefirgt SQLJclauseinthe block above effectively executesits query and constructs an iterator object containing
theresult set returned by the query, and assignsit to variable posi t er . Thetype of theiterator object isderived
from the assignment target, which is of type By Pos.

The second SQLJ clausein that block containsa FETCH. . . | NTOstatement. The SQLJtranslator checks that
thetypesof host variablesin the | NTOclause match the positionally corresponding types of theiterator columns.
The types of the SQL columnsin the query shall be convertible to the types of the positionally corresponding
iterator columns, according to the SQL to Javatype mapping of SQLJ. Those conversionsare statically checked
at SQLJtrandation time if a database connection to an exemplar schemais provided to the tranglator.

E.4.6.2 Named bindingsto columns

Thefollowing is an example of an iterator class declaration that binds by name. It declares an iterator class
called By Nane, the named accessor methodsf ul | NAME and bi r t hYEAR of which correspond to the columns
FULLNAME and Bl RTHYEAR:

#sqgl public iterator ByNane (String ful | NAVE,
int bi rt hYEAR) ;

That iterator class can then be used as follows:

{

ByName namter; /1 define iterator object
#sql namiter = { SELECT FULLNAME, BI RTHYEAR
FROM PECPLE };
String S;
i nt i;
/1 advances to next row
while (namiter.next())

{
i = namiter.birthYEAR(); // returns colum named Bl RTHYEAR

s = namter.full NAME(); // returns columm named FULLNAVE
Systemout.println(s + " was bornin "+i);

}
}

In this example, the first SQLJ clause constructs an iterator object of type By Nane, as that is the type of the
assignment target in that clause. That iterator has generated accessor methodsbi rt hYEAR() andf ul | NAME()
that return the data from the result set columns with those names.

The names of the generated accessor methods are an exact case-sensitive match with their definitions on the
iterator declaration clause. Matching a specific accessor method to a specific column namein the SELECT list
expressions is performed using a case-insensitive match.

Two column names that differ only in the case of one or more characters shall use the SQL AS clause to avoid
ambiguity, even if one or both of those column names are specified using delimited identifiers.

Method next () advancestheiterator object to successive rows of the result set. It returnstrueif anext row
isavailable and false if it fails to retrieve a next row because the iterator contains no more rows.

370 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.4 Examples

A Java compiler will detect type mismatch errorsin the uses of named accessor methods. Additionally, if a
connection to an exemplar schemais provided at trangdlate time, then the SQL J tranglator will statically check
the validity of the types and names of the iterator columns against the SQL queries associated with it.

E.4.6.3 Providing namesfor columnsof queries

If the expressions selected by aquery are unnamed, or have SQL namesthat are not legal Javaidentifiers, then
SQL column aliases can be used to name them. Consider atable named " Tr oubl e! " with acolumn called
"Not a legal Java identifier":

CREATE TABLE "Trouble!" (
"Not a |legal Java identifier" VARCHAR(10),
col 2 FLOAT)

The following line generates an iterator class called xY.

#sqgl iterator xY (String x, double Y);
The SQLJclausein thefollowing block uses column aliasesto associate that column's name with an expression
in the query:

{
XY it;
#sql it = { SELECT "Not a legal Java identifier" AS "x",
COL2 * COL2 AS Y
FROM "Troubl e!' " };
while (it.next()) { Systemout.printin(it.x() + it.Y());
}
}

Thefirst line declares alocal variable of that iterator class.
The second line initializes that variable to contain aresult set obtained from the specified query.

Thewhi | e() loop callsthe named accessor methods of the iterator to obtain and print data from its rows.

E.4.7 Callsto stored proceduresand functions

An SQLJ executable clause, appearing as a Java statement, can call a stored procedure by means of the SQL
CALL statement. For example:

#sql { CALL SOVE_PROC(: | NOUT nyarg) };
Support for callsto stored procedures and functionsis not required for conformance to Core SQLJ.

Stored procedures can havel N, OUT, or | NOUT parameters. In the above case, the value of host variablemy ar g
is changed by the execution of that clause.

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 371

I SO/IEC 9075-10:2003 (E)
E.4 Examples

An SQLJ executable clause can call a stored function by means of the SQL VALUES construct. For example,
assume a stored function F that returns an integer. The following exampleillustrates a call to that function that
then assignsits result to Javalocal variable x.

{

int x;

#sql x ={ VALUES (F(34)) }:
}

E.4.8 Using multiple SQLJ contexts and connections

Thefollowing program demonstrates the use of multiple concurrent connection. It uses one user-defined context
to access atable of employees through one connection and another user-defined context to access employee
department information via a separate connection. By using distinct contexts, it is possible for the employee
and department information to be stored on physically different database servers.

/1 declare a new context class for obtaining departments
#sqgl cont ext Dept Cont ext ;
#sqgl cont ext EnpCont ext ;
#sql iterator Enployees (String enane, int deptno);
class Milti Schema {

void masterRoutine(String deptURL, String enpURL)

throws SQLException
{

/'l create a context for querying department info
Dept Cont ext dept Ct x = new Dept Cont ext (dept URL, true)
/1 a second connection
EnpCont ext enpCtx = new EnpCont ext(enpURL, true)
pri nt Enpl oyees(dept Ct x, enmpCtx);
dept &t x. cl ose();
empCt x. cl ose();
}
/] performs a join on deptno field of two tables
/'l accessed fromdifferent connections
voi d print Enpl oyees(Dept Cont ext dept Ctx, EnpContext enpCtx)
t hrows SQLException
{

/1 obtain the enployees fromthe enp table connection context
Enpl oyees enps;
#sql [enpCtx] enmps = { SELECT ENAME, DEPTNO FROM EMP };
/'l for each enpl oyee, obtain the department name
/'l using the dept table connection context
whil e (enps. next())
{
String dnane;
#sql [dept Ctx]

{
SELECT DNAME | NTO : dnane
FROM DEPT
VWHERE DEPTNO = : (enps. deptno())
b
Systemout.println("enpl oyee: " + enps.enane() +

372 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.4 Examples

departnent: " + dnane);

enps. cl ose();
}
}

For now, it is sufficient to notethat cl ose() executed against the connection contexts Dept Cont ext and
EnmpCont ext , and against the iterator enps, frees the resources associated with the object against which it
isinvoked. The semantics of cl ose() when executed against connection contexts are detailed in
Subclause 12.1.1.2.1, “close ()", and of cl ose() when executed against iterators in Subclause 12.1.5.2.2,
“close ()”.

E.4.9 SQL execution control and status

An execution context can be supplied explicitly as an argument to each SQL operation.

Executi onCont ext execCtx = new Executi onContext();
#sqgl [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };

If explicit execution context objects are used, each SQL operation can be executed using a different execution
context object. If an explicit connection context object is also being used, both are allowed to be passed as
arguments to the SQL operation.

#sql [connCtx, execCtx] { DELETE FROM EMP
WHERE SAL > 10000 };

If an execution context object is not supplied explicitly as an argument to an SQL operation, then a default
execution context object isused implicitly. The default execution context object for aparticular SQL operation
isobtained viatheget Execut i onCont ext () method of the connection context object used in the operation.
For example:

#sqgl [connCtx] { DELETE FROM EMP WHERE SAL > 10000 };

The preceding example uses the execution context object associated with the connection context object given
by connCt x. If neither aconnection context object nor an execution context object isexplicitly supplied, then
the execution context object associated with the default connection context object is used.

The use of an explicit execution context object overrides the execution context boject associated with the con-
nection context object, referenced explicitly or implicitly by an SQL clause.

The following code demonstrates the use of some Execut i onCont ext methods.

{

Executi onCont ext execCtx = new Executi onContext();
/1 Wait only 3 seconds for operations to conplete
execCt x. set QueryTi neout (3) ;
try {

/1 delete using explicit execution context

/1 if operation takes |onger than 3 seconds,

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 373

I SO/IEC 9075-10:2003 (E)
E.4 Examples

/1 SQ.Exception is thrown
#sql [execCtx] { DELETE FROM EMP WHERE SAL > 10000 };
Systemout.println
("removed " + execCtx. get UpdateCount () +
}

cat ch(SQLException e) {
/1 Assune a tineout occurred
Systemout. println("SQ.Exception has occurred with" +

}

enpl oyees");

exception +e);

E.4.10 Multiple JDBC ResultSets from stored procedure calls

Thefollowing code snippet demonstrates how multiple results are processed. The example assumesthat astored
procedurenamed “mul ti _r esul t s” existsand produces one or more side-channel result setswhen executed.

#sql [execCtx] { CALL MULTI_RESULTS() };

Resul t Set rs;

while ((rs = execCtx.getNextResultSet()) !'= null)
{ Il process result set

rs.close();

}

The following snippet demonstrates how multiple result sets can be processed simultaneously. The example
assumes a stored procedure names “rmul ti _resul t s” exists and produces between 2 and 10 side-channel
result sets when executed.

#sql [execCtx] { CALL MULTI _RESULTS() };
Resul t Set[] rsets = new ResultSet[10];
Resul t Set rs;

int rsCounter = O;

// access the ResultSets

while ((rs = execCx. get Next Resul t Set (St at enent . KEEP_CURRENT_RESULT)) != null)
{ rsets[rsCounter++] = rs;
}
/] process ...
/'l close
for (int ii=0; ii < rsCounter; ii++)
{ rsets[ii].close();
}

E.4.11 Creating an SQLJ iterator object from a JDBC ResultSet object

As an example, assume we have the following iterator declaration:

374 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.4 Examples

#sqgl iterator Enployees (String enane, double sal) ;

Thefollowing method uses JDBC to perform adynamic query and uses an instance of the above iterator decla-
ration to view the results. It illustrates the use of an iterator conversion statement.

public void |istEarnings(Connection conn, String whered ause)

{

t hrows SQLException

/] prepare a JDBC Statenent object to execute a dynanmic query
Prepar edSt at ement stnt = conn. prepar eSt at enent () ;
String query = "SELECT enane, sal FROM enp WHERE ";
query += wher ed ause;
Resul tSet rs = stnt.executeQuery(query);
Enpl oyees enps;
// Use the iterator conversion statement to create a
/1 SQJ iterator froma JDBC ResultSet object
#sql enps = { CAST :rs };
whil e (enps.next()) {
System out. println(enps. enane() +

" earns " + enps.sal());
}
enps. close(); // closing enps also closes rs
stmt.close();

E.4.12 Obtaining a JDBC ResultSet object from an untyped iterator object

As an example, the following method uses aweakly typed iterator to hold to results of an SQLJ query and then
process them using a JDBC ResultSet object:

public void showknpl oyeeNanes() throws SQLException

{

sqlj.runtinme. ResultSetlterator iter;
#sql iter = { SELECT ename FROM enp };
ResultSet rs = iter.getResultSet();
while (rs.next()) {
Systemout. println("enpl oyee name: " + rs.getString(1));

iter.close(); // close the iterator, not the result set

E.4.13 Working with user-defined types

Consider the following type mapping information to be specified in fileaddr pckg/ addr ess-
map. properties:

file: addressnap. properties

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 375

I SO/IEC 9075-10:2003 (E)
E.4 Examples

cl ass. addr pckg. Address = STRUCT ADDRESS

cl ass. addr pckg. Busi nessAddress = STRUCT BUSI NESS
cl ass. addr pckg. HoneAddr ess = STRUCT HOVE

cl ass. addr pckg. Zi pCode = DI STI NCT ZI PCODE

Thefirst entry definesthat the Java class Addressin package addr pckg correspondsto the SQL user-defined
type ADDRESS. It further indicates that the SQL typeisastructured type.

The type map specified in the abovefile can be attached to a connection context class as part of the connection
context declaration in the following way:

#sqgl context Ctx with (typeMap = "addr pckg. addressnap")

The SQL Jtrandator and runtimewill interpret the specified typemap " addr pckg. addr essnap"” asaJava
resource bundle family name, and ook for an appropriate properties or classfile using the Java class path. This
means that an application programmer can easily package the type map with the rest of the SQLJ application
or application module.

It is now possible to define host variables or iterators based on the Java types that participate in the type map:

#sql public iterator ByPos (String, int, addrpckg. Address);
Assume atable PEOPL E with columns FULLNAME, BIRTHYEAR, and ADDRESS:

CREATE TABLE PEOPLE (

FULLNAME CHARACTER VARYI N& 50) ,
Bl RTHYEAR NUMERI C(4, 0),
ADDR ADDRESS)

Aniterator object of type ByPosis used in conjunction withaFETCH...INTO statement to retrieve data,
including instances of the user-defined type ADDRESS from table PEOPLE, asillustrated in the following
example:

{

ByPos positer; /1 declare iterator object
String nane = null;
int year = 0;
addr pckg. Address addr = nul | ;
/1 populate it
#sgl [Ctx] positer = { SELECT FULLNAME, Bl RTHYEAR,
ADDR FROM PECPLE };
#sql { FETCH :positer |INTO :name, :year, :addr};
while (!positer.endFetch())
{
Systemout.println (name + " was born in " + year +
"‘and lives in " addr.print());
#sql { FETCH :positer |INTO :name, :year, :addr};
}
}

The SQLJtranglator also checks for type correctness for user-defined types. For example, when trand ating the
SQL Jclause that populates theiterator positer in the above example, the check involves determining the result
type of the ADDR column (i.e., ADDRESS) and verifying that based on the type mapping associated with the

376 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-10:2003 (E)
E.4 Examples

statement context (i.e., Ctx), the corresponding Javaclass (i.e., Address) is assignment compatible with the
corresponding Java type specified in the declaration of the iterator class poslter.

The above-described mechanism also handles SQL type hierarchiesand, correspondingly, Javaclass hierarchies.
For example, assume that the SQL type ADDRESS has subtypes BUSINESS and HOME, and that the corre-
sponding Java class Addr ess has subclasses BusinessAddr ess and HomeAddr ess.

In that case, the ADDR column of the PEOPL E table defined above may very well contain instances of
BUSINESS and HOM E dueto the concept of substitutability—whichwill then, if retrievedinto host variables,
be materialized as instances of the corresponding Java classes BusinessAddr ess and HomeAddr ess.

E.4.14 Example program

In this Subclause, an example SQLJ program that prints the names and grades of students with grade point
averages above a given percentile if considered. It assumes a database table containing student names and
grades:

CREATE TABLE GRADE_REPORTS (
STUDENT VARCHAR(20), — student's nane
SCORE FLQAT, student's grade
ATTENDED NUMERI C(3), days present at school
DEMERI TS NUMERI C(3) count of rule violations

)

and a stored function GRADE_AT _PERCENT that returns the grade corresponding to a given percentilein that
table:

CREATE FUNCTI ON GRADE_AT_PERCENT (N FLOAT) RETURNS FLOAT. ..

The program below declares a connection context class, Recor ds, for an object representing the database
connection where clauses will be executed at run time. An SQLJ translator can check those SQL constructs
against an exemplar schemathat is supplied in the invocation of the trandlator (say, on the command line),
paired with the connection context classname“Recor ds”. Asdesribed in Subclause 4.10, “ Schema checking
using exemplar schemas’, the SQL J trandator can perform syntactic and semantic checking based on an
examplar schema for the “Records’ connection context class provided in an implementation-defined manner
(e.g., as an additional parameter during invocation of the tranglator).

i nport java.sql.SQLException;

#sqgl context Records;

#sqgl iterator Honors (String nane, float grade);

public class HonorRol |

{
static Records recs; // for a connection context object
public static void main (String argv[]) // main entrypoint

throws SQLException

{

/1 open database connection using | ogon info fromcomrand |ine
recs = new Records(argv[0], true);

float limt;

#sqgl [recs] limt = { VALUES(GRADE_AT_PERCENT(95)) };
printHonors(limt, 150, 2);

©ISO/IEC 2003 — All rights reserved SQLJ tutorial 377

I SO/IEC 9075-10:2003 (E)
E.4 Examples

}

static void printHonors (float limt, int days, int offences)
throws SQLException
{ Honors honor;
/'l set variable honor to contain result set from query:
#sql [recs] honor =
{ SELECT STUDENT AS "nane", SCORE AS "grade"
FROM GRADE_REPORTS
WHERE SCORE >= :limt
AND ATTENDED >= : days
AND DEMERI TS <= : of fences
ORDER BY SCORE DESCENDI NG };
/'l honor has accessor nethods for colum val ues:
whil e (honor.next())
Systemout. println(honor.nane() + " has grade

+ honor. grade());

E.4.15 Host variable definition

The evaluation of host expressions does have side effects in a Java program as they are evaluated by the Java
Virtual Machinerather than the SQL -server. Host expressions are evaluated | ft to right within the SQL statement
prior to submission to the SQL-server. For example, consider the following:

{
String dnane; i nt deptno = 100;
#sqgl [dept Ctx] {
SELECT DNAME | NTO : dnane
FROM DEPT
VWHERE DEPTNO >= :(deptno++)
AND DEPTNO < :(deptno)
3
}

378 Object Language Bindings (SQL/OLB) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

I ndex

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Leveling Rule, Table, or other descriptive text.

— A —
ABSOLUTE « 120

AND - 126, 378

ARRAY « 212, 248

AS + 6, 134, 370, 371, 378
ASENSITIVE » 80, 154, 158

<assignment clause>+ 42, 93, 97, 99, 100, 101, 131, 132,
133, 137, 140, 144

<assignment spec clause> ¢ 6, 42, 44, 131, 132, 133

—B—
BEGIN - 40, 145

BIGINT » 263, 290

BINARY - 180, 188, 264, 291
BLOB » 215, 251

BY - 378

—C —

CALL 12,31, 32, 64, 129, 175, 246, 303, 316, 366, 367,
371, 374

cardinality violation « 115

CAST » 32, 142, 375

CHAIN « 126

CHAR + 180, 188, 264, 270, 291

CHARACTER - 296, 376

CLOB « 221, 255

COBOL 11, 53

<comment> « 44

COMMIT « 12, 35, 36, 126, 304, 316

<complex expression> 65, 76, 77, 115

<compound statement> « 64, 108, 145, 146, 303, 354, 357

<connection context> ¢ 56, 57, 100, 101, 102, 106

<connection declaration clause>+5, 7, 65, 72, 81, 82, 83,
84, 85, 86, 151

<context clause> « 99, 100, 106, 107

<context spec clause> « 106

©ISO/IEC 2003 — All rights reserved

CONTINUE « 41
CREATE » 12, 369, 371, 376, 377
CURRENT - 38, 110, 112, 152, 312, 317

— D —
data exception « 198
DATALINK « 238, 273, 274, 298
DATE - 256, 285
DEALLOCATE « 40

<declaration with clause> « 79, 81, 82, 84, 86, 90, 93, 97,
151, 356

<declaration with list> « 42, 79

DECLARE » 40

DELETE « 12, 35, 57, 63, 110, 248, 368, 373, 374
<delete statement: positioned> « 63, 110, 111, 307
DESC « 135

DESCRIBE + 40

DESCRIPTOR ¢ 40

DISTINCT - 20, 25, 26, 34, 81, 133, 201, 231, 266, 292,
340, 376

DOUBLE « 257, 258, 286, 340
DROP « 12

—E —
<embedded Java expression> ¢ 6, 44, 49, 50, 63, 64, 65,
66, 76, 77, 78, 99, 100, 103, 104, 110, 111, 113, 115,
116, 119, 120, 129, 130, 136, 137, 138, 139, 140, 142,
143, 145, 340, 354, 357, 359, 360

<embedded SQL host program> -« 11, 12, 13, 49, 50, 51,
355

<embedded SQL Java program> -« 11, 12, 13, 43, 44, 45,
47,49, 50, 51, 52, 110, 112, 114, 118, 119, 122, 128,
265, 268, 353, 355, 360

<embedded variable name> « 47, 49, 50, 118, 122

END » 40, 145

EXEC « 40, 41, 42, 50

Index 379

1 SO/l EC 9075-10:2003 (E)

<executable clause> ¢ 56, 57, 61, 63, 64, 65, 71, 83, 86,
87, 88, 99, 100, 101, 102, 103, 104, 129, 130, 136, 137,
140, 356, 359

<executable spec clause> » 8, 9, 99, 100

EXECUTE - 40, 64, 129, 246, 273, 304, 312

<execution context> « 100, 103, 106

<expression> ¢ 6, 50, 76, 115, 119

—F —
Feature F271, “Savepoints” » 127

FETCH « 12, 35, 42, 118, 154, 369, 376

<fetch statement> « 42, 63, 94, 96, 101, 118, 119, 120,
360

FIRST « 120

FLOAT « 259, 287, 288, 371, 377

FOR « 81

FROM « 57, 110, 118, 134, 145, 367, 368, 369, 370, 371,
372, 373, 374, 375, 376, 378

FULL » 133

FUNCTION « 377

<function clause> « 63, 131, 132, 139, 141, 310, 354

G —
GET « 40

GOTO « 41
GROUP « 82

<implements clause> ¢ v, 78, 81, 84, 90, 91

IN«13, 31, 35, 36, 38, 40, 64, 66, 77, 100, 103, 129, 145
167, 168, 169, 201, 249, 275, 276, 277, 278, 279, 280
281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292
294, 295, 296, 297, 298, 299, 336, 339, 357, 371

INOUT - 13, 31, 40, 64, 66, 77, 99, 100, 101, 103, 104
129, 130, 145, 180, 188, 248, 250, 251, 252, 253, 254,
255, 256, 257, 258, 259, 260, 261, 263, 266, 268, 269
270, 271, 272, 274, 276, 277, 278, 279, 280, 281, 282
283, 284, 285, 286, 287, 288, 289, 290, 292, 294, 295
296, 297, 298, 299, 337, 339, 357, 359, 371

INSENSITIVE « 80, 155, 158, 360

INSERT » 12, 35, 57, 63, 145, 248, 368

INTEGER - 260, 261, 288, 289

<interface element>+ 78

<interface list> » 42, 78, 79, 85, 93, 97

INTO - 12, 35, 42, 57, 115, 118, 145, 154, 317, 368, 369,
372, 376, 378

invalid class declaration 231, 266, 349

invalid column name ¢ 211, 349

380 Object Language Bindings (SQL/OLB)

invalid number of columns « 115, 119, 135, 136, 142, 143,
349

invalid profile state « 203, 204, 349

<iterator conversion clause> « 32, 64, 131, 132, 142, 143,
144, 305, 356, 357

<iterator declaration clause> 5, 7, 42, 72, 81, 83, 86, 90,
91, 93, 97, 136, 143, 153, 158, 353

<iterator host expression> « 39, 110, 111, 112, 113, 118,
119, 120

<iterator spec declaration> « 5, 65, 66, 90

—J —
Feature JOO1, “Embedded Java” » 52, 351, 353

Feature J002, “ResultSetlterator access to JDBC
ResultSet” « 91, 353

Feature J003, “Execution control” « 99, 104, 353

Feature J004, “Batch update” « 100, 105, 353

Feature J005, “Call statement” « 109, 353, 354

Feature JO06, “Assignment Function statement” » 141, 354

Feature JOO7, “Compound statement” « 146, 354

Feature JO08, “Datalinks via SQL language” « 75, 78, 354

Feature JO09, “Multiple Open ResultSets” » 100, 105, 354

JAR « 57, 58, 59, 102, 329

<java class name> ¢ v, 73, 74, 78, 81, 84, 85, 86, 90, 93,
97

<Java comment> ¢ 44

<Java comment introducer> ¢ 44

<java constant expression> ¢ v, 75, 80

<java datatype> « 75, 85, 92, 93, 94, 96, 97, 98, 103, 104,
115, 116, 117, 119, 120, 122, 123, 131, 132, 136, 137,
140, 142, 143, 144, 354

<javaid> v, 74, 80, 96, 97, 98, 106, 136, 137, 143, 153
<java pair>* 96, 98, 136, 143

<java pair list> « 96, 97, 98, 136, 137, 143, 153

<java type list>+ 92, 94, 119, 135, 136, 137, 142, 143

— L —
LAST « 120
LOCAL « 128

<Lval expression> -+ 42, 76, 77, 78, 100, 101, 115, 119,
123, 131, 132, 133, 136, 137, 139, 140, 142, 143, 144,
145, 357

— M —
MAX ¢ 145
<modifiers> e+ v, 73, 84, 85, 90, 93, 97
MONTH e« 145
MULTISET « ?

©ISO/IEC 2003 — All rights reserved

MUMPS « 11

— N —
NAME ¢ 368, 370
<named iterator>+5, 6, 7, 66, 90, 93, 96, 97, 98, 136, 137,
143, 360
NEXT « 120
NO « 42, 126
no data « 114, 134
no subclass ¢ 349
NULL « 41
null value, no indicator parameter « 198
<number sign> ¢ 13, 43, 49
NUMERIC « 250, 278, 369, 376, 377

— 00—
OF - 38, 110, 112, 152, 312, 317
OLB-specific error « 18, 91, 99, 100, 115, 119, 135, 136,

142, 143, 157, 171, 188, 189, 203, 204, 211, 229, 231,
266, 291, 292, 293, 349

OPEN « 42
ORDER » 378

OUT - 13, 31, 34, 35, 40, 64, 65, 66, 77, 99, 100, 101,
104, 115, 119, 123, 130, 137, 145, 158, 180, 188, 201,
239, 245, 248, 250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 261, 263, 266, 268, 269, 270, 271, 272,
274, 275, 304, 307, 314, 337, 339, 357, 359, 367, 371

— P —
PATH « 81
<positioned iterator> ¢ 5, 7, 66, 90, 92, 93, 94, 135, 137,
142
PRECISION « 257, 258, 286

<predefined connection with keyword> « 79, 81, 82, 86,
151, 354

<predefined interface class> ¢ 78, 81, 84

<predefined iterator with keyword> « 79, 80, 81, 84, 90,
158, 356

PREPARE - 40
PRIOR « 120

<query clause> ¢ 6, 42, 63, 110, 112, 119, 131, 133, 134,
137, 138, 306, 308, 310, 360

—R—
REF « 268, 293
RELATIVE « 120

©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-10:2003 (E)

RELEASE « 35

<result set expression> « 142, 143, 144, 357
RETURN » 42

RETURNS » 377

ROLLBACK « 12, 35, 127, 309, 316

ROW « ?

<Rval expression>« 76, 77, 78

— S —
Feature S071, “SQL paths in function and type name
resolution” « 82, 354
Feature S241, “Transform functions” « 82, 354
SAVEPOINT « 35, 124, 309, 316
SCROLL « 42
SECTION » 40

SELECT « 12, 36, 119, 133, 134, 145, 367, 368, 369, 370,
371, 372, 375, 376, 378

SENSITIVE « 80, 155, 158, 360

SET « 12, 35, 40, 57, 112, 367, 369

<simple variable> « 64, 65, 76, 77, 115, 119, 123

SMALLINT « 269, 270, 294, 295

<SQL prefix>« 43, 49, 50

<SQL special character> ¢ 13, 43

<SQLJ specific clause> « 6, 8, 44, 49, 50, 55, 81, 82, 83,
145

SQLSTATE - xx, 51, 198

STATEMENT - 63, 108, 123, 310, 316
<statement clause> « 99, 108, 145, 353
<statement or declaration> « 49, 50
<statement spec clause> ¢ 6, 44, 108, 109, 354

—T—
TABLE » 369, 371, 376, 377
TIME » 271, 296

TIMESTAMP « 272, 297
TRANSACTION * 35
TRANSFORM - 81, 82
TYPE + 81

— U —
unsupported feature « 18, 91, 99, 100, 157,171, 188, 189,
229, 291, 292, 293, 349
UPDATE - 12, 35, 57, 63, 112, 248, 369
<update statement: positioned>« 63, 112, 113, 307
<user defined interface class>« 78, 79
<user defined with keyword> « 79, 80

Index 381

1 SO/l EC 9075-10:2003 (E)

—V—
VALUES - 12, 57, 139, 145, 310, 316, 366, 368, 372, 377

VARCHAR -« 180, 188, 264, 270, 291, 369, 371, 377
VARYING « 296, 376

— W —
WHENEVER - 41

WHERE - 38, 57, 110, 112, 145, 152, 312, 317, 367, 368,
372, 373, 374, 375, 378

WITH « 42

<with element> ¢ 79, 80

<with keyword> 79, 80, 85, 86, 93, 97

<with value> ¢ 79, 80, 81, 82, 85, 86, 93, 97, 151, 158,
360

WORK « 126, 127

—Y—

YEAR « 370

382 Object Language Bindings (SQL/OLB)

©ISO/IEC 2003 — All rights reserved

1 Possible problems with SQL/OLB

I observe some possible problems with SQL/OLB as defined in this document. These are noted
below. Further contributions to this list are welcome. Deletions from the list (resulting from change
proposals that correct the problems or from research indicating that the problems do not, in fact,
exist) are even more welcome. Other comments may appear in the same list.

Because of the highly dynamic nature of this list (problems being removed because they are solved,
new problems being added), it has become rather confusing to have the problem numbers automati-
cally assigned by the document production facility. In order to reduce this confusion, I have instead
assigned "fixed" numbers to each possible problem. These numbers will not change from printing to
printing, but will instead develop "gaps" between numbers as problems are solved.

Possible problems related to SQL/OLB

Significant Possible Problems:
[999] In the body of the Working Draft, I have occasionally highlighted a point that requires urgent
attention thus:

Editor’s Note

Text of the problem.

These items are indexed under "**Editor’s Note**".

Possible problems with SQL/OLB 1

Editor’s Notes for WG3:HBA-007 = H2-2003-309

Minor Problems and Wordsmithing Candidates: | OLB-022 | The following Possible Problem has
been noted:

Severity: Minor Editorial

Reference: P10, SQL/OLB, <REFERENCE>(olb_sql_languages_base_table\ FULL)
Note at: None.

Source: WG3:PER-164/H2-2001-?7?

Possible Problem:

The text "200n" must be replaced by the correct year at the FCD Editing Meeting.
Proposed Solution:

None provided with comment.

2 Editor’s Notes for (ISO-ANSI working draft) Object Language Bindings (SQL/OLB)

Editor’s Notes for WG3:HBA-007 = H2-2003-309

Language Opportunities

OLB-002 | On the first FCD ballot (1999), comment CAN-P10-017 noted the following Language
Opportunity:

Severity: Language Opportunity

Reference: P10, Table 2, "Association of roles with SQLJ <executable clause>s"
Source: First FCD ballot, comment CAN-P10-017

Description:

The exact set of class of statements that Table 2 refers to could be more explicitly defined.
Proposed Solution: None submitted with comment

OLB-003 | On the first FCD ballot (1999), comments CAN-P10-023, CAN-P10-024, and CAN-P10-
025 noted the following Language Opportunity:

Severity: Language Opportunity
Reference: P10, No particular location
Source: First FCD ballot, comments CAN-P10-023, CAN-P10-024, and CAN-P10-025

Description:

There may be many opportunities to replace D&Rs in SQL/OLB with an informative Note that
says something like "Conformance to SQL/OLB requires support only for the ... keywords",
when referencing statements or other syntax defined in Foundation or other parts.

Proposed Solution: None submitted with comment

OLB-004 | On the first FCD ballot (1999), comment CAN-P10-026 noted the following Language
Opportunity:
Severity: Language Opportunity
Reference: P10, No particular location
Source: First FCD ballot, comment CAN-P10-026, reinstated by WG3:ZSH-047 = H2-2003-028
Description:

SQL/OLB could benefit from supporting the optional LOCAL keyword in SQL:1999’s <set
transaction statement>.
Proposed Solution: None submitted with comment

OLB-009 | On the first FCD ballot (1999), comment DEU-P10-014 noted the following Language
Opportunity:
Severity: Language Opportunity
Reference: P10-05.06.05, Profile customizer interface
Source: First FCD ballot, comment DEU-P10-014
Description:

Something needs to be said about how the operations "acceptsConnention" in this subclause and
in subclause 5.6, ’Customization interface’, relate to each other.
Proposed Solution: None submitted with comment

OLB-010 | On the first FCD ballot (1999), comment CAN-P10-018 noted the following Language
Opportunity:

Severity: Language Opportunity
Reference: P10-05.06.06, EntryInfo overview
Source: First FCD ballot, comment CAN-P10-018 and WG3:PER-098R1/H2-2001-059

Description:

Possible problems with SQL/OLB 3

Editor’s Notes for WG3:HBA-007 = H2-2003-309

Table 2 "SQLJ type properties" must be extended to support the new SQL-99 data types (e.g.,
ARRAY, MULTISET, and ROW).

Support for ARRAY has been provided by WG3:DRS-080/H2-2002-458. It is not anticipated that
support for either MULTISET or ROW will be provided by SQL/OLB until such time as JDBC
provides such support.

Proposed Solution: None submitted with comment

OLB-011 | On the first FCD ballot (1999), comment CAN-P10-019 noted the following Language
Opportunity:

Severity: Language Opportunity

Reference: P10-05.06.06, EntryInfo overview
Source: First FCD ballot, comment CAN-P10-019
Description:

Table 2 "SQLJ type properties" must be extended to support the SQL-92 data types not men-
tioned (e.g. DECIMAL, BIT, BIT VARYING, and INTERVAL).

Support for DECIMAL is provided via the java.sql.Types values NUMERIC and DECIMAL.
FUrther, per SQL/Foundaiton, Appendix E, "Incompatibilities with ISO/IEC 9075-2:1999",
ISO/IEC 9075-2:1999 defined data types BIT and BIT VARYING, but those types have been
deleted from this edition of ISO/IEC 9075. It is not anticipated that support for INTERVAL will
be provided by SQL/OLB until such time as JDBC provides such support.

Proposed Solution: None submitted with comment

OLB-014 | On the first FCD ballot (1999), comment DEU-P10-015 noted the following Language
Opportunity:

Severity: Language Opportunity

Reference: P10-06.01, Grammar notation

Source: First FCD ballot, comment DEU-P10-015
Description:

This subclause contains conventional material that has traditionally been provided in other
parts of 9075 as a subclause of Clause 3. In order to avoid a major rewrite, such a Conventions
Subclause should be added to this part; it should merely outline where and how the information
one would have expected at that clause is actually provided in this part of 9075.

Proposed Solution: None submitted with comment

OLB-015 | On the first FCD ballot (1999), comment GBR-P10-019 noted the following Language
Opportunity:

Severity: Language Opportunity

Reference: P10-09.05

Source: First FCD ballot, comment GBR-P10-019
Description:

“Binary portability”, more properly “portability of intermediate object code representation”, is
an objective of the originators of the Java language. Clause 5 does not sufficiently distinguish
between statements of intent, tutorial matter and concrete specification. The clause should be
merged into the general Concepts clause, and should be further revised to clarify the distinction
between things that are part of the SQL-Java binding and features of those things that are part
of Java.

Proposed Solution: None submitted with comment

4 Editor’s Notes for (ISO-ANSI working draft) Object Language Bindings (SQL/OLB)

Editor’s Notes for WG3:HBA-007 = H2-2003-309

OLB-017 | On the first FCD ballot (1999), comment USA-P10-025 noted the following Language
Opportunity:

Severity: Language Opportunity

Reference: P10-No specific location

Source: First FCD ballot, comment USA-P10-025
Description:

This document contains “Definitions and Rules™ clauses that sometimes appear analogous to
SQL "“Syntax Rules™ and sometimes like "General Rules™. However, unlike "Syntax Rules™ and
"General Rules™ there is no general specification of the effect of violating a "Definition and Rules™
nor of when the “Definition and Rules™ are validated/performed. The validation time of and the
effect of violation of a "Definition and Rules™ rule should be specified.

Proposed Solution: None submitted with comment

OLB-018 | On the first FCD ballot (1999), comment DEU-P10-020 noted the following Language
Opportunity:

Severity: Language Opportunity
Reference: P10-No specific location
Source: First FCD ballot, comment DEU-P10-020

Description:

To improve readability, more cross-references are needed. E.g., when the interfaces are specified
that are implemented by some class definition (see for instance 10.2.1) it would be helpful to
have reference to the subclause defining that interface. The author of this comment is aware
that there is abundant precedence for such cross-references in the document (see "See also"
sections).

Proposed Solution: None submitted with comment

OLB-025 | The following Language Opportunity has been noted:

Severity: Language Opportunity

Reference: P10, SQL/OLB, No specific location

Note at: None.

Source: Email from Fred Zemke, 2001-11-05, from unknown source
Language Opportunity:

There are many paragraphs that say "An SQLException will be thrown" without saying what
that condition is! Is the implementation free to raise any exception that it feels like, possibly
even one chosen randomly? If not, then the standard must say what condition is thrown! These
places are usually accompanied by an editor’s note, which should be removed whenever the
problem at that location is solved.

Proposed Solution:

None provided with comment.

OLB-028 | The following Language Opportunity has been noted:

Severity: Language Opportunity

Reference: P10, SQL/OLB, Subclause 4.9, "Default connection context"
Note at: None.

Source: WG3:ZSH-153R1 = H2-2002-153R1

Language Opportunity:

Possible problems with SQL/OLB 5

Editor’s Notes for WG3:HBA-007 = H2-2003-309

A problem arises because both SQL/OLB and SQL/JRT have mechanisms for referencing their
default SQL-environment. In SQL/OLB, the JNDI registered "jdbc/defaultDataSource" name
will, if present, identify the default data source for SQL operations to be performed against. In
SQL/JRT, the JDBC URL "jdbc:default:connection" identifies a JDBC connection to the current
SQLimplementation, SQL-session, and SQL-transaction. This raises the question: When, if
ever, are the following logically equivalent?

1) Connection con = DriverManager.getConnection("jdbc:default:connection");

2) Connection con = sqlj.runtime.ref.DefaultContext.getDefaultContext().getConnection();
3) #sql context Ctx with (dataSource="jdbc/defaultDataSource"); Connection con =(new
Ctx()).getConnection();

4) Context ctx = new InitialContext(); DataSource ds = (DataSource) ctx.lookup(
"jdbc/defaultDataSource"); Connection con = ds.getConnection();

That is, when is the java.sql.Connection con, appearing in the above code sequences providing a
JDBC connection to the same SQL-implementation? We believe it is desirable, if not required,
for an application to be able to run either inside a database as a "stored procedure" or outside
as a regular application without having to be recoded, so we ask that above be issue be clarified.
Proposed Solution:

None provided with comment.

OLB-029 | The following Language Opportunity has been noted:

Severity: Language Opportunity

Reference: P10, SQL/OLB, No specific location
Note at: None.

Source: WG3:ZSH-153R1 = H2-2002-153R1
Language Opportunity:

SQL/OLB should make it possible for an SQL/OLB application to use the JDBC 3.0 support of
what JDBC 3.0 refers to as ’Auto Generated Keys’ without having to use JDBC to do so. This

capability is often used to access what many DBMSs refer to as a Row ID of a just inserted or

updated row. And while SQL/Foundation doesn’t standardize a Row ID, the facility would have
utility by allowing access to what SQL/Foundation refers to as 'Identity columns’ or ’‘Generated
columns’.

Proposed Solution:

None provided with comment.

6 Editor’s Notes for (ISO-ANSI working draft) Object Language Bindings (SQL/OLB)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index entries
appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing in roman
type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule, Access Rule,
General Rule, Leveling Rule, Table, or other descriptive text.

[999]- 1 OLB-011]e4
OLB-014 |+ 4

—0— OLB-015 |« 4

OLB-002]«3 OLB-017 |+ 5
OLB-003]+ 3 OLB-018]¢5
OLB-004 |« 3 OLB-022 | 2
OLB-009 |+ 3 OLB-025 |« 5
OLB-010 |3 OLB-028 |+ 5
OLB-029 | 6

Index 1

