WG3:HBA-009

H2-2003-311
August, 2003

ISO

International Organization for Standardization

ANSI

American National Standards Institute

ANSI TC NCITS H2
ISO/IEC JTC 1/SC 32/WG 3

Database

Title: (ISO-ANSI Working Draft) SQL Routines and Types for the Java Programming Language (S
Author: Jim Melton (Editor)

References:

1) WG3:HBA-002 = H2-2003-304 = 5WD-01-Framework-2003-09, WD 9075-1 (SQL / Framework),
September, 2003

2) WG3:HBA-003 = H2-2003-305 = 5WD-02-Foundation-2003-09, WD 9075-2 (SQL/Foundation),
September, 2003

3) WG3:HBA-004 = H2-2003-306 = 5WD-03-CLI-2003-09, WD 9075-3 (SQL/CLI), September, 2003

4) WG3:HBA-005 = H2-2003-307 = 5WD-04-PSM-2003-09, WD 9075-4 (SQL/PSM), September,
2003

5) WG3:HBA-006 = H2-2003-308 = 5WD-09-MED-2003-09, WD 9075-9 (SQL/MED), September,
2003

6) WG3:HBA-007 = H2-2003-309 = 5WD-10-OLB-2003-09, WD 9075-10 (SQL/OLB), September,
2003

7) WG3:HBA-008 = H2-2003-310 = 5WD-11-Schemata-2003-09, WD 9075-11 (SQL/Schemata),
September, 2003

8) WG3:HBA-009 = H2-2003-311 = 5WD-13-JRT-2003-09, WD 9075-13 (SQL/JRT), September,
2003

9) WG3:HBA-010 = H2-2003-312 = 5WD-14-XML-2003-09, WD 9075-14 (SQL/XML), September,
2003

ISO/IEC JTC 1/SC 32

Date: 2003-07-14

ISO/IEC 9075-13:2003 (E)

ISO/IEC JTC 1/SC 32/WG 3

United States of America (ANSI)

Information technology — Database languages — SQL — Part 13: SQL Routines
and Types Using the Java™ Programming Language (SQL/JRT)

Technologies de l'information— Langages de base de données — SQL — Partie 13: Routines et Types de SQL
Utilisant le Langage de Programmation de Java™ (SQL/JRT)

Document type: International standard
Document subtype:

Document stage: (4) Approval
Document language: English

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under
the applicable laws of the user’s country, neither this ISO draft nor any extract from it may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic, photocopying, recording, or otherwise,
without prior written permission being secured.

Requests for permission to reproduce should be addressed to ISO at the address below or ISO’s member body
in the country of the requester.

Copyright Manager

ISO Central Secretariat

1 rue de Varembé

1211 Geneva 20 Switzerland
tel. +41 22 749 0111

fax +41 22 734 1079
internet: iso@iso.ch

Reproduction may be subject to royalty payments or a licensing agreement.

Violaters may be prosecuted.

Contents Page

OB O, . .. e iX
oo o 1 o) o X
O o 0 0 1 = 1
2 NOIMALIVE [O BNCES. . . o ottt e e e e e e e e 3
21 JTCL StanNdards. oottt 3
2.2 Other international standards.ttt e 3
3 Definitions, Notations, and CONVENTIONS.ottt et e e e ettt 5
31 D NIt ONS. . . 5
311 Definitions taken from [Javal. oo 5
312 Definitions taken from [JVM. 5
313 Definitions provided in Part 13.o 6
3.2 10700177 o1 { o o LS T 7
321 Specification of built-in ProCedUreS.ot 7
322 Specification of deployment descriptor files. 7
N O Lo o] 9
41 The Java programming lanQUAE.ottt e e e e e e e e e e 9
42 SOL-INVOKEA FOULINES. . . ottt ettt e e e e e e e e e e 10
421 Overview of SQL-INVOKEd rOULINES.ot e e e e et e e e 10
422 Characteristics of SQL-iNVOKed roUtiNES.ot e e e et et e e e 11
43 Java class Name reSOIULION. oo e e 12
44 SOL MU SEES. . ottt e 13
45 Parameter MaPPiNg. oottt e e e e e 13
4.6 Unhandled Java eXCeptions. oot e e e 14
4.7 DA By PES. . . v vttt e 15
47.1 Non-predefined and NON-SQL tYPES. oottt e e e 15
48 User-defined fYPeS.ot 15
481 Introduction to user-defined tYPES.ottt 15
482 User-defined type desCriplor.ot e e e e e 16
483 User-defined type comparison and assignment. et e 18
484 ACCESSING StaliC fIElAS.o 18
485 Converting objects between SQL and Java. oot e 19
4.85.1 SERIALIZABLE. .. i 19
4852 SO D AT A o 19
4853 Developing for portability.o 20
4.9 BUIlt-iN ProCeaUIES.o 20
4.10 PrIVI L BgES. . . ot e 21

©ISO/IEC 2003 — All rights reserved Contents iii

1 SO/l EC 9075-13:2003 (E)

411 JA RS, it 21
4111 Deployment descriptor files. o e 22
B LeXiCal EEmMeNnts. ... e 23
51 <tOKEN™> AN <SEPAI A Or ™. . . o\ttt ettt et e et e e 23
52 Names and 1dentifiers.o 25
B SCAlAr X P ESSIONS. . o ittt ettt et 27
6.1 <MEthOd INVOCALION>. e e e e e e e e 27
6.2 <NEW SPECITICaIION>. . . .o e 28
A = o 1= 1= 29
7.1 <COMPAriSoN PrediCale>. oot 29
8 Additional common Elements. e 31
8.1 <Java parameter declaration list>. i 31
8.2 <SOL Java Path>. ..o e e 32
8.3 STOULINE INVOCELIONS. oottt ettt et 34
8.4 <laNQUAgE ClaUSES.o e 43
85 Execution of array-returning fUNCLIONS.ot e e 44
8.6 Java routine signature determination. ot 51
9 Schema definition and manipulation. e 61
9.1 <Arop SChema StalEMENT>.o e e 61
9.2 <table definition>. 63
9.3 QViaW dEfiNItioN>. 64
9.4 <user-defined type definition>. 65
95 <attribute definitioN>. e 69
9.6 <altEr By P S M. . . . e 73
9.7 <drop datatype Statement™>.o e 74
9.8 <SOQL-INVOKEd FTOULINE>. . . .o e e e e e e 75
9.9 <alter roUtiNe StatEmMENt>. o e 79
9.10 <drop rOUtiNE SIatEmMENt>.ottt e e e 80
9.11 <user-defined ordering definition>. e 81
9.12 <drop user-defined ordering Statement>. it e e 82
10 ACCESS CONEIOL. ..ttt ettt e et e et e e e e e et e e e e e e 83
101 <grant privilege Stalement™. e 83
10.2 PV EES ™. . oot 84
10.3 SIEVOKE Sl M. . . oo e e 85
11 BUI-iN ProCEAUN ES. . .ot e e e e 87
111 SQLJIINSTALL_JAR ProCcedUre.ttt e e e e e e e e e et 87
11.2 SQLIREPLACE_JAR ProCEUUNE.ottt et e e e e e e e e e e e e 89
11.3 SQLIREMOVE_JAR ProCeAUIE.ottt et e e e e e e e e e e e et 91
114 SQLJALTER JAVA PATH ProCedUre.ttt ettt ettt ettt 93
N - V= T (o o] o= 95

iv Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

121 Java facilities supported by this part of ISO/IEC 9075.o ottt e 95
1211 Package JaVa SOl . . .ot 95
12,12 SYSIOM PrOPEItiES. . o oottt ettt e e e e e 95
12.2 Deployment descriptor files.o o 97
13 INnformation SChemMa. e e e 101
131 JAR_JAR USAGE ViBW. . . oottt 101
13.2 JA RS VIO, L . 102
133 METHOD _SPECIFICATIONS VIBW. . . oottt ettt ettt e ettt ettt 103
134 ROUTINE_JAR _USAGE VIBW. . . .\ttt ettt 104
135 TYPE_JAR USAGE VIBW. . . o oottt 105
13.6 USER DEFINED _TYPES ViBW. . . .\ttt ettt enes 106
13.7 SNOMt NAME VIBWS. . . oottt e e e e e e e e e e e e e 107
14 Definition SChEmMa. o e 109
141 JAR_JAR USAGE base table. oo 109
14.2 JARS base table.o 111
14.3 METHOD_SPECIFICATIONS basetable. v vt eees 112
14.4 ROUTINE_JAR USAGE base table. ees 114
145 ROUTINES base tale.o ot e e e e e 115
14.6 TYPE JAR USAGE base tale.ottt et et e 116
14.7 USAGE_PRIVILEGES base tahle. 117
14.8 USER DEFINED_TYPES base tahle. iaes 118
15 SHAIUS COOBS. . . oottt ittt et e e e e e e e e e e e e e e e e 121
151 Class and subclass values for uncaught Java eXCeptions.ottt 121
15.2 SOL ST AT E. ottt e e e 122
16 CONfOrMaANCE. . ..ottt e e 123
16.1 Claims of conformance to SQL/IRT it et et e 123
16.2 Additional conformance requirements for SQL/IRT. oo 123
16.3 Implied feature relationships of SQL/JRT.ot 123
Annex A SQL Conformance SUMMEAIY.uut e ettt e e e e e ae s 125
Annex B Implementation-defined elements. i 131
Annex C Implementation-dependent elements................. oo 135
AnNnex D SQL feature taXOnOMY.ttt ettt e e e e e e e e e 137
ANNEX E ROULINESTULOrIAl.ot e e e e 139
E.l Technical COMPONENLS.ottt et e e e e e e e e e e e e e e et e e e e e e 139
E.2 L= V= 140
E.3 Example Java methods: region and COrrectStates.ttt 141
E.4 Installing region and CorrectStatesS in SOQL.ottt e 141
E.5 Defining SQL names for region and COrmeCtStates.o oottt e e e e e 143
E.6 A Java method with output parameters: DEStTWOEMPS. oo v ettt 144
E.7 A CREATE PROCEDURE best2 for bestTWOEMPS. vttt ieeeees 146

©ISO/IEC 2003 — All rights reserved Contents v

1 SO/l EC 9075-13:2003 (E)

E.8 Calling the best2 procedure. 146
E.9 A Java method returning aresult set: orderedEMPS.ottt 147
E.10 A CREATE PROCEDURE rankedEmps for orderedEmpPS.o v v i e ee 148
E.11 Calling the rankedEMPS ProCEAUNE. o oottt e e ettt et et 149
E.12 Overloading Javamethod names and SQL NamES.ottt it et e 150
E.13 Java main MEthoOS. 152
E.14 Java method signaturesin the CREATE Statements. oottt 152
E.15 Null argument values and the RETURNS NULL clause.t 153
E.16 StaliC VAl ES.o 156
E.17 Dropping SQL names of Javamethods. o i e 157
E.18 Removing Java classes from SOot i e 157
E.19 Replacing Java Classes in SOL.o .ot 158
E.20 VIS DIy, . 159
E.21 EX OB I ONS. . . oottt 159
E.22 Deployment desCriptors. oottt e e e e e e e e e e 160
E.23 PN, . o 163
E.24 Y =T 1= 165
E.25 INfOrmation SChEMEL e e e e 166
Annex F TYPES tULOrial. ... e 167
F.1 L= V= 167
F.2 EXamMpPle JaVa Classes. . ..ottt et 167
F.3 Installing Address and Address2Lineinan SQL SyStem.ottt ii it e e 169
F.4 CREATE TYPE for Address and Address2Line.t e ae s 170
F.5 Multiple SQL typesfor asingle Javaclass.ottt 171
F.6 CollapSiNg SUDCIBSSES. oottt e et 172
F.7 GRANT and REVOKE statements for datatypes.ot e 174
F.8 Deployment descriptors for Classes. oot e 174
F.9 USINg Java Classes aS ala tyPesS.o vttt ittt e e e e 175
F.10 SELECT, INSERT, @and UPDATE.o e i 176
F.11 Referencing Javafieldsand methodsin SQL. 177
F.12 Extended Visibility TUIES. oo 178
F.13 Logical representation of Javainstancesin SQL.ottt 178
F.14 SHAC MEthOS.o 180
F.15 SHAC fIOlOS. . o oo e 180
F.16 Instance-update MEethods. o 181
F.17 Subtypes in SQL/IRT data oo ottt e e e 183
F.18 References to fields and methods of null instances. 184
F.19 Ordering of SQL/IRT data. oottt e e e e e 185
80 1 P 189

vi Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

Tables
Table Page
1 S = 0] 1< £ = 95
2 SOLSTATE classand sUBCIasS ValUES.o oot e et et e e e e e e 122
3 Implied feature relationships Of SOL/JRT ottt e e e et ettt 123
4 Feature taxonomy for optional features. o 137

©ISO/IEC 2003 — All rights reserved Contents vii

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

viii Routines and Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

Foreword

I SO (the International Organization for Standardization) and | EC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of 1SO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1SO and |EC technical committees
collaboratein fields of mutual interest. Other international organizations, governmental and non-governmental,
in liaison with 1SO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

In the field of information technology, 1SO and IEC have established ajoint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies
casting avote.

Attention isdrawn to the possihility that some of the elements of this International Standard may be the subject
of patent rights. ISO and I1EC shall not be held responsible for identifying any or all such patent rights.

International Standard | SO/IEC 9075-13 was prepared by Joint Technical Committee | SO/IEC JTC 1, Information
technology, Subcommittee SC 32, Data management and interchange.

I SO/IEC 9075 consists of the following parts, under the genera title Information technology — Database lan-
guages — QL.

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored M odules (SQL/PSM)

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 11: Information and Definition Schema (SQL/Schemata)

— Part 13: SQL Routines and Types Using the Java Programming Language (SQL/JRT)
— Part 14: XML-Related Specifications (SQL/XML)

Annexes A, B, C, D, E, and F of this part of ISO/IEC 9075 are for information only.

©ISO/IEC 2003 — All rights reserved Foreword ix

1 SO/l EC 9075-13:2003 (E)

I ntroduction

The organization of this part of ISO/IEC 9075 isasfollows:
1) Clausel, “Scope’, specifies the scope of this part of 1SO/IEC 9075.

2) Clause 2, “Normative references’, identifies additional standards that, through reference in this part of
I SO/IEC 9075, constitute provisions of this part of 1SO/IEC 9075.

3) Clause 3, “Definitions, notations, and conventions’, defines the notations and conventions used in this part
of ISO/IEC 9075.

4) Clause 4, “Concepts’, presents concepts used in the definition of Java routines and types.

5) Clauseb, “Lexical elements’, defines anumber of lexical elements used in the definition of Javaroutines
and types.

6) Clause 6, “Scalar expressions’, defines the elements of the language that produce scalar values.
7) Clause7, “Predicates’, defines the predicates of the language.

8) Clause 8, “Additional common elements’, defines additional language elements that are used in various
parts of the language.

9) Clause9, “Schemadefinition and manipulation”, defines the schema definition and manipul ation statements
associated with the definition of Java routines and types.

10) Clause 10, “Access control”, defines facilities for controlling access to SQL -data.

11) Clause 11, “Built-in procedures’, defines new built-in procedures used in the definition of Java routines
and types.

12) Clause 12, “Javatopics’, defines the facilities supported by implementations of this part of 1SO/IEC 9075
and the conventions used in deployment descriptor files.

13) Clause 13, “Information Schema’, defines viewed tables that contain schema information.

14) Clause 14, “Definition Schema’, defines base tables on which the viewed tables containing schemainfor-
mation depend.

15) Clause 15, “ Status codes’, defines SQLSTATE vauesrelated to Java routines and types.
16) Clause 16, “Conformance”, defines the criteriafor conformance to this part of 1SO/IEC 9075.

17) Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the conformance
reguirements of the SQL language.

18) Annex B, “Implementation-defined elements’, is an informative Annex. It lists those features for which
the body of this part of | SO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL -data and/or schemas, or any other behavior is partly or wholly implementati on-defined.

19) Annex C, “Implementati on-dependent elements”, is an informative Annex. It lists those features for which
the body of this part of |SO/IEC 9075 states that the syntax, the meaning, the returned results, the effect
on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-dependent.

X Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

20) Annex D, “SQL feature taxonomy”, is an informative Annex. It identifies features of the SQL language
specified in this part of 1SO/IEC 9075 by anumeric identifier and a short descriptive name. This taxonomy
is used to specify conformance and may be used to develop other profilesinvolving the SQL language.

21) Annex E, “Routinestutorial”, is an informative Annex. It provides atutorial on using the features defined
in this part of ISO/IEC 9075 for defining and using SQL -invoked routines based on Java static methods.

22) Annex F, “Typestutorial”, is an informative Annex. It provides atutorial on using the features defined in
this part of 1ISO/IEC 9075 for defining and using SQL structured types based on Java classes.

In thetext of this part of ISO/IEC 9075, Clauses begin a new odd-numbered page, and in Clause 5, “Lexica
elements’, through Clause 16, “ Conformance”, Subclauses begin anew page. Any resulting blank spaceis not
significant.

©ISO/IEC 2003 — All rights reserved Introduction xi

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

xii Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

INTERNATIONAL STANDARD ISO/IEC 9075-13:2003 (E)

| nfor mation technology— Database languages —SQL —
Part 13: SQL Routinesand Types Using the Java™ Programming Language (SQL/JRT)

1 Scope

This part of International Standard | SO/IEC 9075 specifies the the ability to invoke static methods written in
the Java™ programming language as SQL -invoked routines and to use classes defined in the Java programming
language as SQL structured user-defined types. (Javais aregistered trademark of Sun Microsystems, Inc.)

©ISO/IEC 2003 — Al rights reserved Scope 1

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

2 Routines and Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
2.1 JTC1standards

2 Normativereferences

Thefollowing referenced documents are indispensabl e for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

21 JTC1lstandards

[Framework] 1SO/IEC FCD 9075-1:2003, Information technol ogy —Database languages— QL —Part 1:
Framework (SQL/Framework).

[Foundation] | SO/IEC FCD 9075-2:2003, | nfor mation technol ogy — Database languages— SQL —Part 2:
Foundation (SQL/Foundation).

[OLB] ISO/IEC FCD 9075-10:2003, Information technol ogy — Database languages — SQL — Part 10:
Object Language Bindings (SQL/OLB).

[Schemata] I SO/IEC FCD 9075-11:2003, I nfor mation technol ogy — Database |languages— SQL —Part 11:
Information and Definition Schemas (SQL/Schemata).

2.2 Other international standards

[Java] The Java™ Language Specification, Second Edition, Bill Joy (Editor), Guy Steele, James Gosling,
and Gilad Bracha, Addison-Wesley, 2000, ISBN 0-201-31008-2.

[IVM] The Java™ Virtual Machine Specification, Second Edition, Tim Lindholm and Frank Y ellin, Addison-
Wesdley, 1999, ISBN 0-201-43294-3.

[J2SE] Java™ 2 Platform, Standard Edition, v1.3.1, APl Specification,
http://java. sun. com j2se/ 1. 3/ docs/ api/index. htnl .

[Serialization] Java™ Object Serialization Specification,
http://java. sun. conij2se/ 1. 3/ docs/ gui de/ seri ali zati on/ spec/serial -
TOC. doc. htm .

[JavaBeans] The JavaBeans™ 1.01 Specification, htt p: //j ava. sun. cont product s/ j av-
abeans/ docs/ spec. htm .

[JDBC] JDBC™ 3.0 Specification, Final Release, John Ellis & Linda Ho with Maydene Fisher, Sun
Microsystems, Inc., October, 2001.

[RFC2368] RFC 2368, The mailto URL schema, P. Hoffman, L. Masinter, J.Zawinski, July, 1998.
http://ww. ietf.org/rfc/rfc2368.txt

©ISO/IEC 2003 — All rights reserved Normativereferences 3

I SO/IEC 9075-13:2003 (E)
2.2 Other international standards

[RFC2396] RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding,
L. Maxinter, August, 1998. ht t p: //www. i et f. org/rfc/rfc2396. t xt

4 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
3.1 Déefinitions

3 De€finitions, notations, and conventions

This Clause modifies Clause 3, “ Definitions, notations, and conventions’ , in | SO/IEC 9075-2.

3.1 Definitions

This Subclause modifies Subclause 3.1, “ Definitions”, in 1SO/IEC 9075-2.

3.1.1 Déefinitionstaken from [Java]

For the purposes of this part of 1SO/IEC 9075, the definitions of the following terms given in [Java] apply.
3111 block

3112 classdeclaration
3113 classinstance
3114 classvariable
3115 field

3116 instanceinitializer
3117 instancevariable
3118 interface

3119 local variable
31110 nested class
31111 package

31112 staticinitializer
31113 subpackage

3.1.2 Déefinitionstaken from [JVM]

For the purposes of this part of 1SO/IEC 9075, the definitions of the following terms given in [JVM] apply.
3121 classfile

©ISO/IEC 2003 — All rights reserved Definitions, notations, and conventions 5

I SO/IEC 9075-13:2003 (E)
3.1 Déefinitions

3122

313

Java Virtual Machine

Definitions provided in Part 13

For the purposes of this part of 1SO/IEC 9075, in addition to those definitions adopted from other sources, the
following definitions apply:

3131
3132

3133

3134

3135

3136

3137

3138

3139
31310
31311

31312
31313

classfile: A file containing the compiled byte code for a Java class.

default connection: A JDBC connection to the current SQL-implementation, SQL-session, and SQL -
transaction established withthedatasource URL ' j dbc: def aul t: connecti on' . (See[RFC2368]
and [RFC2396] for more details about URLS.)

deployment descriptor: One or more SQL -statements that specify <install actions> and <remove
actions>to betaken, respectively, by the SQLJ. | NSTALL_JARand SQLJ. REMOVE _J AR procedures
and that are contained in a deployment descriptor file.

deployment descriptor file: A text file containing deployment descriptorsthat is contained in aJAR,
for which the JAR's manifest entry, asdescribed by thej ava. uti | . j ar section of [J2SE], specifies
SQ.JDepl oynent Descri ptor: TRUE

external Java data type: An SQL user-defined type defined with a <user-defined type definition>
that specifies an <external Javatype clause>.

external Javaroutine: An external routine defined with an <SQL-invoked routine> that specifies
LANGUAGE JAVA and either PROCEDURE or FUNCTION, or defined with a <user-defined type
definition> that specifies an <external Javatype clause>.

installed JAR: A JAR whose existence has been registered with the SQL-environment and whose
contents have been copied into that SQL -environment due to execution of one of the procedures
SQ.J. | NSTALL_JARand SQLJ. REPLACE_JAR.

Java Archive (JAR): A zip formatted file, as described by thej ava. uti | . zi p section of [J2SE],
containing zero or more Javacl ass and ser files, and zero or more deployment descriptor files.
JARs areanormal vehiclefor distributing Java programs and the mechanism specified by this Interna-
tional Standard to provide the implementation of external Java routines and external Java data types
to an SQL-environment.

JVM: A JavaVirtual Machine, as defined by [JVM].
ser file: A file containing representations of Java objects in the form defined in [Serialization].

subject Java class: The Java class uniquely identified by the combination of the class's subject Java
class name and its containing JAR.

subject Java class name: The fully-qualified package and class name of a Java class.

system class: Any Java class provided by a conforming implementation of this part of 1SO/IEC 9075
that can be referenced by an external Javaroutine or an external Javadatatype without that class having
been included in an installed JAR.

6 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
3.2 Conventions

3.2 Conventions

This Subclause modifies Subclause 3.3, “ Conventions’ , in ISO/IEC 9075-2.

3.21 Specification of built-in procedures

Built-in procedures are specified in terms of :

Function: A short statement of the purpose of the procedure.

Signature: A specification, in SQL, of the signature of the procedure. The only purpose of the signature
isto specify the procedure name, parameter names, and parameter types. The manner in which these built-
in procedures are defined is implementati on-dependent.

Access Rules: A specification in English of rules governing the accessibility of schema objects that shall
hold before the General Rules may be successfully applied.

General Rules: A specification in English of the run-time effect of invocation of the procedure. Where
more than one General Rule is used to specify the effect of an element, the required effect is that which
would be obtained by beginning with the first General Rule and applying the Rules in numeric sequence
unless a Ruleis applied that specifies or implies a change in sequence or termination of the application of
the Rules. Unless otherwise specified or implied by a specific Rule that is applied, application of Genera
Rules terminates when the last in the sequence has been applied.

Conformance Rules: A specification of how the element shall be supported for conformance to SQL.

The scope of notational symbolsisthe Subclause in which those symbols are defined. Within a Subclause, the
symbols defined in the Signature, Access Rules, or General Rules can be referenced in other rules provided
that they are defined before being referenced.

3.2.2 Specification of deployment descriptor files

Deployment descriptor files are specified in terms of:

Function: A short statement of the purpose of the deployment descriptor file.

Modél: A brief description of the manner in which a deployment descriptor fileisidentified within its
containing JAR.

Properties: A BNF specification of the syntax of the contents of a deployment descriptor file.

Description: A specification of the requirements and restrictions on the contents of a deployment descriptor
file.

Conformance Rules: A specification of how the element shall be supported for conformance to SQL.

©ISO/IEC 2003 — All rights reserved Definitions, notations, and conventions 7

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

8 Routines and Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.1 The Java programming language

4 Concepts

This Clause modifies Clause 4, “ Concepts’, in | SO/IEC 9075-2.

4.1 The Java programming language

The Java programming language is a class-based, object-oriented language. This part of 1SO/IEC 9075 uses
the following Java concepts and terminology.

A classisthe basic construct of Java programs, in that all executable Java codeis contained in a Java class
definition. A classis declared by a class declaration that specifies a possibly empty set consisting of zero or
more fields, zero or more methods, zero or more nested classes, zero or more interfaces, zero or more instance
initializers, zero or more static initializers, and zero or more constructors.

The scope of avariableisaclass, an instance of the class, or amethod of the class. The scope of avariable that
isdeclared static isthe class, and the variableis called aclass variable. The scope of each other variable declared
in the classis instances of the class, and such avariableis called an instance variable. Class variables and

instance variables of aclass are called fields of that class. The scope of avariable declared in a method is the
block or Javaf or statement in which it is declared in that method, and the variableis called alocal variable.

A classinstance consists of aninstance of each instance variable declared in the class and each instance variable
declared in the superclasses of the class. Class instances are strongly typed by the class name. The operations
available on a class instance are those defined for its class.

With the exception of the classj ava. | ang. Qbj ect , each classis declared to extend (at most) one other
class; aclass not explicitly declared to extend another class implicitly extendsj ava. | ang. Cbj ect . The
declared classis adirect subclass of the classthat it extends; the classthat it extendsis the direct superclass
of the declared class.

ClassBisasubclassof class Aif Bisadirect subclass of A, or if there exists some class C such that Bisa
direct subclassof C and Cisasubclassof A. Likewise, classBisasuperclassof classAif Bisadirect superclass
of A, or if there exists some class C such that B isadirect superclass of C and C isasuperclass of A. A subclass
hasall of the fields and methods of its superclasses and an instance of class B may be used wherever an instance
of asuperclass of B is permitted.

A method is an executable routine. A method can be declared static, in which caseit is called a class method:;
otherwise, it is called an instance method. A class method can be referenced by qualifying the method name
with either the class name or the name of an instance of the class. Aninstance method isreferenced by qualifying
the method name with a Java expression that resultsin an instance of the class or, in the case of a constructor,
with “new’. The method body of an instance method can reference its class variables, instance variables, and
local variables.

The Java method signature of amethod consists of the method name andthe number of parameters and their
data types.

©ISO/IEC 2003 — Al rights reserved Concepts 9

I SO/IEC 9075-13:2003 (E)
4.1 TheJava programming language

A package consists of zero or more classes, zero or moreinterfaces, and zero or more subpackages (a subpackage
is a package within a package); each package provides its own name space and classes within a package are
abletorefer to other classesin the same package, including classes not referenceable from outside the package.
Every class belongs to exactly one package, either an explicitly specified named package or the anonymous
default package. A class can specify Javai nport statementsto refer to other named packages whose classes
can then be referenced within the class without package qualification.

A class, field, or methods can be declared as public, private, or protected. A public variable or method can be
accessed by any method. A private variable or method can only be referenced by methods in the same class.
A protected variable or method can only be referenced by methods of the same class or subclasses thereof. A
method that is not declared as public, private, or protected can only be called by methods declared by classes
in the same package.

Aninterface is a Java construct consisting of a set of method signatures. An interface can be implemented by
zero or more classes, aclass can be declared to implement zero or more interfaces, and a classis required to
have methods with the signatures specified by all of its declared interfaces.

TheJavaSerializableinterface,j ava. i 0. Seri al i zabl e, asdescribed in[J2SE], definesatransformation
between aJavainstanceand aj ava. i 0. Qut put St r eamorj ava. i 0. | nput St r eam asdefined by the
java.io. Qut put Streamandj ava. i 0. | nput St r eamsections of [J2SE] respectively, writing a per-
sistent representation of an instance of a Java object and reading a persistent representation of an instance of a
Javaobject. Thistransformation retains sufficient information to identify the most specific class of theinstance
and to reconstruct the instance.

The Java SQLData interface, j ava. sql . SQLDat a, as described in [JDBC] and [J2SE], defines a transfor-
mation between a Javainstance and an SQL user-defined data type.

The source for aJava classis normally stored in aJava file with the file-type “java’, e.g., nycl ass. j ava.
Javais normally compiled to a byte coded instruction set that is portable to any platform supporting Java. A
file containing such byte codeisnormally stored in aclassfilewith thefile-type“class’, eg., mycl ass. cl ass.

A set of classfiles can be assembled into a Java archive file, or JAR (usually with afile extension of “.jar”. A
JAR isazip formatted file containing aset of Javaclassfiles. JARs are the normal vehicle for distributing Java
programs.

4.2 SQL-invoked routines

This Subclause modifies Subclause 4.27, “ SQL-invoked routines’ , in ISO/IEC 9075-2.

4.2.1 Overview of SQL-invoked routines

This Subclause modifies Subclause 4.27.1, “ Overview of SQL-invoked routines’ , in |SO/IEC 9075-2.

| Replace the lead text of the 9th paragraph| A static SQL -invoked method, whether or not it is an external Java
routine, satisfies the following conditions:

10 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.2 SQL-invoked routines

4.2.2 Characteristics of SQL-invoked routines

This Subclause modifies Subclause 4.27.2, “ Characteristics of SQL-invoked routines’ , in 1SO/IEC 9075-2.

| Insert after 2nd paragraph\ External routines appear in two seemingly similar, but fundamentally differing,
forms, where the key differentiator is whether or not the external routine's routine descriptor specifies that the
body of the SQL-invoked routine is written in Java. When the body of the SQL-invoked routine is written in
Java, the external routineis an external Java routine; some differences from other external routines include:

— For any other external routine, the executable form (such asadynamic link library or some run-time inter-
preted form) of that routine exists externally to the SQL -environment's catalogs, for an external Javaroutine,
the executable form is provided by a specified subject Java routine that exists in the SQL-environment's
catalogsin aninstalled JAR.

— Becauseaninstalled JAR isnot required to be completely self-contained (i.e., to have no referencesto Java
classes outside of itself), amechanism is provided to allow asubject Java classto reference classes defined
by classfiles contained in itsinstalled JAR or in other installed JARS. See Subclause 8.2, “<SQL Java
path>".

NOTE 1 — Once an external Javaroutine has been created, its use in SQL statements executed by the containing SQL-environment is
similar to that of other external routines.

| Replace the 4th paragraph| SQL -invoked routines areinvoked differently depending on their form. SQL-invoked
procedures are invoked by <call statement>s. SQL-invoked regular functions are invoked by <routine invoca-
tion>s. Instance SQL -invoked methods are invoked by <method invocation>s, while SQL -invoked constructor
methods are invoked by <new invocation>s and static SQL -invoked methods are invoked by <static method
invocation>s. An invocation of an SQL-invoked routine specifies the <routine name> of the SQL -invoked
routine and supplies a sequence of argument values corresponding to the <SQL parameter declaration>s of the
SQL-invoked routine. A subject routine of an invocation isan SQL-invoked routine that may be invoked by a
<routine invocation>. After the selection of the subject routine of a <routine invocation>, the SQL arguments
are evaluated and the SQL-invoked routine that will be executed is selected. If the subject routineis an instance
SQL -invoked method that is not an external Java routine, then the SQL -invoked routine that is executed is
selected from the set of overriding methods of the subject routine. (The term “set of overriding methods” is
defined in the General Rules of Subclause 10.4, “ <routine invocation>", in ISO/IEC 9075-2.) The overriding
method that is selected isthe overriding method with asubject parameter the type designator of whose declared
type precedes that of the declared type of the subject parameter of every other overriding method in the type
precedence list of the most specific type of the value of the SQL argument that corresponds to the subject
parameter. (See the General Rules of Subclause 10.4, “<routine invocation>", in ISO/IEC 9075-2.) If the
instance SQL -invoked method isan external Javaroutine, theterm “ set of overriding methods” isnot applicable;
for such methods, the capabilities provided by overriding methods duplicate Java's own mechanisms and the
subject routine executed is the one that would be invoked when no overriding methods are specified. If the
subject routine is not an SQL -invoked method, then the SQL -invoked routine executed is that subject routine.
After the selection of the SQL -invoked routine for execution, the values of the SQL arguments are assigned to
the corresponding SQL parameters of the SQL -invoked routine and its <routine body> is executed. If the SQL -
invoked routineis an SQL routine, then the <routine body> is an <SQL procedure statement> that is executed
according to the General Rules of Subclause 13.5, “<SQL procedure statement>", in ISO/IEC 9075-2. If the
SQL-invoked routine is an external routine, then the <routine body> identifies a program written in some
standard programming language other than SQL that is executed according to the rules of that programming
language.

©ISO/IEC 2003 — Al rights reserved Concepts 11

I SO/IEC 9075-13:2003 (E)
4.2 SQL-invoked routines

| Replace the 6th paragraph| If the SQL-invoked routine is an external routine, then an effective SQL parameter
list is constructed before the execution of the <routine body>. The effective SQL parameter list has different
entries depending on the parameter passing style of the SQL-invoked routine. The value of each entry in the
effective SQL parameter list is set according to the General Rules of Subclause 8.3, “<routine invocation>".
When the SQL -invoked routine is not an external Java routine, the values in the effective SQL parameter list
are passed to the program identified by the <routine body> according to the rules of Subclause 13.6, “ Datatype
correspondences’, in | SO/IEC 9075-2; when the SQL-invoked routine is an external Javaroutine, valuesin the
effective SQL parameter list are passed to the program identified by <routine body> according to the rules of
Subclause 4.5, “ Parameter mapping”. After the execution of that program, if the parameter passing style of the
SQL-invoked routine is SQL, then the SQL -implementation obtains the values for output parameters (if any),
thevalue (if any) returned from the program, the value of the exception dataitem, and the value of the message
text (if any) from the values assigned by the program to the effective SQL parameter list. If the parameter
passing style of the SQL-invoked routineis JAV A, then such values are obtained from the values assigned by
the program to the effective SQL parameter list and the uncaught Java exception (if any). If the parameter
passing style of the SQL-invoked routine is GENERAL, then such values are obtained in an implementation-
defined manner.

4.3 Javaclass nameresolution

Typical JVMs provide a class name resolution, or search path, mechanism based on an environmental variable
called CLASSPATH. When aJVM encounters a previously unseen reference to a class, the members of the
list of directories and JARS appearing in the classpath are examined in order until either the classis found or
the end of thelist is reached. Failure to locate areferenced classis aruntime error that will often cause the
application that experiences it to terminate.

When a JVM istransitioned to being effectively within an SQL environment, the problem of managing the
JVM's class name resol ution continues to exist, but with a change in emphasis. To allow the creators of Java
applications agreater degree of control over class name resolution, and the added security associated with that
control, a classpath-like mechanism is defined to be a property of the JARs containing the Java applications,
rather than as an environmental variable of the current session (such as, for example, CURRENT_PATH for
dynamic statements). Therefore, if, while an external Javaroutine is being executed, a previously unseen class
reference is encountered, that classisfirst searched for in the JAR containing the definition of the currently
executing class, and, if it is not found, the class will be sought in the manner specified by the SQL-Java path
associated with that JAR (if any).

An SQL-Java path specifies how a VM resolves a class name when a class within a JAR references aclass
that is not a system class or not in the same JAR. SQLJ. ALTER _JAVA PATH s used to associated an SQL-
JavapathwithaJAR. An SQL-Javapathisalist of (referenced item, referenced JAR) pairs. A referenced item
can be either a class, apackage, or *' to specify the entire JAR. The SQL-Javapath list is searched in the order
the pairs are specified. For each (referenced item, referenced JAR) pair (RI, RJ):

— If Rl isthe class name, then the class shall be defined in RJ. If it is not, an exception condition is raised.

— If Rl isthe package of the class being resolved, then the class shall be defined in RJ. If itisnot, an exception
condition israised.

— If Rl is™" and the classis defined in RJ, then that resolution is used; otherwise, subsequent pairs are tested.

12 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.4 SQL result sets

4.4 SQL result sets

Cursors, or SQL result sets, appear to Java applications in two forms; the first, as an object of a class that
implementsthe interfacej ava. sql . Resul t Set asdefined in [JDBC] and [J2SE], referred to asa JDBC
ResultSet; the second, asan object of aclassthat implementstheinterfacesql j . runti ne. Resul t Set It -
er at or asdefined by ISO/IEC 9075-10, referred to as an SQLJ Iterator.

In ISO/IEC 9075-2, SQL-invoked procedures are declared to be able to return zero or more dynamic result
sets, referred to asresult set cursors. To be areturned result set cursor, a cursor's declaration shall specify
WITH RETURN, and the cursor shall be open at the point that the SQL -invoked procedure exits. While external
Javaroutines that are SQL-invoked procedures can likewise be declared to return zero or more dynamic result
sets, in some other respects, this part of |SO/IEC 9075's treatment of result set cursors differs from that of

I SO/IEC 9075-2.

In aJava application, all JDBC ResultSets and SQLJ Iterators are implicitly result set cursors, that is, their
underlying cursor declarationsimplicitly specify WITH RETURN. So, inthispart of I SO/IEC 9075, to actually
be areturned result set cursor it is not sufficient that the corresponding JDBC ResultSet's or SQLJ Iterator's
underlying cursor be open when the SQL-invoked procedure exits; the JDBC ResultSet or SQLJ Iterator shall
also have been explicitly assigned to aparameter of the subject Javaroutine that represents an output parameter.
Asdiscussed in Subclause 4.5, “ Parameter mapping”, and Subclause 8.3, “<routine invocation>", output
parameters are represented to a subject Java routine as the first element of a one dimensional array of a Java
data type that can be mapped to an SQL datatype. For dynamic result sets, the array shall be of a class that
implementstheinterfacej ava. sql . Resul t Set ortheinterfacesql j . runti me. Resul t Set | t er at or,
the JIDBC ResultSet or SQLJ Iterator shall have been explicitly assigned to the first element of that array, and
that JDBC ResultSet or SQLJ Iterator shall not have been closed.

It isimportant to note that this difference in how aresult set cursor becomes a returned result set cursor is
invisibleto the calling application. Asdescribed in Subclause 8.3, “<routineinvocation>", the calling application
will be returned zero or more dynamic result setsin the order in which the cursors were opened, just asin

I SO/IEC 9075-2; the order of the parametersin the subject Java routine does not impact the order in which the
calling application accesses the returned result sets.

45 Parameter mapping

Let ST be some SQL datatype and let JT be some Java data type.

ST and JT are simply mappableif and only if ST and JT are specified respectively in thefirst and second columns
of some row of the Data type conversion tables, Table B.1, entitled “JDBC Types mapped to Java Types’, in
[JDBC]. The Javadatatype JT is the corresponding Java data type of ST.

ST and JT are object mappableif and only if ST and JT are specified respectively in thefirst and second columns
of some row of the Data type conversion tables, Table B.3, entitled “Mapping from JDBC Typesto Java
ObjectTypes’, in [JDBC], or if the descriptor of ST specifiesthat it isan external Java data type and the
descriptor specifies JT as the <Java class name> in the <jar and class name>.

ST and JT are output mappable if and only if:

©ISO/IEC 2003 — Al rights reserved Concepts 13

I SO/IEC 9075-13:2003 (E)
4.5 Parameter mapping

— JT isaonedimensiona array type with an element datatype JT2 (that is, JT is“JT2[]”) and ST is either
simply mappableto JT2 or object mappable to JT2.

— JTisj ava. | ang. St ri ngBuf f er and its corresponding parameter in the augmented SQL parameter
declaration list isthe save area dataitem.

An SQL array typewith an element datatype ST and JT are array mappableif and only if JT isaonedimensional
array type with an element datatype JT2 and ST is either simply mappable to JT2 or object mappable to JT2.

ST and JT are mappable if and only if ST and JT are simply mappable, object mappable, output mappable, or
array mappable.

A Javadatatypeis mappableif and only if it is mappable to some SQL datatype.
A Javaclassisresult set oriented if and only if it is either:
— A classthat implements the Javainterfacej ava. sql . Resul t Set .

— A classthat implements the Javainterfacesql j . runti me. Resul t Set It er at or.
NOTE 2 — These classes are generated by iterator declarations (#sql it er at or) as specified in ISO/IEC 9075-10.

A Javadatatypeisresult set mappableif and only if it isaone-dimensional array type with an element type
that isaresult set oriented class.

A Java method with M parameters is mappable (to SQL) if and only if, for some N, 0 (zero) < N < M, the data
types of the first N parameters are mappabl e, the last M—N parameters are result set mappable, and the result
typeis either smply mappable, object mappable,or voi d.

A Javamethodisvisiblein SQL if and only if it is public and mappable. In addition, to be visible, a Javamethod
shall be static if used as the external Java routine of an SQL-invoked procedure or an SQL-invoked regular
function.

A Javaclassisvisiblein SQL if and only if it is public and mappable.

[JDBC] contains JDBC's SQL to Java data type mappings defined in the JDBC type mapping tables. If ST is
an external Java data type that appearsin the INFORMATION_SCHEMA.USER_DEFINED_TY PES view,
then let JT be ST's descriptor's <Javaclass name> in its <jar and class name>. JDBC's data type mapping tables
are effectively extended. A row (ST, JT) is considered to be an additional row in Table B.3, Mapping from
JDBC Types to Java Object Types, and arow (JT, ST) is considered to be an additiona row in Table B.4,
Mapping from Java Object Types to JDBC Types.

4.6 Unhandled Java exceptions

Java exceptions that are thrown during execution of a Java method in SQL can be caught, or handled, within
Java; if thisis done, then those exceptions do not affect SQL processing. All Java exceptions that are uncaught
when a Javamethod called from SQL compl etes appear in the SQL -environment as SQL exception conditions.

The message text may be specified in the Java exception specified in the Javat hr ow statement. If the Java

exception isaninstance of j ava. sqgl . SQLExcept i on, or asubtype of that type, then it may also specify
an SQLSTATE value. If that exception specifiesan SQLSTATE value, thefirst two characters of that SQLSTATE
shall be'38'. If that exception does not specify an SQL STATE va ue, then the default SQL exception condition

14 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.6 Unhandled Java exceptions

for an uncaught Java exception is raised. See Subclause 15.1, “ Class and subclass values for uncaught Java
exceptions’.

When a Java method executes an SQL statement, any exception condition raised in the SQL statement will be
raised in the Java method as a Java exception that is specifically thej ava. sql . SQLExcept i on subclass
of theJavaclassj ava. | ang. Except i on. For portability, aJavamethod called from SQL, that itself executes
an SQL statement and that catches an SQL Exception from that inner SQL statement, should re-throw that
SQLException.

4.7 Datatypes

This Subclause modifies Subclause 4.1, “ Data types’, in | SO/IEC 9075-2.

4.7.1 Non-predefined and non-SQL types

This Subclause maodifies Subclause 4.1.3, “ Non-predefined and non-SQL types’, in ISO/IEC 9075-2.

| Replace the 6th paragraph| Each host language has its own data types, which are separate and distinct from
SQL datatypes, even though similar names may be used to describe the data types. Mappings of SQL data
types to datatypes in host languages are described in Subclause 11.50, “<SQL-invoked routine>", in ISO/IEC
9075-2, in Subclause 20.1, “<embedded SQL host program>", in ISO/IEC 9075-2, and in Subclause 8.1,
“<embedded SQL host program>", in ISO/IEC 9075-10. Not every SQL datatype has a corresponding data
typein every host language.

4.8 User-defined types

This Subclause modifies Subclause 4.7, “ User-defined types’, in ISO/IEC 9075-2.

4.8.1 Introduction to user-defined types

This Subclause modifies Subclause 4.7.1, “ Introduction to user-defined types’ , in ISO/IEC 9075-2.

|Insert after 1st paragraph| User-defined types appear in two seemingly similar, but fundamentally differing,
formsin which the key differentiator is whether or not the create type statement for the user-defined type
specifies an external language of “JAVA”. When an external language of JAVA is specified, the user-defined
typeisan external Java data type and the create type statement defines a mapping of the user-defined type's
attributes and methods directly to the public attributes and methods of a subject Java class. Thisis different
from user-defined types that are not external Java data types. The differencesinclude:

— For every other user-defined type, there is no requirement for an association with an underlying class; each
method of a user-defined type that is not an external Java data type can be written in a different language

©ISO/IEC 2003 — Al rights reserved Concepts 15

I SO/IEC 9075-13:2003 (E)
4.8 User-defined types

(for example, one method could be written in SQL and another written in Fortran). Such user-defined types
cannot have methodswritten in Java. By contrast, all methods of an external Java datatype shall be written
in Java, (implicitly) have a parameter style of JAVA, and be defined in the associated Java class or one of
its superclasses.

— For every other user-defined type, there is no explicit association between a user-defined type's attributes
and any externa representation of their content. In addition, the mapping between a user-defined type's
methods and external methodsis made over time by subsequent CREATE METHOD statements. By contrast,
for external Java datatypes, the association between the user-defined type's attributes and methods and the
public attributes and methods of a subject Java classis specified by the create type statement.

— For external Java data types, the mechanism used to convert the SQL -environment's representation of an
instance of a user-defined type into an instance of a Java classis specified in the USING <interface speci-
fication> clause. Such conversionsare performed, for example, when an external Java datatypeis specified
as a(subject) parameter in amethod or function invocation, or when a Java object returned from a method
or function invocation is stored in a column declared to be an external Java datatype. <interface specifica-
tion> can be either SERIALIZABLE, specifying the Java-defined interfacej ava. i 0. Seri al i zabl e
(not to be confused with the isolation level of SERIALIZABLE), or SQLDATA, specifying the JDBC-
defined interfacej ava. sql . SQLDat a. See Subclause 9.4, “<user-defined type definition>".

— For every other user-defined type, there is no explicit support of static attributes. For external Java data
types, the <user-defined type definition> is allowed to include <static field method spec>s that define
observer methods against specified static attributes ofthe subject Java class.

The scope and persistence of any modifications to static attributes made during the execution of a Java
method is implementati on-dependent.

— For every other user-defined type, the implementation of every method that isn't an SQL routine exists
externally to the SQL-environment. For external Java data types, the implementation of the methodsis
provided by a specified subject Java class that exists within the SQL-environment in an installed JAR.

— External Java data types may only be structured types, not distinct types.

— Support for the specification of overriding methods is not provided for methods that are external Javarou-
tines.

NOTE 3— Once an external Javadatatype has been created, its usein SQL statements executed by the containing SQL -implementation
issimilar to that of other user-defined types.

4.8.2 User-defined type descriptor

This Subclause modifies Subclause 4.7.2, “ User-defined type descriptor” , in 1SO/IEC 9075-2.
|Augment the 4th list element in the 1st paragraph by inserting “COMPARABLE,”

— | Insert into thelist in the 1st paragraph| Anindication of whether the user-defined type is an external Java
datatype.

| Insert following the 1st paragraph| If the user-defined typeis an external Java datatype, then the user-defined
type descriptor also includes:

— The <jar and class name> of the user-defined type.

16 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.8 User-defined types

— The<interface specification> of SERIALIZABLE or SQLDATA.

— Theattribute descriptor of every originally-defined attribute and every inherited attribute of the user-defined
type.

— If <method specification list> is specified, then, for each <method specification> contained in <method
specification list>, a method spec descriptor that includes:

The <method name>.

The <specific method name>.

The <SQL parameter declaration list>.

The <returns data type>, and indication of SELF ASRESULT.
The <result cast from type>, if any.

The package, class, and name of the Java routine corresponding to this method and, if specified, its
signature.

Anindication of whether STATIC or CONSTRUCTOR is specified.
If STATIC is specified, then an indication of whether thisis a static field method.

If thisis astatic field method, then the <Javafield name> of the static field and the <Java class name>
of the class that declares that static field.

An indication of whether the method is deterministic.

An indication of whether the method possibly writes SQL data, possibly reads SQL data, possibly
contains SQL, or does not possibly contain SQL.

An indication of whether the method should not be invoked if any argument isthe null value, in which
case the value of the method is the null value.

If the user-defined type is not an external Java data type, then the user-defined type descriptor also includes:

— An indication of whether the user-defined type is a structured type or a distinct type.

— If the representation is a predefined data type, then the descriptor of that type; otherwise, the attribute
descriptor of every originally-defined attribute and every inherited attribute of the user-defined type.

— If the <method specification list> is specified, then, for each <method specification> contained in <method
specification list>, a method specification descriptor that includes:

The <method name>.
The <gpecific method name>.

The<SQL parameter declaration list> augmented to includetheimplicit first parameter with parameter
name SELF.

The <language hame>.
If the <language name> is not SQL, then the <parameter style>.
The <returns data type>.

©ISO/IEC 2003 — Al rights reserved Concepts 17

I SO/IEC 9075-13:2003 (E)
4.8 User-defined types

e The <result cast from type>, if any.

e Anindication as to whether the <method specification> is an <original method specification> or an
<overriding method specification>.

« |If the <method specification> is an <original method specification>, then an indication of whether
STATIC or CONSTRUCTOR is specified.

+ Anindication whether the method is deterministic.

e Anindication whether the method possibly writes SQL data, possibly reads SQL data, possibly contains
SQL, or does not possibly contain SQL.

« Anindication whether the method should not be invoked if any argument is the null value, in which
case the value of the method is the null value.

NOTE 4 — The characteristics of an <overriding method specification> other than the <method name>, <SQL parameter declaration
list>, and <returns data type> are the same as the characteristics for the corresponding <original method specification>.

4.8.3 User-defined type comparison and assignment

This Subclause modifies Subclause 4.7.6, “ User-defined type comparison and assignment” , in |SO/IEC 9075-
2.

|Replace 5th paragraph| L et comparison function of a user-defined type T, be the ordering function included
in the user-defined type descriptor of the comparison type of Ty, if any.

| Replace 6th paragraph| Two values V1 and V2 whose most specific types are user-defined types T1 and T2 are
comparableif and only if T1 and T2 are in the same subtype family and each have some comparison type CT1
and CT2, respectively. CT1 and CT2 constrain the comparison forms and comparison categories of T1 and T2
to be the same and to be the same asthose of all their supertypes. If the comparison category is COMPARABLE,
then no comparison functions shall be specified for T1 and T2. If the comparison category is either STATE or
RELATIVE, then the comparison functions of T1 and T2 are constrained to be equivalent. If the comparison
category isMAP, they are not constrained to be equivalent.

4.84 Accessing static fields

The fields of a Java class can be defined to be either static or non-static. Static fields of a Java class can addi-
tionally be specified to befinal, which makesthem read-only. In Java, non-final fieldsare allowed to be updated.

SQL's <user-defined type definition> does not include a facility for specifying attributesto be STATIC. This
is, in part, because of the difficulty in specifying the scope, persistence, and transactional properties of static
attributesin a database environment. An external Java datatype's <user-defined type definition> does, however,
provide a mechanism for read-only access to the values of Java static fields. The <static field method spec>
clause defines a method name for a method with no parameters; its <external variable name clause> specifies
the name of astatic field of the subject Java class or a superclass of the subject Javaclass. A static field method
isinvoked in the normal manner for STATIC methods and returns the value of the specified Java static field.
Whether final or non-final, SQL provides no mechanism for updating the values of Java static fields.

18 Routines and Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.8 User-defined types

4.8.5 Converting objects between SQL and Java

While application programmers or end users manipulating Java objectsin the database through SQL statements
need not be aware of the specific mechanism used to achieve that conversion, the developer of the Java class
itself needsto preparefor it in the form of implementing special Javainterfaces(i.e.,j ava. i 0. Seri al i z-
abl eorj ava. sql . SQLDat a). <user-defined type definition> introduces a clause for specifying theinterface
for converting object state information between the SQL database and Java in the scope of SQL statements.
As mentioned above, a conversion from SQL to Java can potentially take place when an object that has been
persistently stored in the SQL database is accessed from inside an SQL statement to retrieve attribute (or field)
values, or to invoke a method on the object, or when the object is used as an input argument in the invocation
of amethod. A conversion in the opposite direction, from Javato SQL, may be required when anewly created
or modified object, or an object that is the return value of a method invocation, needs to be persistently stored
in the database.

This International Standard supports these options to specify object state conversion in the <externa Javatype
clause>:

— If the <user-defined type definition> specifies an <interface specification> of SERIALIZABLE, then the
Javainterfacej ava. i 0. Seri al i zabl e isused for object state conversion.

— If the <user-defined type definition> specifies an <interface specification> of SQLDATA, then the Java
interfacej ava. sqgl . SQLDat a defined in [JDBC] and [J2SE] is used for object state conversion.

— If the <user-defined type definition> does not specify an <interface specification>, then it isimplementation-
defined whether the Javainterfacej ava. i 0. Seri al i zabl e ortheJavainterfacej ava. sql . SQLDat a
will be used for object state conversion.

4851 SERIALIZABLE

If the <interface specification> of a<user-defined type definition> specifies SERIALIZABLE, then object state
communication is based on the Javainterface| ava. i 0. Seri al i zabl e. The Java classreferenced in the
<external Java class clause> of the <user-defined type definition> shall specify “i npl enent s

java.io. Seri al i zabl e” and shall provide a niladic constructor.

In this case, the SQL object state that is stored persistently and made available to methods of the SQL typeis
defined entirely by the Java serialized object state. The attributes defined for the SQL type shall correspond to
public fields of the corresponding Java class, which shall be listed in the <external Java attribute clause> of
each attribute. Consequently, the SQL attributes define access to those portions of the object state that are
intended to become visible inside SQL statements, but might not comprise the complete state of the object
(which may include additional fieldsin the Java class).

4.85.2 SQLDATA

If the <interface specification> of a <user-defined type definition> specifies SQLDATA then object state
communicationis based on the Javainterfacej ava. sqgl . SQLDat a defined in [JDBC] and [J2SE]. The Java

©ISO/IEC 2003 — Al rights reserved Concepts 19

I SO/IEC 9075-13:2003 (E)
4.8 User-defined types

class referenced in the <external Java class clause> of the <user-defined type definition> shall specify
“i npl erent s java. sql . SQ.Dat a” and shall provide a niladic constructor.

In this case, only the attributes defined in the statement comprise the complete state of the SQL object type.
Additional public or private attributes defined in the Java class do not become part of the object state defined
by this part of ISO/IEC 9075. The Java object representation may be entirely different from the SQL object
attributes, if desired. For example, an SQL Point type may define a geometric point in terms of cartesian coor-
dinates, while the corresponding Java class defines it using polar coordinates. The only requirement to be met
by the implementor of the Java classis that the implementations of thej ava. sqgl . SQLDat a methods
readSQL and wr i t eSQL read and write the attributes in the same order in which they are defined in the
<user-defined type definition>.

To improve portability, it is possible to also specify <external Java attribute clause>sfor SQL attributes, even
if an <interface specification> of SQLDATA is specified. However, the <external Java attribute clause>s are
ignored in this case, because they are not needed for implementing attribute accessin SQL or for converting
objects between SQL and Java.

4.8.5.3 Developing for portability

Thefollowing guidelines provide maximum portability of Java classes across different implementations of this
part of | SO/IEC 9075 that may not support both the SERIALIZABLE and the SQLDATA options:

— The Javaclass used for implementing the SQL type should implement bothj ava. i 0. Seri al i zabl e
andj ava. sql . SQLDat a.

— TheJavaclass should define the complete object state that needsto become persistent or hasto be preserved
across invocations as public Javafields.

— The EXTERNAL NAMEs of the SQL attributes should be specified.

The <interface using clause> should be omitted in the <user-defined type definition>, so that an implementation
that does not support both interfaces can default to the interface that it supports.

4.9 Built-in procedures

This part of ISO/IEC 9075 differs dlightly from other parts of 1ISO/IEC 9075 in its treatment of the schema
object introduced to install the external Java routines and external Java data typesin an SQL-environment —
that is, initstreatment of JARs. Rather than define new SQL -schema statements that (for example) add or drop
JARs using optional clausesto cause execution of their contained deployment descriptors, this International
Standard introduces a set offour built-in procedures and a new schema in which those procedures are defined.

The new schema— named SQLJ— is, like the schema hamed INFORMATION_SCHEMA, defined to exist
in all catalogs of an SQL system that implements this part of 1SO/IEC 9075, and to contain al of the built-in
procedures defined in this part of ISO/IEC 9075.

Built-in procedures defined in this part of ISO/IEC 9075 are:
— SQ.J. I NSTALL_JAR— toload a set of Javaclassesin an SQL system.

20 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
4.9 Built-in procedures

— SQ.J. REPLACE_JAR — to supersede a set of Java classesin an SQL system.
— SQLJ. REMOVE_JAR— to delete aprevioudly installed set of Java classes.
— SQLJ. ALTER_JAVA PATH— to specify a path for name resolution within Java classes.

410 Privileges

This Subclause modifies Subclause 4.34.2, “ Privileges’, in ISO/IEC 9075-2.

|Augment thelist in the 1st paragraph by inserting “ JAR,”

|Replace 2nd paragraph, 1st bullet|

— Theidentification of the base table, view, column, domain, character set, collation, trangliteration, user-
defined type, table/method pair, trigger, SQL -invoked routine module, sequence generator, or JAR that the
descriptor describes.

|Rep| ace 8th paragraph| A privilege descriptor with an <action> of USAGE is called a usage privilege
descriptor and identifies the existence of a privilege on the domain, user-defined type, character set, collation,
trangliteration, sequence generator, or JAR identified by the privilege descriptor.

|Insert after 8th paragraph| The privileges for facilities defined in this part of 1SO/IEC 9075 are as follows:

— Theprivileges required to invoke the SQLJ. | NSTALL_JAR, SQLJ. REPLACE_JAR,and
SQLJ. REMOVE_JAR procedures are implementation-defined.

NOTE 5— Thisis similar to the implementation-defined privileges required for creating a schema.

— Only the owner of the JAR is permitted to invoke the SQLJ. ALTER_JAVA_PATH procedure and the
owner shall also have the USAGE privilege on each JAR referenced in the path argument.

— Invocations of <SQL-invoked routine> and <drop routine statement> to define and drop external Java
routines are governed by the normal Access Rules for SQL -schema statements.

— Invocations of Java methods referenced by SQL names are governed by the normal EXECUTE privilege
on SQL routine names.

It isimplementation-defined whether a Javamethod called by an SQL name executes with “definer'srights’
or “invoker'srights’ — that is, whether it executes with the user-name of the user who performed the <SQL -
invoked routine> or the user-name of the current user.

4.11 JARs

A JAR isazip-formatted file containing a set of Javacl ass and ser files and optionally a deployment
descriptor file. Installed JARs provide theimplementation of external Javaroutinesand external Javadatatypes
to an SQL-environment.

JARs are created outside the SQL-environment. They are copied into the SQL-environment by the
SQLJ. I NSTALL_JAR procedure. No subsequent SQL statement or procedure modifies an installed JAR in

©ISO/IEC 2003 — Al rights reserved Concepts 21

1 SO/l EC 9075-13:2003 (E)
411 JARs

any way, other than to remove it from the SQL-environment, to replace it in its entirety, or to alter its SQL-
Java path. In particular, no SQL operation adds classesto a JAR, removes classes from a JAR, or replaces
classesinaJAR. Thereason for this“no modification” principlefor installed JAR isthat JARs are often signed,
and often contain manifest data that might be invalidated by modification of JARS by the SQL-environment.

Each installed JAR is represented by a JAR descriptor. A JAR descriptor contains:
— The catalog name, schema name, and JAR identifier of the JAR.

— The SQL-Java path of the JAR.

4.11.1 Deployment descriptor files

When aJARisinstalled, one or more <SQL -invoked routine>sthat define externa Javaroutines shall be executed
before the static methods of its contained Java classes can be used as SQL-invoked routines, and one or more
<user-defined type definition>s shall be executed beforeits contained classes can be used as user-defined types.
In addition, <grant privilege statement>s may be required to define privileges for newly created SQL-invoked
routines and user-defined types. Later, when a JAR is removed, corresponding <drop routine statement>s,
<drop data type statement>s, and <revoke statement>s shall be executed.

If aJARisto beinstalled in several SQL implementations, the <SQL -invoked routine>s, <user-defined type
definition>s, <user-defined ordering definition>s, <grant privilege statement>s, <drop routine statement>s,
<drop data type statement>s, <drop user-defined ordering statement>s, and <revoke statement>s will often be
the same for each implementation. To assist the automation of repeated installations, deployment descriptor
files contain the variants of SQL-schema statements defined in this part of 1SO/IEC 9075. These statements
are grouped into multi-statement install actions and remove actions respectively executed by

SQLJ. I NSTALL_JARand SQLJ. REMOVE_J AR procedures when deployment is requested. In addition, an
implementation-defined implementor block is provided to allow specification of custom install and remove
actions. Since the SQL -schema statements refer to their containing JAR in the <SQL -invoked routine>s and
<user-defined type definition>s, within a deployment descriptor file, the JAR name“t hi sj ar” isused asa
place holder JAR name for the containing JAR.

Thispart of 1SO/IEC 9075 provides anew mechanism to execute its variants of SQL-schemastatements, namely
by requesting deployment during invocation of SQLJ. | NSTALL_JARand SQLJ. REMOVE_J AR procedures.
A conforming SQL-implementation is required to support either deployment descriptor based execution of its
SQL -schema statements (Feature J531, “Deployment”) or another standard statement execution mechanism
such as direct invocation or embedded SQL (Feature J511, “Commands’); aconforming SQL -implementation
is not required to support both mechanisms.

22 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
5.1 <token> and <separator>

5 Lexical elements

This Clause modifies Clause 5, “ Lexical elements’ , in 1SO/IEC 9075-2.

51 <token> and <separator>
This Subclause modifies Subclause 5.2, “ <token> and <separator>", in ISO/IEC 9075-2.

Function

Specify lexical units (tokens and separators) that participate in SQL language.

Format

<non-reserved word> ::=
Il Al alternatives from|SQ |EC 9075-2
| COVPARABLE
| | NTERFACE
| JAVA

| SQLDATA

<reserved word> ::=
Il Al alternatives froml|SQ|EC 9075-2
| JAR

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

©ISO/IEC 2003 — All rights reserved Lexical elements 23

I SO/IEC 9075-13:2003 (E)
5.1 <token> and <separator>

Conformance Rules

No additional Conformance Rules.

24 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
5.2 Namesand identifiers

5.2 Namesand identifiers

This Subclause modifies Subclause 5.4, “ Names and identifiers”, in | SO/IEC 9075-2.

Function

Specify names.

Format

<jar name> ::= [<schema nane> <period>] <jar id>

<jar id> ::= <identifier>

<Java cl ass name> ::= [<packages> <period>] <class identifier>

<jar and class nane> ::= <jar id> <colon> <Java cl ass nane>

<qualified Java field nane> ::= [<Java cl ass nane> <period>] <Java field nane>
<packages> ::= <package identifier> [<period> <package identifier>1]...
<package identifier> ::= <Java identifier>

<class identifier> ::= <Java identifier>

<Java field name> ::= <Java identifier>

<Java method name> ::= <Java identifier>

<Java identifier> ::= 11 See the Syntax Rul es

Syntax Rules

1) <Javaidentifier> shall beavalid identifier according to the rules of Java parsing and lexical
anaysis.

NOTE 6 — The rules of Java parsing and lexical analysis are specified in [Java].

2) |Insert this SR| The character set supported, and the maximum lengths of the <package identifier>, <class
identifier>, <Javafield name>, and <Java method name>are implementation-defined.

3) |Insert after SR 18)| Two <jar name>s are equivalent if and only if they have equivalent <jar id>sand
equivalent implicit or explicit <schema name>s.

Access Rules

No additional Access Rules.

©ISO/IEC 2003 — All rights reserved Lexical elements 25

I SO/IEC 9075-13:2003 (E)
5.2 Namesand identifiers

General Rules

1) A <jar name> identifies aJJAR.

2) A <jar id> represents an unqualified JAR name.

3) A <Java class name> identifies afully qualified Java class.

4) A <packages> identifies a fully qualified Java package.

5) A <package identifier> represents an unqualified Java package name.

6) |Insert this GR| A <classidentifier> represents an unqualified Java class name.
7) |Insert thisGR| A <Javafield name> represents the name of afield within a Java class.

8) |Insert this GR|A <Java method name> represents the name of a method within a Java class.

Conformance Rules

No additional Conformance Rules.

26 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
6.1 <method invocation>

6 Scalar expressions

This Clause modifies Clause 6, “ Scalar expressions’, in ISO/IEC 9075-2.

6.1 <method invocation>
This Subclause modifies Subclause 6.16, “ <method invocation>" , in 1SO/IEC 9075-2.

Function

Reference an SQL -invoked method of a user-defined type value.

Format

No additional Formmt itens.

Syntax Rules

1) |Insertafter SR2)|If UDT isan externa Javadatatype, then <method invocation> shall immediately contain
<direct invocation>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Scalar expressions 27

I SO/IEC 9075-13:2003 (E)
6.2 <new specification>

6.2 <new specification>
This Subclause modifies Subclause 6.18, “ <new specification>" , in |SO/IEC 9075-2.

Function

Invoke a method on a newly-constructed value of a structured type.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) |Insert this GR|If Feature J571, “NEW operator” is not supported, then the mechanism used to invoke a
constructor of an external Java data type is implementation-defined.

Conformance Rules

1) Without Feature J571, “NEW operator”, conforming SQL language shall not contain a
<new specification> in which the schemaidentified by the implicit or explicit <schemaname> of the
<routine name> RN immediately contained in <routine invocation> immediately contained in the <new
specification> contains a user-defined type whose user-defined type name is RN and that is an external
Java datatype.

28 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
7.1 <comparison predicate>

7 Predicates

This Clause modifies Clause 8, “ Predicates’ , in 1SO/IEC 9075-2.

7.1 <comparison predicate>
This Subclause modifies Subclause 8.2, “ <comparison predicate>" , in 1SO/IEC 9075-2.

Function

Specify a comparison of two row values.

Format

No additional Formmt itens.

Syntax Rules

1) NOTE 7 — |Replace Note 179 The comparison form and comparison categories included in the user-defined type descriptors of
both UDT1 and UDT2 are constrained to be the same and to be the same as those of all their supertypes. If the comparison category

is COMPARABLE, then no comparison functions shall be specified for T1 and T2. If the comparison category is either STATE
or RELATIVE, then UDT1 and UDT?2 are constrained to have the same comparison function; if the comparison category isMAP,
they are not constrained to have the same comparison function.

Access Rules

No additional Access Rules.

General Rules

1) [Insert before GR 1)b)iv)3) and its subrules] If the comparison category of UDT, is COMPARABLE, then:

a) The subject SQL datatype shall be an external Java datatype. Let JC be the subject Java class of that
external Java datatype.

NOTE 8 — Syntax Rulesin Subclause 9.11, “<user-defined ordering definition>", require that JC implement the Javainterface
j ava. | ang. Conpar abl e. Theinterfacej ava. | ang. Conpar abl e requires an implementing Java classto have a
method named conpar eTo, whose result datatypeis Javai nt .

b) Let XJVbethe vaue of X in the associated VM. Let YJV be the value of Y in that associated VM.

) X=Y

©ISO/IEC 2003 — All rights reserved Predicates 29

I SO/IEC 9075-13:2003 (E)
7.1 <comparison predicate>

has the sameresult asif the VM executed the Java boolean expression

XJV. conpareTo(YJV) ==
d X<Y
has the same result as if the VM executed the Java boolean expression
XJV. conmpareTo(YJV) < 0
g X<>Y
has the same result asif the VM executed the Java boolean expression
XJV. conpareTo(YJV) =0
fy X>Y
has the same result asif the VM executed the Java boolean expression
XJV. conpareTo(YJV) > 0
g X<=Y
has the same result asif the VM executed the Java boolean expression
XJV. conpareTo(YJV) <=0
hy X >=Y
has the same result asif the VM executed the Java boolean expression

XJV. conmpareTo(YJV) >= 0

Conformance Rules

No additional Conformance Rules.

30 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.1 <Javaparameter declaration list>

8 Additional common elements

This Clause modifies Clause 10, “ Additional common elements’ , in | SO/IEC 9075-2.

8.1 <Javaparameter declaration list>

Function

Specify the Javatypes of parameters for a Java method.

Format

<Java paraneter declaration list> ::= <left paren> [<Java paraneters>] <right paren>
<Java paraneters> ::= <Java data type> [{ <comme> <Java data type> }...]

<Java data type> ::=1!! See the Syntax Rul es

Syntax Rules

1) A <Javadatatype>isaJavadatatypethat ismappable or result set mappable, as specified in Subclause 4.5,
“Parameter mapping”. The <Java data type> names are case sensitive, and shall be fully qualified with
their package names, if any.

Access Rules

None.

General Rules

None.

Conformance Rules
1) Without Feature J631, “Java signatures’, conforming SQL language shall not contain a <Java parameter

declaration list> that is not equivalent to the default Java method signature as determined in Subclause 8.6,
“Java routine signature determination”.

©ISO/IEC 2003 — All rights reserved Additional common elements 31

I SO/IEC 9075-13:2003 (E)
8.2 <SQL Java path>

8.2 <SQL Javapath>

Function

Control the resolution of Java classes across installed JARS.

Format
<SQ. Java path> ::=[<path elenent>...]
<path elenment> ::= <left paren> <referenced cl ass> <coma> <resolution jar> <right paren>

<referenced class> ::=
[<packages> <period>] <asterisk>
| [<packages> <period>] <class identifier>

<resolution jar> ::= <jar name>

Syntax Rules

None.

Access Rules

None.

General Rules

1) WhenalJdavaclassCJinaJAR Jisexecuted in an SQL-implementation, let P be the <SQL Java path>
associated with J by an invocation of the SQLJ. ALTER_JAVA PATH procedure.

2) Every dtatic or dynamic reference in CJ to a class with the name CN that is not a system class and is not
contained in J isresolved as follows.

For each <path element> PE (if any) in P, in the order in which they were specified:

a) Let RC and RJ bethe <referenced class> and <resolution jar>, respectively, contained in PE. Let JR
be the JAR referenced by RJ.

b) If RJisnot the name of an installed JAR, then an exception condition is raised: Java execution —
invalid JAR name in path.

NOTE 9 — This exception can only occur if the implementation-defined action taken for an SQLJ. ALTER_JAVA PATH
call that raised an exception resultsin leaving invalid <jar name>s in the SQL -Java path.

¢) If RCisequivalent to CN, then:

i) If CN isthe name of some class C in JR, then CN resolvesto class C.

32 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.2 <SQL Java path>

i) If CN is not the name of aclassin JR, then an exception condition is raised: Java execution —
unresolved class name.

d) If RC simply contains <asterisk>and simply contains <packages>, then let PKG be the specified
<packages> and let Cl be the <class identifier> of CN. If the <Java class name> of CN is PKG.Cl,
then:

i) If CN isthe name of aclass C in JR, then CN resolvesto class C.

i) If CN isnot the name of aclassin JR, then an exception condition is raised: Java execution —
unresolved class name.

€) If RC simply contains <asterisk> and does not simply contain <packages>, then:
i) If CN isthe name of aclass Cin JR, then CN resolvesto class C.

i) If CN is not the name of aclassin RJ, then CN is not resolved by the <path element> being
considered and the next <path element> in P is considered.

3) If CNisnot resolved after all <path element>sin P have been considered, then an exception condition is
raised: Java execution — unresolved class name.

Conformance Rules

1) Without Feature J601, “ SQL -Javapaths’, conforming SQL language shall not contain an <SQL Java path>.

©ISO/IEC 2003 — All rights reserved Additional common elements 33

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

8.3 <routineinvocation>
This Subclause modifies Subclause 10.4, “ <routine invocation>", in | SO/IEC 9075-2.

Function

Invoke an SQL-invoked routine.

Format

No additional Format itens.

Syntax Rules
1) |Insert this SR|If SRisan external Javaroutine, then:

a) No<SQL argument>immediately contained in <SQL argument list> shall immediately contain <gen-
eralized expression>.

b) If validation of the <Java parameter declaration list> has been implementation-defined to be performed
by <routineinvocation>, then the Syntax Rules of Subclause 8.6, “ Javaroutine signature determination”,
are applied with <routine invocation>, a method specification index of 0 (zero), and subject routine
R

Access Rules

No additional Access Rules.

General Rules

1) |Insert after GR 3)b)i)| If Risan external Javaroutine, then let CPV; be an implementation-defined non-
null value of declared type T;.

2) |Insert before GR 4)|If Risan external Javaroutinethat isnot astatic field method, then let P be the subject
Java method of R.

NOTE 10— The subject Javamethod of an external Javaroutineisdefined in Subclause 8.6, “ Javaroutine signature determination”.

3) |Replacethefirst paragraph of GR 4)|If Ris an external routine that is not an external Java routine, then:

4) |Replacethefirst paragraph of GR 5)d)ii)| If Ris not a static field method, then:
5) |Insert before GR 8)d)| If R specifies PARAMETER STYLE JAVA, then

Case:

a) If Risan SQL-invoked function that is an array-returning external function or a multiset-returning
external function, then the effective SQL parameter list ESPL of Ris set asfollows:

34 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

b)

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

If R'sreturned array's element type or returned multiset's element type is arow type, then let
FRN be the degree of the element type; otherwise, let FRN be 1 (one).

For i ranging from 1 (one) to PN, thei-th entry in ESPL is set to CPV;.

For i ranging from PN+1 to PN+FRN, the i-th entriesin ESPL are the result data items.

For i equal to PN+FRN+1, thei-th entry in ESPL is the save area dataitem and for i equal to
PN+FRN+2, thei-th entry in ESPL isthe call type data item.

Set the value of the save area dataitem (that is, SQL argument value list entry PN+FRN+1) to
null and set the value of the call type dataitem (that is, SQL argument valuelist entry PN+FRN+2)
to-1.

NOTE 11 — Initialization of the save area data item occurs in Subclause 8.5, “Execution of array-returning functions”; for
now, it is set to null.

Otherwise, for i ranging from 1 (one) to PN, let the effective SQL parameter list ESPL of R bethelist
of values CPV;.

6) |Replace thefirst paragraph of GR 8)f)ii)1)| If Ris not an external Javaroutine and Ris neither an array-

returning external function nor a multiset-returning external function, then P is executed with alist of EN
parameters PD; whose parameter names are PN; and whose values are set as follows:

7) |Insert before GR 8)f)ii)2)| If Risan externa Javaroutine and Ris not an array-returning external function

or amultiset-returning external function, then P is executed in a manner determined as follows and with a
list of parameters PD; whose values are set as follows:

a)
b)

Let SRD be routine descriptor of R.

If SRD indicates that R is an SQL-invoked method, then let SRUDT be the user-defined type whose
descriptor contains SR's corresponding method specification descriptor MSD and let JCLSN be the
subject Java class of SRUDT.

Case:

i)

If SRD indicatesthat R is an SQL-invoked method and MSD indicates that Ris a static field
method, then:

1) Let JSF bethe subject static field of R.

NOTE 12 — The “subject static field” of an SQL-invoked method is defined in Subclause 8.6, “ Javaroutine
signature determination”.

2) Let ERT bethe effective returns data type of R.

NOTE 13— “effectivereturnsdatatype’ isdefined in the Syntax Rules of Subclause 10.4, “ <routineinvocation>",
in ISO/IEC 9075-2.

3) Case
A) If ERT isauser-defined type, then

1) Let SICE be the most specific Javaclass of the value of JSF, and let STU bethe
user-defined type whose subject Java classis SICE and whose user-defined type
iSERT or isasubclass of ERT.

©ISO/IEC 2003 — All rights reserved Additional common elements 35

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

1)) Let UISbe the <interface specification> specified by the user-defined type
descriptor of STU.

Case:
1) If UISisSERIALIZABLE, then:

a) Thesubject Javaclass SICE'swri t eCbj ect () method is executed
to convert the Java value of JS- to the SQL value SSFV of user-defined
type STU.

b) The method of execution of the subject Java class's implementation of
writeQbj ect () isimplementation-defined.
NOTE 14 — If UISis SERIALIZABLE, then, as described in Subclause 9.4, “ <user-
defined type definition>", the descriptor's subject Java classimplementsthe Javainterface

java.io. Seri al i zabl e anddefinesthat interface'swr i t eCbj ect () method as
described by the [J2SE].

2) 1f UISisSQLDATA, then:

a) The subject Java class SICE's method wr i t eSQL() isexecuted to
convert the Java value of JS- to the SQL value SSFV of user-defined
type STU.

b) The method of execution of the subject Java class's implementation of
writeSQL() isimplementation-defined.

NOTE 15 — If UISis SQLDATA, then, as described in Subclause 9.4, “<user-defined
type definition>", the descriptor's subject Java class implements the Javainterface

j ava. sql . SQLDat a and definesthat interface'swr i t eSQL() method as described
by [JDBC] and [J2SE].

B) Otherwise, the value of SS-V is set to the value of JSF.

4) Let theresult of the <routine invocation> be the result of assigning SSFV to atarget of
declared type ERT according to the rules of Subclause 9.2, “ Store assignment”, in | SO/IEC
9075-2. No further General Rules of this Subclause are applied.

Otherwise:

1) Let JPDL be an ordered list of the data types of the Java parameters declared for P in the
order they appear in P's declaration.

NOTE 16 — If any Java parameter is declared to be of an array class, then JPDL reflects that information.

2) If SRD indicatesthat Ris an SQL-invoked method and MSD indicates that R is an instance
method or a constructor method, then prefix JPDL with the subject parameter as follows.
Case:

A) If JPDL contains one or more Java data types, then prefix JPDL with JCLSN.
B) Otherwise, replace JPDL with JCLSN.
3) Let JP; bethei-th datatypein JPDL.

36 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

4) Foriranging from 1 (one) to EN, if JP; is of an array class, then let JP; be the component
type of JP;.

NOTE 17 — The component type of a Javaarray is defined in [Java].

5) Forirangingfrom 1 (one) to EN, if ESP; isthe SQL null valueand if JP; isany of bool ean,

byt e,short,int,l ong,fl oat, or doubl e, then an exception condition is raised:
external routine invocation exception — null value not allowed.

6) Foriranging from 1 (one) to EN,
Case:

A) If thevaue of ESP; isauser-defined type, then let the most specific type of ESP; be U,

let UISbe the <interface specification> specified by the user-defined type descriptor of
U, and let SICU be the subject Java class of U.

Case:
1 If UISis SERIALIZABLE, then:

1) Thesubject Javaclass SICU'smethodr eadObj ect () isexecuted to con-
vert the value of ESP; to a Java object, the value of PD;.

2) The method of execution of the subject Java class's implementation of
readObj ect () isimplementation-defined.

NOTE 18 — If UISis SERIALIZABLE, then, as described in Subclause 9.4, “ <user-defined type
definition>", the subject Javaclass of U implementsthe Javainterfacej ava. i 0. Seri al i zabl e
and defines that interface'sr eadChj ect () method as described by [J2SE].

1) If UISisSQLDATA, then:

1) The subject Javaclass SICU's method r eadSQL() is executed to convert
the value of ESP; to a Java object, the value of PD;.

2) The method of execution of the subject Java class's implementation of
readSQL() isimplementation-defined.

NOTE 19— If UISisSQLDATA, then, asdescribed in Subclause 9.4, “ <user-defined type defini-
tion>", the subject Java class of U implementsthe Javainterfacej ava. sql . SQLDat a and
defines that interface'sr eadSQL() method as described by [JDBC] and [J2SE].

B) Otherwise, the value of PD;, of the Java datatype JP;, is set to the value of ESP;.
7) Foriranging from 1 (one) to EN, if P; isan output SQL parameter or both an input SQL
parameter and an output SQL parameter, then:

A) Let PAD; be aJava array of length 1 (one) and data type JP; initialized as specified in
[Java)].
NOTE 20 — PAD; is a Java object effectively created by execution of the Java expression new JP;[1].

B) If Pjisboth aninput SQL parameter and an output SQL parameter, then PAD;[0] is set
to PD;.

©ISO/IEC 2003 — All rights reserved Additional common elements 37

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

C) PD; isreplaced by PAD;.
8) Let JPEN be the number of Java datatypesin JPDL.

9) If JPEN isgreater than EN, then prepare the Java parameters for the DYNAMIC RESULT
SET parameters as follows.

For i ranging from EN+1 to JPEN:

A) Let PAD; be aJavaarray of length 1 (one) and data type JP; initialized as specified in
[Javal.
NOTE 21 — PAD; is a Java object effectively created by execution of the Java expression new JP;[1].

B) Thevalue of PD; is set to the value of PAD;.

10) Let JCLSN, JMN, and ERT be respectively the subject Java class name, the subject Java
method name, and the effective returns datatype of R. The subject Javamethod of the subject
Javaclassisinvoked asfollows.

Case:
A) If Risan SQL-invoked procedure, then:

1 If JPEN is greater than O (zero), then the following Java statement is effectively
executed:

JCLSN. JWN (PDy, ..., PDypeN)

1) If JIPEN equalsO (zero), then thefollowing Javastatement is effectively executed:
JCLSN. JWN () ;
B) If Risan SQL-invoked method whose routine descriptor specifies STATIC or Risan
SQL-invoked regular function, then:

1) If ERT isauser-defined type, then let SICE and SICEN be the subject Java class
and the subject Java class name of ERT, respectively.

1) If ERTisnot auser-defined type, then let SICEN be the Java returns data type
of the subject Java method.

I11) If IPEN isgreater than O (zero), then the following Java statement is effectively
executed:

SJCEN tenpU = JCLSN. JMN (PDy, ..., PDypen) ;

IV) If JPEN equals 0 (zero), then the following Java statement is effectively executed:
SJCEN tenpU = JCLSN.JWN () ;

C) If Risan SQL-invoked constructor method, then:

38 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

1) If JPEN is greater than 1 (one), then the following Java statement is effectively
executed:
JCLSN PD]_ = new JCLSN (PDZ Y e ey PDJPEN) ;
1) If IPEN equas1 (one), thenthefollowing Javastatement is effectively executed:
JCLSN PD; = new JCLSN () ;
D) Otherwise:
)] If ERT isauser-defined type, then let SICE and SICEN be the subject Java class
and the subject Java class name of ERT, respectively.
I1) If ERTisnot auser-defined type, then let SICEN be the Java returns data type
of the subject Java method.
I11) If JPEN isgreater than 1 (one), then the following Java statement is effectively
executed:
SJCEN tempU = PDy . JMN(PD, , ..., PDypen) ;
IV) If JPEN equals 1 (one), then the following Java statement is effectively executed:

8) |Insert after GR 8)f)ii)4)

of class variables made

SJCEN tenpU = PD; . JWN () ;

NOTE 22 — The Java method effectively executed by either the Java statement SJCEN t enpU
=PD;. JIM\(PD,, ..., PDypgn) ; ortheJavastatement SJCEN t empU = PD;
. JMN () ; isdetermined based on the value of PD; according to Javas rules for overriding
by instance methods, as specified in [Java).

If Risan external Javaroutine, then the scope and persistence of any modifications
efore the completion of any execution of P isimplementation-dependent.

9) [Replace GR 8)f)ii)11)|If the language specifies ADA (respectively C, COBOL, FORTRAN, JAVA, M,
PASCAL, PLI) and P is not a standard-conforming Ada program (respectively C, COBOL, Fortran, Java,
M, Pascal, PL/I program), then the results of any execution of P are implementati on-dependent.

10) | Insert before GR 8)g)i)| If Risan external Javaroutine and the execution of P completes with an uncaught

Javaexception E, then an exception condition is raised as specified in Subclause 15.1, “ Class and subclass
values for uncaught Java exceptions’, and no further General Rules of this Subclause are applied.

11) |Replace the 1st sentence of the 1st paragraph of GR 8)g)ii)| If Ris not an external Javaroutine, then for i

varying from 1 (one) to EN, the value of ESP; is set to the value of PD;.

12) |Insert after GR 8)h)i)3)| If Risan external Javaroutine that is not atype-preserving function, then let ERT

be the effective returns data type of R. The returned value of P, tempU, is processed as follows:

a) Case

i) If ERT is a user-defined type, then:

©ISO/IEC 2003 — All rights reserved Additional common elements 39

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

1) Let SICE bethe most specific Java class of the value of tempU, and let STU be the user-
defined type whose subject Java classis SICE and whose user-defined typeis ERT or isa
subclass of ERT.

2) Let UlSbe the <interface specification> specified by the user-defined type descriptor of
STU.

3) Case
A) If UISis SERIALIZABLE, then:

1 The subject Javaclass SICE'smethodwr i t eCbj ect () isexecuted to convert
the Java value of tempU to the SQL value SS-V of user-defined type STU.

I1) Themethod of execution of the subject Java class's implementation of
writeQoject () isimplementation-defined.

NOTE 23 — If UISis SERIALIZABLE, then, as described in Subclause 9.4, “<user-defined type defini-
tion>", the descriptor's subject Java class implements the Javainterfacej ava. i 0. Seri al i zabl e and
defines that interfaceswr i t eObj ect () method as described by [J2SE].

B) If UISisSQLDATA, then:

1 The subject Javaclass SICE's method wr i t eSQL() isexecuted to convert the
Java value of tempU to the SQL value SSFV of user-defined type STU.

I) Themethod of execution of the subject Java class's implementation of
writeSQL() isimplementation-defined.

NOTE 24 — If UISis SQLDATA, then as described in Subclause 9.4, “ <user-defined type definition>",
the descriptor's subject Java class implements the Javainterfacej ava. sql . SQLDat a and defines that
interface'swr i t eSQL() method as described by [JDBC] and [J2SE].
i) Otherwise, the value of SSFV is set to the value of tempU.
b) Let RV beSSFV.

13) |Insert after GR 8)h)i)3)| If Ris an external Javaroutine that is atype-preserving function, then let ERT be
the effective returns data type of R. The returned value of P, PD, is processed as follows:

a) Let SICE be the most specific Java class of the value of PD4, and let STU be the user-defined type
whose subject Java classis SICE and whose user-defined type is ERT or is a subclass of ERT.

b) Let UlSbe the <interface specification> specified by the user-defined type descriptor of STU.
Case:
i) If UISis SERIALIZABLE, then:

1) The subject Javaclass SICE'smethod wr i t eCbj ect () isexecuted to convert the Java
value of PD1 to the SQL value SSFV of user-defined type STU.

2) The method of execution of the subject Java class's implementation of wr i t eCbj ect ()
is implementation-defined.

NOTE 25 — If UISis SERIALIZABLE, then as described in Subclause 9.4, “ <user-defined type definition>", the
descriptor's subject Javaclassimplementsthe Javainterfacej ava. i 0. Seri al i zabl e and definesthat interface's
wri teQbj ect () method as described by [J2SE].

40 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

i) If UISisSQLDATA, then:

1) Thesubject Javaclass SICE'smethodwr i t eSQL() isexecuted to convert the Javavalue
of PD1 to the SQL value SSFV of user-defined type STU.

2) The method of execution of the subject Java class'simplementation of wri t eSQL() is
implementation-defined.

NOTE 26 — If UISis SQLDATA, then as described in Subclause 9.4, “ <user-defined type definition>", the
descriptor's subject Java class implements the Javainterfacej ava. sqgl . SQLDat a and defines that interface's
writeSQL() method as described by [JDBC] and [J2SE].

) LetRV beSSFV.

14) |Insert after GR 8)i)ii)| If R specifies PARAMETER STYLE JAVA, then each parameter that is either an
output SQL parameter or both aninput SQL parameter and an output SQL parameter is processed asfollows:

a) Let P; bethei-th SQL parameter of R and let T be the declared type of P;.
b) EPV, isset to the value of PD;[0].

Case:
i) If T; is a user-defined type, then:

1) Let SICE bethe most specific Java class of the value of EPV;, and let STU be the user-
defined type whose subject Java class is SICE and whose user-defined typeis T, or isa
subclass of T;.

2) Let UIShbe the <interface specification> specified by the user-defined type descriptor of
STU.

Case:
A) If UISis SERIALIZABLE, then:

1) The subject Javaclass SICE'smethodwr i t eCbj ect () isexecuted to convert
the Java value of EPV; to the SQL value CPV; of the user-defined type STU.

I) Themethod of execution of the subject Java class's implementation of
writeoject () isimplementation-defined.

NOTE 27 — If UISisSERIALIZABLE, then asdescribed in Subclause 9.4, “ <user-defined type definition>",
the descriptor's subject Java classimplementsthe Javainterfacej ava. i 0. Seri al i zabl e and defines
that interface'swr i t eCbj ect () method as described by [J2SE].

B) If UISisSQLDATA, then:

)] The subject Java class SICE's method wr i t eSQL() isexecuted to convert the
Javavalue of EPV; to the SQL value CPV; of user-defined type STU.

I) Themethod of execution of the subject Java class's implementation of
writeSQL() isimplementation-defined.

NOTE 28 — If UISis SQLDATA, then as described in Subclause 9.4, “ <user-defined type definition>",
the descriptor's subject Java class implements the Javainterfacej ava. sql . SQLDat a and defines that
interface'swr i t eSQL() method as described by [JDBC] and [J2SE].

©ISO/IEC 2003 — All rights reserved Additional common elements 41

I SO/IEC 9075-13:2003 (E)
8.3 <routineinvocation>

i) Otherwise, CPV, is set to EPV;.

15) |Replace GR 10)b)| If Ris not an external Java routine, then let OPN be the actual number of result set
cursors declared in the body of the subject routine that remain open when control is returned to INV.

16) |Insert after GR 10)b)] If Risan external Javaroutine, then let RSN be a set containing the first element of
each of the JPEN—EN arrays generated above for result set mappable parameters, let RS be the elements
of RSN that are not equal to the Java null value, and let OPN be the number of elementsin RS

17) [Insert before GR 10)d)| If Risan external Javaroutine, then:

a) |f the JDBC connection object that created any element of RSis closed, then the effect isimplementation-
defined.

b) If any element of RSis not an object returned by a connection to the current SQL system and SQL
session, then the effect isimplementation-defined.
18) |Replace GR 10)d) | If Ris not an external Javaroutine, then let FRC be the ordered set of result set cursors

that remain open when PRreturnsto INV. Let FRC;, 1 (one) <i < RTN, bethei-th cursor in FRC, let FRCN,;
be the <cursor name> that identifies FRC;, and let RS be the result set of FRC;.

19) [Insert after GR 10)d)| If Ris an external Javaroutine, then let FRC be a copy of the elements of RSthat

remain open in the order that they were opened in SQL. Let FRC;, 1 (one) <i < RTN, bethei-th cursor in
FRC, let FRCN; be the <cursor name> that identifies FRC;, and let RCS be the result set of FRC;.

20) |Rep| ace GR 10)h)| If Risnot an external Javaroutine, then a completion condition is raised: warning —
dynamic result sets returned.

21) [Insert after GR 10)h)| If Risan external Javaroutine, then for each result set RS in RS, close RS and close
the statement object that created RS.

22) [Insert before GR 11)| If Ris an external Javaroutine, then whether the call of P returns update counts as
defined in JDBC is implementation-defined.

Conformance Rules

1) |InsertthisCR|Without Feature J611, “ References’, conforming SQL language shall not contain a<reference
expression>.

2) |Insert this CR|Without Feature J611, “ References’, conforming SQL language shall not contain a <right
arrow>,

42 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.4 <language clause>

8.4 <language clause>
This Subclause modifies Subclause 10.2, “ <language clause>" , in ISO/IEC 9075-2.

Function

Specify a standard programming language.

Format

<l anguage nane> ::=
Il Al alternatives from|SQ|EC 9075-2
| JAVA

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 1)| With the exception of the language JAVA, whose standard is specified in [Java], the
standard programming language specified by the <language clause> is defined in the International Standard

identified by the <language name> keyword. Table 15, “ Standard programming languages’, in ISO/IEC
9075-2 specifies the relationship.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Additional common elements 43

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

8.5

Execution of array-returning functions

This Subclause modifies Subclause 9.14, “ Execution of array-returning functions’ , in 1SO/IEC 9075-2.

Function

Define the execution of an external function that returns an array value.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 6)| Case:

a)
b)

If Pisan external Javaroutine then let PN and N be EN-FRN-2.
Otherwise, let PN and N be the number of valuesin the static SQL argument list of P.

2) |Rep| ace the lead paragraph of GR 8)| If P isnot an external Javaroutine, and the call type dataitem has a

value of —1 (indicating “open call”), then P is executed with alist of EN parameters PD; whose parameter
names are PN; and whose values are set as follows:

3) | Insert before GR 9)| If Pisanexterna Javaroutine, and the call type dataitem hasavalue of —1 (indicating

“open cal”), then P is executed with alist of EN parameters PD; whose values are set as follows:

a)

Let JPDL be an ordered list of the data types of the Java parameters declared for P in the order they
appear in P's declaration.

NOTE 29 — If any Java parameter is declared to be of an array class, then JPDL reflects that information.
Let JPDT; bethei-th Java datatypein JPDL.

For i ranging from PN+1 to PN+FRN, let JP; be the component type of JPDT;.
NOTE 30 — The component type of a Java array is defined in [Java].

For i ranging from 1 (one) to PN, if the value of ESP; isthe SQL null value and if JP; isany of

bool ean, byt e,short,int,l ong,fl oat, or doubl e, then an exception condition is raised:
external routine invocation exception — null value not allowed.

For i ranging from 1 (one) to PN,

Case:

44 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

)] If ESP; is auser-defined type, then let the most specific type of ESP; be U, let UISbe the
<interface specification> specified by the user-defined type descriptor of U, and let SICU be
the subject Java class of U.

Case:
1) If UISisSERIALIZABLE, then:

A) SICU'smethod r eadObj ect () isexecuted to convert the value of ESP; to a Java
object, the value of PD;.

B) Themethod of execution of the subject Javaclasssimplementation of r eadCbj ect ()
is implementation-defined.

NOTE 31— If UISis SERIALIZABLE, then, as described in Subclause 9.4, “ <user-defined type definition>",
the subject Javaclassof U implementsthe Javainterfacej ava. i 0. Seri al i zabl e and definesthat interface's
readQbj ect () method as described by [J2SE].

2) If UISisSQLDATA, then:
A) SICU'smethod r eadSQL() isexecuted to convert the value of ESP; to a Java object,
the value of PD;.

B) The method of execution of the subject Java class'simplementation of r eadSQL() is
implementation-defined.

NOTE 32 — If UISis SQLDATA, then, as described in Subclause 9.4, “<user-defined type definition>", the
subject Java class of U implements the Javainterfacej ava. sql . SQLDat a and defines that interface's
readSQL() method as described by [JDBC] and [J2SE].

i) Otherwise, the value of PD; is set to the value of ESP; .

f) Fori ranging from PN+1 to PN+FRN:
i) Let PAD; be aJava array of length 1 (one) and data type JP; initialized as specified in [Javal.
NOTE 33 — PAD; isaJavaobject effectively created by execution of the Java expression new JP;[1].
i) PD; isreplaced by PAD;.
g) Forthe save areadataitem, for i equal to EN-1:
i) Case:
1) If theJavadatatypeJP;isanarray classof j ava. | ang. St ri ng, thenlet PAD; beaJava
array of length 1 (one) of j ava. | ang. St ri ng, initialized as specified in [Java).
NOTE 34 — PAD; is a Java object effectively created by execution of the Java expression new
java.lang. String[1].
2) Otherwise, createaj ava. | ang. St ri ngBuf f er of theimplementation- defined length
of asave areadataitem. Let LN be that implementation-defined length and let PAD; be the

Java object effectively created by execution of the Java expression new
java.l ang. StringBuffer (LN).Theninitialize PAD; with LN null characters

(U+0000).

©ISO/IEC 2003 — All rights reserved Additional common elements 45

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

i) PD; isreplaced by PAD; .

h) For the call type data item, for i equal to EN, the value of PD; is set to the value -1 (indicating “open
cal”).

i) LetJCLSN and IMN be respectively the subject Java class name, and the subject Java method name
of P. The following Java statement is effectively executed:

JCLSN. IM\(PDy, ..., PDey);

4) | Replace GR 9)a) | If either P isnot an external Java routine and the value of the exception dataitemis
'00000' (corresponding to the compl etion condition successful completion), or P is not an external Java
routine and the first 2 characters of the exception dataitem are '01' (corresponding to the compl etion con-
dition warning with any subcondition), then set the call type dataitem to O (zero) (indicating fetch call).

5) | Insert before GR 9)b)| If P isan external Javaroutine and the prior invocation of P did not terminate with
an unhandled Java exception, then set the call type dataitem to O (zero) (indicating fetch call).

6) |Replace the lead paragraph of GR 9)b)| If P is not an external Java routine and the value of the exception
dataitem is'02000" (corresponding to the completion condition no data):

7) |Insert before GR 9)c)] If P is an external Javaroutine and the prior invocation of P terminated with an
unhandled Java exception that is an instance of the classj ava. sql . SQLExcept i on, or a subclass of
such aclass, and the result of invoking the method get SQLSt at e() against that instanceisa
j ava. |l ang. St ri ng whose valueis'02000' (corresponding to the completion condition no data) then:

a) If each JP; for i ranging from PN+1 to PN+FRN that is a Java class has an associated value in the first
element, ([0]), of PD; that is a Javanull, then set AR to the null value.

b) Set thecal type dataitem to 1 (one) (indicating close call).

8) |Rep| ace the lead paragraph of GR 10)a)| If P isnot an external Javaroutine, then P is executed with alist
of EN parameters PD; whose parameter names are PN; and whose values are set as follows:

9) |[Insert before GR 10)b)| If P is an external Javaroutine, then P is executed with alist of EN parameters
PD; and whose values are set as follows:

a) Foriranging from 1 (one) to PN,
Case:

i) If ESP; is auser-defined type, then let the most specific type of ESP; be U, let UISbe the

<interface specification> specified by the user-defined type descriptor of U, and let SICU be
the subject Java class of U.

Case:
1) If UISisSERIALIZABLE, then:

A) SICU'smethod r eadObj ect () isexecuted to convert the value of ESP; to a Java
object, the value of PD; .

B) Themethod of execution of the subject Javaclasssimplementation of r eadCbj ect ()
is implementation-defined.

46 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

b)

d)

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

NOTE 35— If UISis SERIALIZABLE, then, as described in Subclause 9.4, “ <user-defined type definition>",
the subject Javaclassof U implementsthe Javainterfacej ava. i 0. Seri al i zabl e and definesthat interface's
readQbj ect () method as described by [J2SE].

2) If UISisSQLDATA, then:

A) SICU'smethod r eadSQL() isexecuted to convert the value of ESP; to a Java object,
the value of PD; .

B) The method of execution of the subject Java class'simplementation of r eadSQL() is
implementation-defined.

NOTE 36 — If UISis SQLDATA, then, as described in Subclause 9.4, “<user-defined type definition>", the
subject Javaclass of U implementsthe Javainterfacej ava. sql . SQLDat a and defines that interface's
readSQL() method as described by [JDBC] and [J2SE].

i) Otherwise, the value of PD; is set to the value of ESP;.

For i ranging from PN+1 to PN+FRN:

i) Let PAD; be a Java array of length 1 (one) and data type JP; initialized as specified in [Java).
NOTE 37 — PAD; is a Java object effectively created by execution of the Java expression new JP; [1].

i) PD; isreplaced by PAD; .

For the save area dataitem, for i equal to EN-1:

)] Case:

1) If theJavadatatypeJP;isanarray classof j ava. | ang. St ri ng, thenlet PAD; beaJava

array of length 1 (one) of j ava. | ang. St ri ng, containing the value of the
j ava. l ang. St ri ng returned by the prior execution of P.

2) Otherwise, let PAD; beaj ava. | ang. St ri ngBuf f er of length LN containing thevalue
of thej ava. | ang. St ri ngBuf f er returned by the prior execution of P.

i) PD; isreplaced by PAD;.

For the call type dataitem, for i equal to EN, the value of PD; is set to the value O (zero) (indicating
fetch call).

Let JCLSN and JMN be respectively the subject Java class name, and the subject Java method name
of P. The following Java statement is effectively executed:

JCLSN. JM\N(PDy, ..., PDen);

10) | Replace the lead paragraph of GR 10)b)i)|If P isnot an external Javaroutine and either the exception data

item 1s'00000" (corresponding to completion condition successful completion) or the first 2 characters are
'01' (corresponding to completion condition warning with any subcondition), or Pisan external Javaroutine
and the prior invocation of P did not terminate with an unhandled Java exception, then:

11) |Replace GR 10)b)i)3)A) | If Pisnot an external Javaroutine and each PD; for i ranging from (PN+FRN)+N+1

through (PN+FRN)+N+FRN (that is, the SQL indicator arguments corresponding to the result dataitems),
is negative, then let the E-th element of AR be the null value.

©ISO/IEC 2003 — All rights reserved Additional common elements 47

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

12) |Insert after GR 10)b)i)3)A)| If P isan external Javaroutine and each JP; for i ranging from PN+1 to
PN+FRN that is a Java class has an associated value of the first element, ([0]), of PD; that isa Javanull,
then let the E-th element of AR be the null value.

13) |Replace GR 10)b)i)3)B)I)|If P isnot an external Javaroutine and FRN is 1 (one), then let the E-th element
of AR be the value of the result data item.

14) |Insert after GR 10)b)i)3)B)I)| If P isan external Javaroutine, then for the result dataitems, for i ranging
from PN+1 through PN+FRN:

a) Case
)] If ESP; is auser-defined type, then:
1) Let EST; be the most specific type of the value of ESP;.

2) Let SICE be the most specific Java class of the value of PD; [0], and let STU be the user-
defined type whose subject Java class is SICE and whose user-defined type isEST; or isa
subclass of EST;.

3) Let UlSbe the <interface specification> specified by the user-defined type descriptor of
STU.

4) Case
A) If UISisSERIALIZABLE, then:

1) SICE'smethodwr i t eQhj ect () isexecuted to convert the value of PD; [O]
to the value SC; of user-defined type STU.

I1) Themethod of execution of the subject Java class's implementation of
writeQbj ect () isimplementation-defined.

NOTE 38 — If UISis SERIALIZABLE, then, as described in Subclause 9.4, “<user-defined type defini-
tion>", the descriptor's subject Java class implements the Javainterfacej ava. i 0. Seri al i zabl e and
defines that interfaceswr i t eObj ect () method as described by [J2SE].

B) If UISisSQLDATA, then:

1 SICE'smethodwr i t eSQL() isexecuted to convert the value of PD; [Q] to the
value SC; of user-defined type STU.

I1) Themethod of execution of the subject Java class's implementation of
writeSQL() isimplementation-defined.

NOTE 39 — If UISis SQLDATA, then as described in Subclause 9.4, “ <user-defined type definition>",
the descriptor's subject Java class implements the Javainterfacej ava. sql . SQLDat a and defines that
interface'swr i t eSQL() method as described by [JDBC] and [J2SE].
i) Otherwise, the value of SC; is set to the value of PD; [0].
b) Case
i) If FRN is 1 (one), then let the E-th element of AR be SC;.

i) Otherwise, let the E-th element of AR be the value of the following <row value expression>:

48 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

ROW(SVi, ..., SVery)

15) | Replace the lead paragraph of GR 10)b)ii)| If P is not an external Javaroutine and the exception dataitem
is'02000' (corresponding to completion condition no data), or if P isan externa Javaroutine and the prior
invocation of P terminated with an unhandled Java exception that is an instance of the class
j ava. sqgl . SQLExcept i on, or asubclass of such aclass, and the result of invoking the method get -
SQLSt at e() against that instanceisaj ava. | ang. St ri ng whose valueis'02000' (corresponding to
the completion condition no data) then:

16) |Rep| ace the lead paragraph of GR 11)| If P is not an external Java routine, and the call type dataitem has
avaueof 1 (one) (indicating close call), then P is executed with alist of EN parameters PD; whose

parameter names are PN; and whose values are set as follows:

17) [Insert after GR 11)] If P isan externa Javaroutine and the call type dataitem has avalue of 1 (one)
(indicating close call), then P is executed with alist of EN parameters PD; and whose values are set as

follows:

a) Foriranging from 1 (one) to PN,
Case!

i) If ESP; is auser-defined type, then let the most specific type of ESP; be U, let UISbe the

<interface specification> specified by the user-defined type descriptor of U, and let SICU be
the subject Java class of U.

Case:
1) If UISisSERIALIZABLE, then:

A) SICU'smethod r eadObj ect () isexecuted to convert the value of ESP; to a Java
object, the value of PD; .

B) Themethod of execution of the subject Javaclasssimplementation of r eadCbj ect ()
is implementation-defined.

NOTE 40 — If UISisSERIALIZABLE, then, as described in Subclause 9.4, “ <user-defined type definition>",
the subject Javaclassof U implementsthe Javainterfacej ava. i 0. Seri al i zabl e and definesthat interface's
readObj ect () method as described by [J2SE].

2) 1If UISisSQLDATA, then:

A) SICU'smethod r eadSQL() isexecuted to convert the value of ESP; to a Java object,
the value of PD; .

B) The method of execution of the subject Java classsimplementation of r eadSQL() is
implementation-defined.

NOTE 41 — If UISis SQLDATA, then, as described in Subclause 9.4, “<user-defined type definition>", the
subject Java class of U implements the Javainterfacej ava. sql . SQLDat a and defines that interface's
readSQL() method as described by [JDBC] and [J2SE].

i) Otherwise, the value of PD; is set to the value of ESP; .
b) Fori ranging from PN+1 to PN+FRN:

©ISO/IEC 2003 — All rights reserved Additional common elements 49

I SO/IEC 9075-13:2003 (E)
8.5 Execution of array-returning functions

d)

)] Let PAD; be a Java array of length 1 (one) and data type JP; initialized as specified in [Java).
NOTE 42 — PAD; is a Java object effectively created by execution of the Javaexpressonnew JP; [1].

i) PD; isreplaced by PAD; .

For the save area dataitem, for i equal to EN-1:

)] Case:

1) If theJavadatatypeJP;isanarray classof j ava. | ang. St ri ng, thenlet PAD; beaJava

array of length 1 (one) of j ava. | ang. St ri ng, containing the value of the
j ava. |l ang. St ri ng returned by the prior execution of P.

2) Otherwise, let PAD; beaj ava. | ang. St ri ngBuf f er of length LN containing thevalue
of thej ava. | ang. St ri ngBuf f er returned by the prior execution of P.

i) PD; isreplaced by PAD; .

For the call type dataitem, for i equal to EN, the value of PD; is set to the value 1 (one) (indicating
close call).

Let JCLSN and JMN be respectively the subject Java class name, and the subject Java method name
of P. Thefollowing Java statement is effectively executed:

JCLSN. JM\N(PDy, ..., PDen);

Conformance Rules

No additional Conformance Rules.

50 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

8.6 Javaroutine signature determination

Function

Specify rules for how a Java method's signature is determined if it is not explicitly specified, and how it is
validated, based either on information specified when creating an external Java routine or external Java data
type, or on contents of descriptors available when invoking an SQL routine.

Syntax Rules

1) Let CNTXT, i, and SRrespectively bethe syntactic el ement, the method specification index, and the subject
routine (if any) specified in an application of this Subclause.

2) Information needed by later rulesof this Subclauseis gathered based on the context in which this Subclause
is executed, asfollows.

Case:

a) If CNTXT specifies <SQL-invoked routine>, then:

Let JN, JCLSN, JMN, and JPDL respectively be the <jar name>, <Java class name>, <Java
method name>, and <Java parameter declaration list> contained in <external Javareference
string>.

Let SPDL be <SQL parameter declaration list>.
If <SQL-invoked routine> contains <schema procedure>, then:

1) IfDYNAMICRESULT SETSNisspecifiedfor someN greater than O (zero), thenlet DRSN
be N.

2) Otherwise let DRSN be 0 (zero).

If <SQL-invoked routine> contains <schema function>, and <SQL -invoked routine> specifies
an array-returning external function or a multiset-returning external function, then:

1) Let RDPL bearesult dataarea parameter list that specifies acomma-seperated list of <SQL
parameter declaration>s that have <parameter mode> OUT; their <parameter type>s are
defined to be those of the effective SQL parameter list entries PN+1 through PN+FRN as
defined in Subclause 11.50, “<SQL-invoked routine>".

2) Append to RDPL a<comma> and an <SQL parameter declaration> whose <datatype> is
character string of implementation-defined length and character set SQL_TEXT with
<parameter mode> INOUT.

3) Append to RDPL a<comma> and an <SQL parameter declaration> whose <data type> is
an exact numeric type with scale 0 (zero) and with <parameter mode> IN.

4) Appendto SPDL a<comma> and RPDL, to create an <SQL parameter declaration list>
containing the input parameters, the result dataitem parameter(s), and the save areaand call
type dataitems.

©ISO/IEC 2003 — All rights reserved Additional common elements 51

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

b)

If CNTXT specifies <user-defined type definition>, then:

i)

vii)

viii)

Let UDTD be the <user-defined type definition>, let UDTB be the <user-defined type body>
immediately contained in UDTD, and let UDTN be the <schema-resolved user-defined type
name> immediately contained in UDTB.

Let JN and JCLSN respectively be the <jar name> and <Javaclass name> contained in <external
Javatype clause> contained in UDTB.

For the purposes of parameter mapping as defined in Subclause 4.5, “Parameter mapping”, the
remaining rulesin this Subclause are performed as if the descriptor for the user-defined type
defined by UDTD was aready availablein the SQL-session. That descriptor describes the type
ashaving thename UDTN, being an external Javadatatype, and having the <jar and class name>
specified in UDTD.

Let MS be the i-th <method specification> in the <method specification list> contained by
UDTB.

Let SRT be the SQL <datatype> specified in the RETURNS clause of MS.

Let DRSN be O (zero).
If MS immediately contains <static field method spec>, then:

1) Let QJFN bethe <qualified Javafield name> of MS.

2) Let Fl bethe <Javaidentifier> contained in <Javafield name> contained in QJFN.

3) If QJFN specifies a<Javaclass name>, then let S-C be that class name; otherwise, let SFC
be JCLSN.

4) Let SPDL bethe <SQL parameter declaration list>
()

If MS does not immediately contain <static field method spec>, then:

1) LetIMN and JPDL respectively bethe <Javamethod name> and <Java parameter declaration
list> contained in <Java method and parameter declarations> contained in MS.

2) Let SPDL be the augmented SQL parameter declaration list NPL; of MS.

3) If MS specifiesan array-returning external function or amultiset-returning external function
then:

A) Let RDPL be aresult data area parameter list that specifies a comma-seperated list of
<SQL parameter declaration>s that have <parameter mode> OUT; their <parameter
type>s are defined to be those of the effective SQL parameter list entries PN+1 through
PN+FRN as defined in Subclause 9.8, “ <SQL -invoked routine>".

B) Appendto RDPL a<comma> and an <SQL parameter declaration> whose <data type>
ischaracter string of implementation-defined length and character set SQL_TEXT with
<parameter mode> INOUT.

52 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

C) Appendto RDPL a<comma> and an <SQL parameter declaration> whose <datatype>
isan exact numeric type with scale 0 (zero) and with <parameter mode> IN.

D) Appendto SPDL a<comma> and RPDL, to create an <SQL parameter declaration list>
containing the augmented SQL parameter list, the result dataitem parameter(s), and the
save area and call type dataitems.

¢) Otherwise, descriptors are available.
i) Let SRD be the routine descriptor of SR.
i) If SRD indicates that the SQL-invoked routine is an SQL-invoked method, then:

1) Let SRUDT be the user-defined type whose descriptor contains SR's corresponding method
specification descriptor MSD, and let SRUDTD be the user-defined type descriptor of SRUDT.

2) Let JN and JCLSN respectively be the <jar name> and <Java class name> contained by
SRUDTD's <jar and class name>.

3) Let SRT bethe SQL <returns data type> specified in MSD.

4) Let DRSN be 0 (zero).

5) If MSD indicatesthat it is a static field method, then:
A) Let Fl bethe <Javaidentifier> contained in the <Java field name> of MSD.
B) Let SFC be the <Java class name> of MSD.
C) Let SPDL bethe <SQL parameter declaration list>

()

6) If MSD indicatesthat it isnot a static field method, then:

A) Let IMN and JPDL respectively be the Java method name composed of the package,
class, and name of the Javaroutine contained in MSD and the Java parameter declaration
list contained in the signature contained in MSD.

B) Let SPDL be the augmented SQL parameter declaration list of MSD.

iii) If SRD indicatesthat the SQL-invoked routineisan SQL-invoked procedure or an SQL -invoked
regular function, then:

1) LetJN, JCLSN, JMN, and JPDL respectively be the <jar name>, <Java class name>, <Java
method name>, and <Java parameter declaration list> contained in <external Javareference
string> contained in the <external routine name> of SRD.

2) Let SPDL be an SQL parameter declaration list composed of the SQL-invoked routine's
SQL parameters contained in SRD, specified with the descriptorslist of the <SQL parameter
name>, if specified, the <data type>, the ordinal position, and an indication of whether the
SQL parameter isan input SQL parameter, an output SQL parameter, or both an input SQL
parameter and an output SQL parameter.

3) If the SQL-invoked routine is an SQL-invoked procedure, then let DRSN be the maximum
number of dynamic result sets asindicated by SRD; otherwise, let DRSN be O (zero).

©ISO/IEC 2003 — All rights reserved Additional common elements 53

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

3) Case

4)

5)

If the SQL-invoked routineis an SQL-invoked regular function that isnot an array-returning
external function or amultiset-returning external function, then let SRT bethe SQL <returns
datatype> specified in MSD; otherwise, let SRT be“voi d”.

If the SQL-invoked routine is an SQL-invoked regular function that is an array-returning
external function or a multiset- returning external function, then:

A) Let RDPL be aresult data area parameter list that specifies a comma-seperated list of
<SQL parameter declaration>s that have <parameter mode> OUT; their <parameter
type>s are defined to be those of the effective SQL parameter list entries PN+1 through
PN+FRN as defined in Subclause 9.8, “<SQL-invoked routine>".

B) Appendto RDPL a<comma> and an <SQL parameter declaration> whose <data type>
ischaracter string of implementation-defined length and character set SQL_TEXT with
<parameter mode> INOUT.

C) Appendto RDPL a<comma> and an <SQL parameter declaration> whose <data type>
is an exact numeric type with scale 0 (zero) and with <parameter mode> IN.

D) Append to SPDL a<comma> and RPDL, to create a <SQL parameter declaration list>
containing the input parameters, the result dataitem parameter(s), and the save areaand
call type dataitems.

a) If IMNis“mai n” and CNTXT does not specify <user-defined type definition> or contain <method
invocation>, then:

If CNTXT specifies <SQL-invoked routine>, then it shall contain <schema procedure> and shall
not contain <dynamic result set characteristic>.

If CNTXT contains <routine invocation> then it shall contain <call statement>.

If a Java parameter declaration list JPDL is specified, then it shall be the following:

(java.lang. String[])

If aJava parameter declaration list is not specified, then let JPDL be the following:

(java.lang. String[])

SPDL shall specify either:

1)

2)

A single parameter that isan SQL ARRAY of CHARACTER or an ARRAY of CHARAC-
TER VARYING. At runtime, this parameter is passed as a Java array of
java.lang. String.

NOTE 43 — This<SQL parameter declaration> can only be specified if the SQL system supports Feature S201,
“SQL routines on arrays’.

Zero or more parameters, each of whichis CHARACTER or CHARACTER VARYING.
At runtime, these parameters are passed a Java array of j ava. | ang. St ri ng (with pos-
sibly zero elements).

54 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

vi) Let JCShethe set of visible Javamethods of class JCLSN in JAR JN whose method names are
“mai n” and whose Java parameter data typeslist is JPDL.

NOTE 44 — “visible” is defined in Subclause 4.5, “Parameter mapping”.
b) Otherwise:

i) Let SPN and JPN be, respectively, the number of <SQL parameter declaration>sin SPDL and
the number of <Java datatype>sin JPDL.

i) If JIPDL specifies a <Java parameter declaration list>, then:

1) Ifiisgreater than O (zero) and MS specifies INSTANCE or CONSTRUCTOR or if SRD

indicates the SQL -invoked routine is an SQL-invoked method and MSD indicatesit is an
instance method or a constructor, then prefix the Java parameter declaration list JPDL with
the necessary subject parameter as follows.

Case:

A) If JPDL contains one or more <Javadatatype>s, then prefix thelist of <Javadatatype>s
immediately contained in <Java parameters> immediately contained in JPDL with

JCLSN ,

B) Otherwise, replace JPDL with the <Java parameter declaration list>
(JCLSN)
2) For each <SQL parameter declaration> SP in SPDL, let ST be the <datatype> of SP and let
JT be the corresponding <Java data type> in JPDL.
A) If SP specifies IN, or does not specify an explicit <parameter mode>, then:

1 If SPisnot an SQL array, then JT and ST shall be simply mappable or object
mappable.

I) If SPisan SQL array, then JT and ST shall be array mappable.
B) If SP specifiesOUT or INOUT, then:
Case:

1 If SPDL has been augmented with a save area data item and SP is the SPN-1-th
entry inthelist (the save areadataitem), then JT and ST shall be output mappable
or JT shall specify theclassj ava. | ang. Stri ngBuf f er.

I1) Otherwise, JT and ST shall be output mappable.

NOTE 45 — “simply mappable”, “object mappable”, and “array mappable” are defined in Subclause 4.5,
“Parameter mapping”.

3) Case

A) If DRSN is greater than O (zero), then JPN shall be greater than SPN, and each <Java
datatype> in JPDL whose ordinal position is greater than SPN shall be result set map-
pable.

©ISO/IEC 2003 — All rights reserved Additional common elements 55

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

i)

B) Otherwise, JPN shall be equivalent to SPN.

If aJavaparameter declaration list is not specified, then determinethe first SPN members of the
Java parameter declaration list JPDL from SPDL asfollows:

1)

2)

3)

For each parameter SP of SPDL whose <parameter mode> is IN, or that does not specify
an explicit <parameter mode>, if SP isnot an SQL array, then let the corresponding Java
parameter data type of SP be the corresponding Java data type of the <parameter type> of
P; if SPisan SQL array, then let JT be the corresponding Java data type of the <parameter
type> of SP, and let the corresponding Java parameter data type of SP be an array of JT,
that is, be JT[] .

NOTE 46 — The “ corresponding Java parameter datatype’ of SP isdefined in Subclause 4.5, “ Parameter
mapping”.

For each parameter SP of SPDL whose <parameter mode> isINOUT or OUT, let JT bethe
corresponding Java datatype of the <parameter type> of SP, and et the corresponding Java
parameter datatype of SP be an array of JT, that is, be JT[] .

The <Java parameters> of JPDL isalist of the corresponding Java parameter data types of
SPDL.

NOTE 47 — JPDL does not specify parameter names. That is, the parameter names of the Java method do not
have to match the SQL parameter names.

The subject Javafield of <static field method spec>s or the set of candidate visible Javamethods
are determined as follows:

Case:

1)

If CNTXT specifies <SQL-invoked routine> or if SRD indicatesthat the SQL -invoked routine
isan SQL-invoked procedure or an SQL-invoked regular function, then:

A) If DRSN is greater than 0 (zero), then:

1 Let SPN and JPN be, respectively, the number of <SQL parameter declaration>s
in SPDL and the number of <Java datatype>sin JPDL.

I1) If SPNisequivaent to JPN, then JPDL was originally not specified; let JCSbe
the set of visible Java methods of class JCLSN in JAR JN whose method names
are IMN, whose first SPN parameter data types are those of JPDL, and whose
last K parameter data types, for some positive K, are result set mappable.

1) If SPNislessthan JPN, then JPDL was originally specified; let JCS be the set
of visible Java methods of class JCLSN in JAR JN whose method names are
JMN, whose Java parameter data typeslist is JPDL.

B) If DRSNisO (zero), then let JCS be the set of visible Java methods of class JCLSN in
JAR JIN whose method names are JMN, whose Java parameter data types list is JPDL.

2) If CNTXT specifies<user-defined type definition> or if SRD indicatesthat the SQL -invoked

routine is an SQL-invoked method then:

A) Ifiisgreater than O (zero) and MS contains <static field method spec>, or if MSD
indicates that it is a static field method, then:

56 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

M)
1)
V)

V)

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

FI shall bethe name of afield of S-C. Let JSF be that field.
JSF shall be apublic static field.
Let JFT be the Java data type of JS-.

SRT and JFT shall be simply mappable or object mappable.

NOTE 48 — “simply mappable’ and “ object mappable” are defined in Subclause 4.5, “ Parameter
mapping”.

JSF isthe subject static field of the SQL-invoked method defined by MS.

NOTE 49 — The subject Java class may contain fields and methods (public and private) for which
no corresponding attribute or method is specified.

B) If i isgreater than O (zero) and MS does not immediately contain <static field method

spec>,

)

1)

1)

V)

©ISO/IEC 2003 — All rights reserved

or if MSD indicates that it is not a static field method, then:
Case:

1) Ifiisgreater than O (zero) and MS specifies INSTANCE or CONSTRUC-

TOR, or if MSD indicatesit isan instance method or aconstructor, then JPDL
contains the augmented Java parameter declaration list for this method.
Remove the subject parameter from the Java parameter declaration list JPDL
to create the unaugmented Java parameter declaration list UAJPDL, asfol-
lows:

Case:

a) If JPDL containstwo or more <Java data type>s, then copy all JPDL to
UAJPDL, omitting the first <Java data type> JCLSN, and its associated

“woon
) .

b) Otherwise, set UAJPDL to the <Java parameter declaration list>
()

2) Otherwise copy JPDL to UAJPDL.

Using Javaoverloading resol ution, specified by The Java Language Specification,
Second Edition, let JCSbethe set of visible Javamethods of classJCLSN in JAR
JN or the supertypes of that class whose method names are IMN and whose Java
parameter datatypes list is UAJPDL.

NOTE 50 — “visible” is defined in Subclause 4.5, “Parameter mapping”.

If i isgreater than O (zero) and MS specifies STATIC, or MSD indicates that

STATIC was specified, then remove from JCSany Javamethod that is not static.
Otherwise, remove from JCS any static Java method.

If i isgreater than O (zero) and MS specifies CONSTRUCTOR, or MSD indicates

that CONSTRUCTOR was specified, then remove from JCS any Java method
that is not a constructor. Otherwise, remove from JCS any Java method that isa
constructor.

Additional common elements 57

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

4) The subject Java method is determined as follows:

5)

Case:

a)

b)

If CNTXT specifies <SQL-invoked routine> or if SRD indicates that the SQL-invoked routineis an
SQL-invoked procedure or an SQL -invoked regular function, then:

i) JCSshall contain exactly one Java method. Let JM be that Java method. The SQL-invoked
routine is associated with JM.

i) JM is the subject Java method of the SQL-invoked routine.

If CNTXT specifies <user-defined type definition> or if SRD indicates that the SQL-invoked routine
isan SQL-invoked method then, if i is greater than O (zero) and MS does not immediately contain

<gtatic field method spec>, or if MSD indicatesthat it is not a static field method then:

i) JCSshall contain exactly one Java method. Let JM be that Java method. The <Java method
name> isreferred to as the corresponding Java method name of <method name>.

i) JM is the subject Java method of the SQL-invoked method.

The result data type of the SQL-invoked routineis validated as follows:

Case:

a)

b)

If CNTXT specifies <SQL-invoked routine> or if SRD indicates that the SQL-invoked routineis an
SQL-invoked procedure or an SQL-invoked regular function, then let JRT be the Javareturns datatype
of JM.

)] If JM isan SQL-invoked procedure, then JRT shall bevoi d.

i) If IM isan SQL-invoked regular function that is not an array-returning external function or a
multiset-returning external function, then JRT and SRT shall be simply mappable or object
mappable.

iii) If IM isan array-returning external function or a multiset-returning external function, then JRT
shall bevoi d.

If CNTXT specifies <user-defined type definition> or if SRD indicates that the SQL-invoked routine
isan SQL-invoked method then, if i is greater than O (zero) and MS does not immediately contain

<gtatic field method spec>, or if MSD indicates that it is not a static field method, then let JRT be the
Javareturns data type of JM. If SELF ASRESULT is not specified then JRT and SRT shall be simply
mappable or object mappable.

NOTE 51 — “simply mappable” and “object mappable” are defined in Subclause 4.5, “ Parameter mapping”.

Otherwise, let JRT bethe Javadatatype of the subject static field. JRT and SRT shall be smply mappable
or object mappable.

Access Rules

None.

58 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
8.6 Javaroutine signature determination

General Rules

None.

Conformance Rules

None.

©ISO/IEC 2003 — All rights reserved Additional common elements 59

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

60 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.1 <drop schema statement>

9 Schema definition and manipulation

This Clause modifies Clause 11, “ Schema definition and manipulation” , in | SO/IEC 9075-2.

9.1 <drop schema statement>
This Subclause modifies Subclause 11.2, “ <drop schema statement>" , in |SO/IEC 9075-2.

Function

Destroy a schema.

Format

No additional Formmt itens.

Syntax Rules

1) |Augment SR 3) by adding “ JARS,”

Access Rules

No additional Access Rules.

General Rules

1) |Insert before GR 1)]If the SQL-implementation supports Feature J531, “Deployment”, then:

a) Let INSbea<character string literal> containing the qualified <jar name> included in the descriptor
of any JAR included in S

b) Thefollowing <call statement> is effectively executed:

CALL SQ.J. REMOVE JAR (JNS, 1);

2) | Insert after GR 13)| If the SQL-implementation does not support Feature J531, “ Deployment”, then:

a) Let INSbe a<character string literal> containing the qualified <jar name> included in the descriptor
of any JAR included in S

b) Thefollowing <call statement> is effectively executed:

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 61

I SO/IEC 9075-13:2003 (E)
9.1 <drop schema statement>

CALL SQ.J. REMOVE_JAR (JNS, 0);

Conformance Rules

No additional Conformance Rules.

62 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.2 <tabledefinition>

9.2 <tabledefinition>
This Subclause modifies Subclause 11.3, “ <table definition>", in |SO/IEC 9075-2.

Function

Define a persistent base table, a created local temporary table, or aglobal temporary table.

Format

No additional Format itens.

Syntax Rules

1) |Insert after SR 7)€)| ST shall not be an external Java data type whose descriptor specifies an <interface
specification> of SERIALIZABLE.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 63

I SO/IEC 9075-13:2003 (E)
9.3 <view definition>

9.3 <view definition>

This Subclause modifies Subclause 11.22, “ <view definition>" , in | SO/IEC 9075-2.

Function

Define aviewed table.

Format

No additional Format itens.

Syntax Rules

1) |Insert after SR 23)c)| ST shall not be an external Java data type whose descriptor specifies an <interface

specification> of SERIALIZABLE.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

64 Routinesand Types Using Java (SQL/JRT)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.4 <user-defined type definition>

9.4 <user-defined type definition>
This Subclause modifies Subclause 11.41, “ <user-defined type definition>" , in 1SO/IEC 9075-2.

Function

Define a user-defined type.

Format

<user-defined type body> ::=
<schema-resol ved user-defined type name> [<subtype cl ause>]
[<external Java type clause>]
[AS <representation>]
[<user-defined type option list>] [<method specification list>]

<external Java type clause> ::=
<external Java cl ass cl ause> LANGUAGE JAVA <interface using cl ause>

<interface using clause> ::= [USING <interface specification>]

<interface specification> ::=
SQLDATA
| SERI ALI ZABLE

<met hod specification> ::=
I'' Al alternatives from|SQ |EC 9075-2
| <static field method spec>

<net hod characteristic> ::=
Il Al alternatives fromI|SQO|EC 9075-2
| <external Java nethod cl ause>

<static field method spec> ::=
STATI C METHOD <net hod nanme> <l eft paren> <right paren>
<static method returns clause> [SPECI FI C <specific nethod name>]
<external variable name cl ause>

<static nethod returns clause> ::=
RETURNS <data type>

<external variable nane clause> ::=
EXTERNAL VARI ABLE NAME <character string literal >

<external Java class clause> ::=
EXTERNAL NAME <character string literal >

<external Java nethod clause> ::=
EXTERNAL NAME <character string literal >

<Java net hod and parameter declarations> ::=
<Java nethod name> [<Java paraneter declaration list>]

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 65

I SO/IEC 9075-13:2003 (E)
9.4 <user-defined type definition>

Syntax Rules

1) |Insert after SR 3)|If <external Javatype clause> is specified, then UDT is an external Java data type.

2) |Replace SR 8)j)ii)| The <supertype name> immediately contained in the <subtype clause> shall identify
the descriptor of some structured type SST. UDT is adirect subtype of SST, and SST is a direct supertype
of UDT. If UDT isan external Java datatype, then SST shall be an external Java datatype, and the subject
Javaclass of UDT shall be adirect subclass of the subject Java class of SST. If UDT isnot an external Java
datatype, then SST shall not be an external Java datatype.

3) |[Insert before SR 9)|If <external Javatype clause> is specified, then:

4)

5)

a)

f)
Q)
h)
i)

Let VJC be the value of the <character string literal> immediately contained in <external Java class
clause>; VJC shall conform to the Format and Syntax Rules of<jar and class name>. The Java class
identified by <Java class name> in the JAR identified by <jar id> in their immediately containing <jar
and class name> is UDT's subject Java class.

NOTE 52 — The subject Javaclass of UDT can be the subject Javaclass of other external Java datatypes. Each such external
Java datatypeis distinct from other such datatypes.

UDT'ssubject Java class shall beapubl i ¢ classand shall implement the Javainterface
java.io. Serializabl e ortheJavainterfacej ava. sql . SQLDat a or both.

If an <interface using clause> is not explicitly specified, then an implementation-defined <interface
specification> isimplicit.

If SERIALIZABLE is specified, then the subject Java class shall implement the Java interface
java.io. Serializabl e.Themethodj ava.i o. Serializable.witeCbject() is
effectively used to convert a Java object to an SQL representation, and the method j ava. i o. Seri -
al i zabl e. readObj ect () iseffectively used to convert an SQL representation to a Java object.

If SQLDATA is specified, then the subject Java class shall implement the Javainterface

j ava. sgl . SQLDat a asdefined in [JDBC] and [J2SE]. The method j ava. sql . SQL-

Data. wi t eSQL() iseffectively used to convert a Java object to an SQL representation, and the
methodj ava. sqgl . SQLDat a. readSQL() iseffectively used to convert an SQL representation to
aJavaobject.

<overriding method specification> shall not be specified.

A <representation> that is a <predefined type> shall not be specified.
SELF ASLOCATOR shall not be specified.

<locator indication> shall not be specified.

[Insert before SR 9)| If <external Javatype clause> is not specified, then:

a)
b)

<)

<method specification> shall not specify <static field method spec>.
<method characteristic> shall not specify <external Java method clause>.
The <language clause> immediately contained in <method characteristic> shall not specify JAVA.

[Insert after SR 9)a)| If UDT is an external Java datatype, then it isimplementation-defined whether vali-

dation of the explicit or implicit <Java parameter declaration list> is performed by <user-defined type
definition> or when the corresponding SQL -invoked method is invoked.

66 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.4 <user-defined type definition>

6) |Insert after SR 9)b)iii)6)| If UDT isan external Java data type, then the <Javaidentifier> immediately
contained in <Javamethod name> of MS shall be equivalent to the <Javaidentifier> immediately contained

in the <classidentifier> immediately contained in <jar and class name> of UDT.
7) |Insert after SR 9)b)ix)4)B)| UDT shall not be an external Java data type.
8) |Insert after SR 9)b)x)3)| UDT shall not be an external Java data type.
9) |Insert after SR 9)b)xiii)| If MG specifies <static field method spec>, then:

a) MS specifiesastatic field method.

b) Let VSF bethe value of the <character string literal> simply contained in <static field method spec>;
VSF shall conform to the Format and Syntax Rules of <qualified Javafield name>.
NOTE 53 — <static field method spec> defines a static method of the user-defined type that returns the value of the Java

static field specified by the <qualified Javafield name>. Thisisashorthand that providesread-only SQL accessto static fields
of the subject Java class or a superclass of the subject Java class.

10) | Replace SR 9)b)xiv)1) | The <method characteristics> of MS shall contain at most one <language clause>,
at most one <parameter style clause>, at most one <deterministic characteristic>, at most one <SQL -data
access indication>, and at most one <null-call clause>. If UDT is an external Java datatype then, with the
exception of theimplicit <original method specification>s generated for the observer and mutator functions
of each attribute, the <method characteristics> of MS shall not contain the <method characteristic>s
<language clause> or <parameter style clause> and shall contain exactly one <external Javamethod clause>.
For an external Java data type, both <language clause> and <parameter style clause> implicitly specify
JAVA.

11) |Insert after SR 9)b)xiv)1)|If UDT isan external Javadatatype, then let VMP be the value of the <character
string literal> immediately contained in <external Java method clause>; VMP shall conform to the Format
and Syntax Rules of <Java method and parameter declarations>.

12) | Replace SR 9)b)xiv)2)| If UDT is not an external Java data type and <language clause> is not specified,
then LANGUAGE SQL isimplicit.

13) |Replace SR 9)b)xiv)6)B)I) | If <parameter style> isnot specified and UDT isnot an external Javadatatype,
then PARAMETER STYLE SQL isimplicit.

14) |Insert after SR 9)b)xv) | If UDT isan external Java data type and validation of the <Java parameter decla-
ration list> has been implementation-defined to be performed by <user-defined type definition>, then the
Syntax Rules of Subclause 8.6, “ Java routine signature determination” are applied with <user-defined type
definition>, method specification index i, and no subject routine.

Access Rules

No additional Access Rules.

General Rules

1) |Replace GR 1)g)vii)| The explicit or implicit <parameter style> if the <language name> is SQL or JAVA.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 67

I SO/IEC 9075-13:2003 (E)
9.4 <user-defined type definition>

Conformance Rules

1) |Insert this CR| Without Feature J511, “Commands’, conforming SQL language shall not contain a <user-
defined type definition> that contains an <external Javatype clause> that is not contained in a <descriptor
file>.

2) |Insert this CR| Without Feature J591, “ Overloading”, conforming SQL language shall not contain a<method
specification> that contains a<method name> that is equival ent to the <method name> of any other <method
specification> in the same <user-defined type definition>.

3) |Insert this CR|Without Feature J641, “ Static fields’, conforming SQL language shall not contain a<static
field method spec>.

4) |Insert this CR| Without Feature J541, “SERIALIZABLE" , conforming SQL language shall not contain
an <interface specification> that contains SERIALIZABLE. conforming SQL language shall not contain

5) |Insert this CR| Without Feature J551, “SQLDATA", conforming SQL language shall not contain an
<interface specification> that contains SQLDATA.

6) |Insert this CR|Without Feature J622, “external Javatypes’, conforming SQL language shall not contain
a <user-defined type definition> that contains an <external Javatype clause>.

68 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.5 <attribute definition>

9.5 <attribute definition>
This Subclause modifies Subclause 11.42, “ < attribute definition>", in |SO/IEC 9075-2.

Function

Define an attribute of a structured type.

Format

<attribute definition> ::=
<attribute nane> <data type>
[<reference scope check>] [<attribute default>]
[<collate clause>] [<external Java attribute cl ause>]

<external Java attribute clause> ::= EXTERNAL NAME <character string literal >

Syntax Rules

1) |Insert after SR 1)] If the <attribute definition> is contained in a <user-defined type definition> that is not
an external Java datatype or iscontained in an <alter type statement>, then <attribute definition> shall not
specify an <external Java attribute clause>.

2) |Insert after SR 1)|If the <attribute definition> is contained in a <user-defined type definition> that specifies
an external Java datatype whose <interface specification>is SERIALIZABLE, then <attribute definition>
shall specify an <external Java attribute clause>.

3) |Insert after SR 1)| If an <external Java attribute clause> is specified, then let VFN be the value of the
<character string literal> immediately contained in <attribute definition>; VFN shall conform to the Format
and Syntax Rules of<Javafield name>. The <Javafield name> value of VFN is referred to as the corre-
sponding Java field name of the <attribute name>.

4) | Insert after SR 1) | If <attribute definition> is contained in a <user-defined type definition> that specifies
an external Java data type, then <reference scope check>, <attribute default>, and <collate clause> shall
not be specified.

5) |Insert after SR 1)| If <attribute definition> is contained in a <user-defined type definition> that specifies
an external Javadatatype, and if the <datatype> specified in the <attribute definition> is a structured type
ST, then ST shall be an external Java data type.

Access Rules

No additional Access Rules.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 69

I SO/IEC 9075-13:2003 (E)
9.5 <attribute definition>

General Rules

1) |Insert after GR 3)e)| If the <attribute definition> contains an <external Java attribute clause>, then the
corresponding Javafield name of the <attribute name>.

2) |Replace GR 4)| An SQL-invoked method OF is created whose signature and result data type are as given
in the descriptor of the original method specification of the observer function of A. Let V beavaluein
UDT.

Case
a) If Visthe SQL null value, then the invocation V. AN() of OF returns the result of:
CAST (NULL AS DT)
b) If UDT isnot an external Java data type whose descriptor's <interface specification> specifies SERI-
ALIZABLE, then V. AN() returnsthevaueof AinV.

¢) If UDT isan external Javadatatype whose descriptor's <interface specification> specifies SERIALIZ-
ABLE, thenther eadObj ect () method of the subject Java class SICE of V is effectively used to
obtain a Java object from the value of V, the Javafield that corresponds to the attribute specified in
<Javafield name> contained by <attribute definition> is accessed. Let JV and JCLS be respectively
that Java value and its most specific Java class.

Case:
i) If DT isauser-defined type, then:

1) Let STU bethe user-defined type whose subject Java class is JCLS and whose user-defined
typeis DT or isasubclass of DT.

2) Let UIShbe the <interface specification> specified by the user-defined type descriptor of
STU.

3) Case
A) If UISis SERIALIZABLE, then:

1) The subject JavaclassJCLSswr i t eCbj ect () method isexecuted to convert
the Javavalue JV to the SQL value SV of user-defined type STU.

I1) Themethod of execution of the subject Java class's implementation of
writeQbj ect () isimplementation-defined.

NOTE 54 — If UISis SERIALIZABLE, then, as described in Subclause 9.4, “<user-defined type defini-
tion>", the descriptor's subject Java class implements the Javainterfacej ava. i 0. Seri al i zabl e and
defines that interface'swr i t eObj ect () method as described by [J2SE].

B) If UISisSQLDATA, then:

1 The subject Javaclass JCLSswr i t eSQL() method is executed to convert the
Javavaue JV to the SQL value SV of user-defined type STU.

I1) The method of execution of the subject Java class's implementation of
writeSQL() isimplementation-defined.

70 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.5 <attribute definition>

NOTE 55 — If UISis SQLDATA, then, as described in Subclause 9.4, “<user-defined type definition>",
the descriptor's subject Java class implements the Javainterfacej ava. sql . SQLDat a and defines that
interface'swr i t eSQL() method as described by [JDBC] and [J2SE].

C) Otherwise, thevalue of SV is set to the value of JV.

4) V. AN() returnsthevalueof SV.

3) |Replace GR 5)| An SQL-invoked method MF is created whose signature and result data type are as given
in the descriptor of the original method specification of the mutator function of A. Let V beavaluein UDT

and let AV beavaluein DT.

Case:

a)

b)

If Visthe SQL null value, then the invocation V. AN(AV) of MF raises an exception condition: data
exception — null instance used in mutator function.

If UDT is not an external Java data type whose descriptor's <interface specification> specifies SERI-
ALIZABLE, then the invocation V. AN(AV) returns V2 such that V2. AN() = AV and for every
other observer function ANX of UDT, V2. ANX() = V. ANX() .

If UDT isan external Java datatype whose descriptor's <interface specification> specifies SERIALIZ-
ABLE, then ther eadbj ect () method of the subject Java class SICE of V is effectively used to
obtain a Java object from the value of V. Let MST, JCLS and Jtemp be respectively the most specific
type of AV, the subject Java class of MST, and the Java object obtained from r eadObj ect () .
i) Case:
1) If MST isauser-defined type, then:
A) Let UlSbe the <interface specification> specified by the user-defined type descriptor
of MST.
B) Case
)] If UISis SERIALIZABLE, then:

1) Thesubject JavaclassJCLSsr ead(Chj ect () method isexecuted to convert
the value of AV to a Java object JV.

2) The method of execution of the subject Java class's implementation of
readQbj ect () isimplementation-defined.
NOTE 56 — If UISis SERIALIZABLE, then, as described in Subclause 9.4, “ <user-defined type

definition>", the subject Javaclassof U implementsthe Javainterfacej ava. i 0. Seri al i zabl e
and definesthat interface'sr eadObj ect () method as described by [J2SE].

i) If UISis SQLDATA, then:

1) Thesubject Javaclass JCLSsr eadSQL() method is executed to convert
the value of AV to a Java object JV.

2) The method of execution of the subject Java class's implementation of
readSQL() isimplementation-defined.
NOTE 57 — If UISisSQLDATA, then, as described in Subclause 9.4, “ <user-defined type defini-

tion>", the subject Java class of U implements the Javainterfacej ava. sql . SQLDat a and
defines that interface'sr eadSQL() method as described by [JDBC] and [J2SE].

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 71

I SO/IEC 9075-13:2003 (E)
9.5 <attribute definition>

2) Otherwise, the value of JV is set to the value of AV.

i) The Javafield of Jtemp that correspondsto the attribute specified in <Javafield name> contained
by <attribute definition> is assigned the value JV.

iii) Thesubject Javaclass SICE of V'swr i t eCbj ect () method is effectively used to obtain an
SQL value V2 from the Java value Jtemp.

iv) Theinvocation V. AN(AV) returns V2.

Conformance Rules

No additional Conformance Rules.

72 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

9.6 <alter type statement>

I SO/IEC 9075-13:2003 (E)
9.6 <alter type statement>

This Subclause modifies Subclause 11.43, “ <alter type statement>", in | SO/IEC 9075-2.

Function

Change the definition of a user-defined type.

Format

No additional Format itens.

Syntax Rules

1) |Insert after SR 1)| D shall not be an external Java data type.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved

Schema definition and manipulation 73

I SO/IEC 9075-13:2003 (E)
9.7 <drop datatype statement>

9.7 <drop datatype statement>

This Subclause maodifies Subclause 11.49, “ <drop data type statement>" , in | SO/IEC 9075-2.

Function

Destroy a user-defined type.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) |Insert this CR| Without Feature J511, “Commands’, conforming SQL language shall not contain a <drop
type statement> that contains a <schema-resolved user-defined type name> that identifies an external Java

type and that is not contained in a <descriptor file>.

2) |Insert this CR| Without Feature J622, “external Javatypes’, conforming SQL language shall not contain
a <drop data type statement> that contains a <schemarresolved user-defined type name> that identifies an

external Javatype.

74 Routinesand Types Using Java (SQL/JRT)

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.8 <SQL-invoked routine>

9.8 <SQL-invoked routine>
This Subclause modifies Subclause 11.50, “ < SQL-invoked routine>" | in ISO/IEC 9075-2.

Function

Define an SQL-invoked routine.

Format

<paraneter style> ::=
Il Al alternatives from|SQO|EC 9075-2
| JAVA

<external Java reference string> ::=
<jar and class name> <peri od> <Java net hod nane>
[<Java paraneter declaration list>]

Syntax Rules

1) [Insert after SR 3)] If <SQL-invoked routine> specifies LANGUAGE JAVA, then no <SQL parameter
declaration> specified in <SQL-invoked function> shall specify RESULT.

2) |Insert after SR 3)| If <SQL-invoked routine> specifies LANGUAGE JAVA, then neither the <returns
clause> contained in <SQL -invoked function> nor any <SQL parameter declaration> contained in an <SQL-
invoked function> or <SQL-invoked procedure> shall contain <locator indication>.

3) |[Insert after SR 3)| If <SQL-invoked routine> specifiess LANGUAGE JAVA, then <transform group speci-
fication> shall not be specified.

4) |Insert after SR 3)| The maximum value of <maximum dynamic result sets> isimplementation-defined.

5) [Replace SR 5)b)i)| Let UDTN be the <schema-resolved user-defined type name> immediately contained
in <method specification designator>. Let UDT be the user-defined type identified by UDTN. UDT shall
not be an external Javatype.

6) |Rep| ace SR 6)a)| <routine characteristics> shall contain at most one <language clause>, at most one
<parameter style clause>, at most one <specific name>, at most one <deterministic characteristic>, at most
one <SQL -data access indication>, at most one <null-call clause>, and at most one <dynamic result sets
characteristic>. If LANGUAGE JAV A isspecified, then <parameter style clause> shall specify <parameter
style> JAVA.

7) |Replace SR 6)i)| An <SQL-invoked routine> that specifies or implies LANGUAGE SQL iscalled an SQL
routine; an <SQL -invoked routine> that does not specify LANGUAGE SQL iscalled an external routine.
An external routine that specifies LANGUAGE JAVA iscaled an external Java routine.

8) | Insert after SR 6)i) | If Risan external Javaroutine, then the <externa routine name>immediately contained
in <external body reference> shall specify a<character string literal>. Let V be the value of that <character
string literal>. V shall conform to the Format and Syntax Rules of an <external Java reference string>.

NOTE 58 — Ris defined by ISO/IEC 9075-2 to be the SQL -invoked routine specified by <SQL -invoked routine>.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 75

I SO/IEC 9075-13:2003 (E)
9.8 <SQL-invoked routine>

9) | Insert after SR 6)i) | If Risan external Java routine, then the <Java method name> is the name of one or

more Java methods in the class specified by <Java class name> in the JAR specified by <jar name>. The
combination of <Java class name> and <Java method name> represent afully qualified Java class name
and method name. The method name can reference a method of the class, or a method of a superclass of

the class.

10) |Replace SR 6)x)ii)| If Ris an array-returning external function or a multiset-returning external function

that is not an external Javaroutine, then PARAMETER STYLE SQL shall be either specified or implied.

11) |Replace the first paragraph of SR 6)x)iii)| If Ris not an external Java routine, then

Case:

12) [Insert before SR 20)e)| If PARAMETER STYLE JAVA is specified, then:

a) Case

b)

<)

76 Routinesand Types Using Java (SQL/JRT)

i)

i)

i)

i)

i)

If Risan array-returning external function or a multiset-returning external function and the
returned array's element type or returned multiset's el ement type isarow type, then let FRN be
the degree of the element type.

Otherwise, let FRN be 1 (one).

If Risan array-returning external function or a multiset-returning external function, then let AREF be
2. Otherwise, let AREF be O (zero).

If Risan SQL-invoked function, then let the effective SQL parameter list be alist of PN+FRN+AREF
SQL parameters, asfollows:

For i ranging from 1 (one) to PN, the i-th effective SQL parameter list entry isthei-th <SQL
parameter declaration>.

Case:

1

2)

If FRNis1 (one), then effective SQL parameter list entry PN+FRN has <parameter mode>
OUT,; its <parameter type> PT is defined as follows:

A) If <result cast> is specified, then let RT be <result cast from type>; otherwise, let RT
be <returns data type>.

B) If Risan array-returning external function or a multiset-returning external function,
then let PT be the element type of RT.

C) If Risneither an array-returning external function nor a multiset-returning external
function, then PT isRT.

Otherwise, for i ranging from PN+1 to PN+FRN, thei-th effective SQL parameter list entry
is defined as follows:

A) Its <parameter mode> is OUT.

B) Let RFT;_py bethe datatype of the (i—-PN)-th field of the element type of the <returns
data type>. The <parameter type> PT; of the i-th effective SQL parameter list entry is
RFT;_pn-

If Risan array-returning external function or a multiset-returning external function, then:

©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.8 <SQL-invoked routine>

1) Effective SQL parameter typelist entry (PN+FRN)+1 is an SQL parameter whose <data
type> is character string of implementation-defined length and character set SQL_TEXT
with <parameter mode> INOUT.

2) Effective SQL parameter type list entry (PN+FRN)+2 is an SQL parameter whose <data
type> is an exact numeric type with scale 0 (zero) and with <parameter mode> IN.

d) If Risan SQL-invoked procedure, then let the effective SQL parameter list be alist of PN SQL
parameters. For i ranging from 1 (one) to PN, the i-th effective SQL parameter list entry isthei-th
<SQL parameter declaration>.

13) |Replace SR 20)g) | If <language clause> does not specify JAVA, then every <data type> in an effective
SQL parameter list entry shall specify adatatype listed in the SQL data type column for which the corre-
sponding row in the host data type column is not ‘'None'.

14) [Insert before SR 21)|

NOTE 59 — Therules for parameter type correspondence when LANGUAGE JAVA is specified are given in Subclause 4.5,
“Parameter mapping’”.

15) [Insert before SR 21)| If Risan external Javaroutine, then it isimplementation-defined whether validation
of the explicit or implicit <Java parameter declaration list> is performed by <SQL-invoked routine> or
when its SQL-invoked routine is invoked.

16) |Insert before SR 21)| If Ris an externa Javaroutine, and validation of the <Java parameter declaration
list> has been implementation-defined to be performed by <SQL -invoked routine>, then the Syntax Rules
of Subclause 8.6, “ Java routine signature determination”, are applied with the <SQL-invoked routine>, a
method specification index of O (zero), and no subject routine.

Access Rules

1 | Insert after AR 1) \ If Risan external Javaroutine, then the applicable privilegesfor A shall include USAGE
privilege on the JAR referenced in the <externa Java reference string>.

NOTE 60 — Thereferencesto Rand A are defined in the Syntax Rules of Subclause 11.50, “<SQL-invoked routine>", in ISO/IEC
9075-2.

General Rules

1 |Rep| ace GR 3)I)ii) | The routine descriptor includes an indication of whether the parameter passing style
iISPARAMETER STYLE JAVA, PARAMETER STYLE SQL, or PARAMETER STYLE GENERAL.

2) |Replacetheintroductory text of GR 6)a)i)| If Ris not an external Javaroutine and the <SQL data access
indication> in the descriptor of RisMODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL,
then:

Conformance Rules
1) |Insertthis CR|Without Feature J511, “ Commands’, conforming SQL language shall not contain aa<SQL -

invoked routine> that contains a <language name> that contains JAVA and that is not contained in a
<descriptor file>.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 77

I SO/IEC 9075-13:2003 (E)
9.8 <SQL-invoked routine>

2) |Insert this CR| Without Feature J581, “ Output parameters’, conforming SQL language shall not contain
an <SQL -invoked routine> that contains a <language hame> that contains JAV A and that contains a
<parameter mode> that contains either OUT or INOUT.

3) |Insert this CR|Without Feature J521, “ JDBC data types’, conforming SQL language shall not contain a
<Java data type> that is not the corresponding Java data type of some SQL datatype.

4) |Insert this CR|Without Feature J621, “ external Javaroutines’, conforming SQL language shall not contain
an <SQL-invoked routine> that contains a <language name> that contains JAVA.

78 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.9 <alter routine statement>

99 <alter routine statement>
This Subclause modifies Subclause 11.51, “ <alter routine statement>" , in | SO/IEC 9075-2.

Function

Alter acharacteristic of an SQL-invoked routine.

Format

No additional Format itens.

Syntax Rules

1) |Insert after SR 1)| SR shall not be an external Javaroutine.
NOTE 61 — SRis defined to be the SQL-invoked routine identified by the <alter routine statement>.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 79

I SO/IEC 9075-13:2003 (E)
9.10 <drop routine statement>

9.10 <drop routine statement>
This Subclause maodifies Subclause 11.52, “ <drop routine statement>", in | SO/IEC 9075-2.

Function

Destroy an SQL-invoked routine.

Format

No additional Format itens.

Syntax Rules

1) |InsertthisSR|If SRisan external Javaroutine and <drop routine statement> is contained in a <descriptor
file>, then <drop routine statement> shall specify a <routine type> of PROCEDURE or of FUNCTION.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) |Insert this CR|Without Feature J511, “Commands’, conforming SQL language shall not contain a <drop
routine statement> that contains a <specific routine designator> that identifies an external Javaroutine and
that is not contained in a <descriptor file>.

2) |Insert this CR|Without Feature J621, “ external Javaroutines’, conforming SQL language shall not contain
a <drop routine statement> that contains a <specific routine designator> that identifies an external Java
routine.

80 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
9.11 <user-defined ordering definition>

9.11 <user-defined ordering definition>
This Subclause modifies Subclause 11.55, “ <user-defined ordering definition>" , in 1SO/IEC 9075-2.

Function

Define a user-defined ordering for a user-defined type.

Format

<ordering category> ::=
I All alternatives froml|SQO |EC 9075-2
| <comparabl e cat egory>

<conpar abl e category> ::= RELATI VE W TH COVPARABLE | NTERFACE

Syntax Rules

1) |Replace SR 4)|If <comparable category>, <relative category>, or <state category> is specified, then UDT
shall be amaximal supertype.

2) | Insert before SR 6)| If <comparable category> is specified, then UDT shall be an external Java data type.
Let JC be the subject Java class of that external Java datatype. JC shall implement the Javainterface
j ava. | ang. Conpar abl e.

3) |Replacetheintroductory paragraph of SR 6)b) | If <comparable category> is not specified, then:

Access Rules

No additional Access Rules.

General Rules

1) | Insert before GR 3)c) | If <comparable category> is specified, then the ordering category in the user-defined
type descriptor of UDT is set to COMPARABLE.

Conformance Rules

1) |Insert this CR| Without Feature J622, “external Javatypes’, conforming SQL language shall not contain
a <user-defined ordering definition> that contains a <schema-resolved user-defined type name> that iden-
tifies an external Javatype.

2) |Insert this CR| Without Feature J511, “Commands’, conforming SQL language shall not contain a <user-
defined ordering definition> that contains a <schema-resolved user-defined type name> that identifies an
external Javatype and that is not contained in a <deployment file>.

©ISO/IEC 2003 — All rights reserved Schema definition and manipulation 81

I SO/IEC 9075-13:2003 (E)
9.12 <drop user-defined ordering statement>

9.12 <drop user-defined ordering statement>
This Subclause modifies Subclause 11.56, “ <drop user-defined ordering statement>" , in 1SO/IEC 9075-2.

Function

Destroy a user-defined ordering method.

Format

No additional Format itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) |Insert this CR| Without Feature J622, “external Javatypes’, conforming SQL language shall not contain
a <drop user-defined ordering statement> that contains a <schema-resolved user-defined type name> that
identifies an external Javatype.

2) |Insert this CR| Without Feature J511, “Commands’, conforming SQL language shall not contain a <drop
user-defined ordering statement> that contains a <schema-resolved user-defined type name> that identifies
an external Javatype and that is not contained in a <deployment file>.

82 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

10 Access control

This Clause modifies Clause 12, “ Access control”, in |SO/IEC 9075-2.

10.1 <grant privilege statement>

I SO/IEC 9075-13:2003 (E)
10.1 <grant privilege statement>

This Subclause modifies Subclause 12.2, “ <grant privilege statement>" , in ISO/IEC 9075-2.

Function

Define privileges.

Format

No additional Formmt itens.

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) |Insert this CR|Without Feature J511, “Commands’, conforming SQL language shall not contain a<grant
privilege statement> that contains an <object name> that immediately contains a <jar name> and that is

not contained in a <descriptor file>.

©ISO/IEC 2003 — All rights reserved

Access control 83

I SO/IEC 9075-13:2003 (E)
10.2 <privileges>

10.2 <privileges>
This Subclause modifies Subclause 12.3, “ <privileges>" , in ISO/IEC 9075-2.

Function

Specify privileges.

Format

<obj ect name> ::=
Il Al alternatives from|SQO|EC 9075-2
| JAR <jar name>

Syntax Rules

1) |Replace SR 3)|If <object name> specifies a <domain name>, <collation name>, <character set name>,
<trangliteration name>, <schemar-resolved user-defined type name>, <sequence generator name>, or <jar
name>, then <privileges> shall specify USAGE. Otherwise, USAGE shall not be specified.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) |Insert this CR| Without Feature J561, “ Jar privileges’, conforming SQL language shall not contain an
<object name> that immediately contains a <jar name>.

84 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
10.3 <revoke statement>

10.3 <revoke statement>
This Subclause modifies Subclause 12.7, “ <revoke statement>" , in |SO/IEC 9075-2.

Function

Destroy privileges and role authorizations.

Format

No additional Format itens.

Syntax Rules

1) |Replace SR 10)a)iii)4)| P and D are both usage privilege descriptors. The action and theidentified domain,
character set, collation, trangdliteration, user-defined type, sequence generator, or JAR of P are the same as
the action and the identified domain, character set, collation, tranditeration, user-defined type, sequence
generator, or JAR of D, respectively.

2) |Insert after SR 29)b)| DT is an external Java data type and the revoke destruction action would result in
Al no longer having in its applicable privileges USAGE on the JAR whose <jar name> is contained in the
<jar and class name> of the descriptor of DT.

3) |[Insert after SR 33)| Let JR be any JAR descriptor included in SL. JRis said to be impacted if the revoke
destruction action would result in A1 no longer having in its applicable privileges USAGE privilege on a
JAR whose name is contained in a <resolution jar> contained in the SQL-Java path of JR.

4) |Insert after SR 34)r)|If RD isan external Javaroutine, USAGE on the JAR whose <jar name> is contained
in <external Javareference string> contained in the <external routine name> of the descriptor of RD.

5) |Insert after SR 36)|If RESTRICT is specified, then there shall be no impacted JARS.

Access Rules

No additional Access Rules.

General Rules

1) [Insert after GR 16)] If the object identified by <object name> of the <revoke statement> specifies <jar
name>, let J be the JAR identified by that <jar name>. For every impacted JAR descriptor JR and for each
<path element> PE contained in the SQL -Java path of JR whose immediately contained <resolution jar>
isJ, the SQL-Java path of the JAR descriptor JR is modified such that it does not contain PE.

©ISO/IEC 2003 — All rights reserved Access control 85

I SO/IEC 9075-13:2003 (E)
10.3 <revoke statement>

Conformance Rules

1) |InsertthisCR|Without Feature J511, “Commands’, conforming SQL language shall not contain a<revoke
statement> that an <object name> that immediately contains a <jar name> and that is not contained in a

<descriptor file>.

86 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/IEC 9075-13:2003 (E)
11.1 SQLJ.INSTALL_JAR procedure

11 Built-in procedures

11.1 SQLJ.INSTALL JAR procedure

Function

Install aset of Java classes into the current SQL catalog and schema.

Signature

SQLJ. I NSTALL_JAR (

url I'N CHARACTER VARYI NG L),
jar I'N CHARACTER VARYI NG L),
depl oy I'N | NTEGER)

Where L is an implementation-defined integer value.

Access Rules

1)

The privileges required to invoke the SQLJ. | NSTALL_JAR procedure are implementation-defined.

General Rules

1)

2)

3)

4)
5)

TheSQLJ. | NSTALL_JAR procedure is subject to implementation-defined rules for executing SQL -
schema statementswithin SQL-transactions. If aninvocationof SQLJ. | NSTALL_JARraisesan exception
condition, then the effect on the install actions isimplementation-defined.

Thevaluesof theur | parameter that are valid are implementation-defined, and may include URLswhose
format isimplementation-defined. If the value of theur | parameter does not conform to implementation-
defined restrictions and does not identify avalid JAR, then an exception condition israised: Java DDL —
invalid URL.

Let J bethevalueof thej ar parameter. Let TJ be the value of
TRIM(BOTH' ' FROM J)

If TJ does not conform to the Format and Syntax Rules of <jar name>, then an exception condition israised:
Java DDL —invalid JAR name.

Let IN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by TJ.

If thereisaninstalled JAR whose name is JN, then an exception condition is raised: Java DDL —invalid
JAR name.

©ISO/IEC 2003 — All rights reserved Built-in procedures 87

| SO/IEC 9075-13:2003 (E)
11.1 SQLJ.INSTALL_JAR procedure

6) TheJARisinstalled and associated with the name JN. All contents of the JAR are installed, including both
visibleand non-visible Javaclasses, and other items contained in the JAR. This JAR becomesthe associated
JAR of each new class. The non-visible Java classes and other items can be referenced by other Java
methods.

7) A privilege descriptor is created that defines the USAGE privilege on the JAR identified by thej ar
parameter to the <authorization identifier> that owns the schema identified by the implicit or explicit
<schemaname> of thej ar parameter. The grantor for the privilege descriptor is set to the special grantor
value“_SYSTEM”. The privilegeis grantable.

8) If thevalue of thedepl oy parameter is not zero, and if the JAR contains one or more deployment
descriptor files, then the install actions implied by those instances are performed in the order in which the
deployment descriptor files appear in the manifest.

NOTE 62 — Deployment descriptor filesand their install actions are specified in Subclause 4.11.1, “ Deployment descriptor files’.

Conformance Rules

1) Without Feature J531, “Deployment”, conforming SQL language shall not contain invocations of the
SQLJINSTALL_JAR procedure that provide non-zero values of the depl oy parameter.

88 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/IEC 9075-13:2003 (E)
11.2 SQLJ.REPLACE_JAR procedure

11.2 SQLJ.REPLACE_JAR procedure

Function

Replace an installed JAR.

Signature

SQLJ. REPLACE_JAR (

url IN CHARACTER VARYI NG (L),
jar IN CHARACTER VARYI NG (L))

Where: L is an implementation-defined integer value.

Access Rules

1)
2)

The privileges required to invoke the SQLJ. REPLACE J AR procedure are implementati on-defined.
The current user shall be the owner of the JAR specified by the value of thej ar parameter.

General Rules

1)

2)

3)

4)
5)

6)

The SQLJ. REPLACE _JAR procedure is subject to implementation-defined rules for executing SQL-
schema statements within SQL -transactions.

Thevaluesof theur | parameter that are valid are implementation-defined, and may include URLswhose
format is implementation-defined. If the value of ur | identifiesavalid JAR, then refer to the classesin
that JAR asthe new classes. If the value of the ur | parameter does not identify avalid JAR, then an
exception condition is raised: Java DDL —invalid URL.

Let J bethevalueof thej ar parameter. Let TJ be the value of
TRIM(BOTH' ' FROM J)

If TJ does not conform to the format of <jar name>, then an exception condition is raised: Java DDL —
invalid JAR name.

Let IN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by TJ.

If thereisan installed JAR with <jar name> JN, then refer to that JAR asthe old JAR. Refer to the classes
in the old JAR asthe old classes. If there is not an installed JAR with <jar name> JN, then an exception
condition israised: Java DDL — attempt to replace uninstalled JAR. Equivalence of JAR names is deter-
mined by the rulesfor equivalence of identifiers as specified in Subclause 5.2, “ <token> and <separator>",
in ISO/IEC 9075-2.

L et the matching old classes be the old classes whose fully qualified class names are the names of new
classesand | et the matching new classes be the new classeswhosefully qualified class names are the names
of old classes. Let the unmatched old classes be the old classes that are not matching old classes and | et
the unmatched new classes be the new classes that are not matching new classes.

©ISO/IEC 2003 — All rights reserved Built-in procedures 89

| SO/IEC 9075-13:2003 (E)
11.2 SQLJ.REPLACE_JAR procedure

7) Let the dependent SQL routines of a JAR be the routines whose descriptor's <external routine name>
specifies an <external Javareference string> whoseimmediately contained <jar name> is equivalent to the
JAR name of that JAR.

8) If any dependent SQL routine of the old JAR references a method in an unmatched old class, then an
exception condition is raised: Java DDL —invalid class deletion.

NOTE 63 — Thisrule prohibits deleting classes that are referenced by external Java routines. This prohibition does not, however,
prevent deletion of classes that are referenced only indirectly by other Java classes.

9) For each dependent SQL routine of the old JAR that references a method in a matching old class, let CS
be the <SQL -invoked routine> that created the SQL routine. If CSis not avalid <SQL -invoked routine>
for the corresponding new routine, then an exception condition israised: Java DDL —invalid replacement.

10) Let the dependent SQL types of a JAR file be the external Java datatypes that have as their subject Java
class a Javaclass contained in that JAR.

NOTE 64 — “subject Javaclass’ is defined in Subclause 9.4, “<user-defined type definition>".

11) If there are any dependent SQL types of the specified JAR file that are unmatched old classes, then an
exception condition is raised: Java DDL —invalid class deletion.

NOTE 65— Thisrule prohibits deleting classesthat arereferenced by external Javadatatypes. This prohibition does not, however,
prevent deletion of classes that are referenced only indirectly by other Java classes.

12) For each dependent SQL type, let CT be the <user-defined type definition> that created the SQL type. If
CTisnot avalid <user-defined type definition> for the corresponding new class, then an exception condition
israised: Java DDL —invalid replacement.

13) The old JAR and all visible and non-visible old classes contained in it are deleted.

14) The new JAR and al visible and non-visible new classes are installed and associated with the specified
<jar name>. That JAR becomes the associated JAR of each new class. All contents of the new JAR are
installed, including both visible and non-visible Java classes, and other items contained in the JAR. The
non-visible Java classes and other items can be referenced by other Java methods.

15) The effect of SQLJ. REPLACE_JAR on currently executing SQL statements that use an SQL routine or
structured type whose implementation has been replaced is implementation-dependent.

Conformance Rules

None.

90 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
11.3 SQLJ.REMOVE_JAR procedure

11.3 SQLJ.REMOVE_JAR procedure

Function

Remove an installed JAR and its classes.

Signature

SQLJ. REMOVE_JAR (

jar IN CHARACTER VARY!I NG (L),
undepl oy IN I NTEGER)

Where: L is an implementation-defined integer value.

Access Rules

1)
2)

The privileges required to invoke the SQLJ. REMOVE_JAR procedure are implementation-defined.
The current user shall be the owner of the JAR specified by the value of thej ar parameter.

General Rules

1)

2)

3)
4)

5)

TheSQLJ. REMOVE _JAR procedureis subject to implementation-defined rulesfor executing SQL-schema
statementswithin SQL -transactions. If aninvocation of SQLJ. REMOVE_J ARraises an exception condition,
then the effect on the remove actions is implementation-defined.

Let J bethevalueof thej ar parameter. Let TJ be the value of
TRIRM(BOTH' ' FROMJ)

If TJ does not conform to the format of <jar name>, then an exception condition israised: Java DDL —
invalid JAR name.

Let IN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by TJ.

If thereisan installed JAR with <jar name> JN, then refer to that JAR asthe old JAR. Refer to the classes
in the old JAR asthe old classes. If there is not an installed JAR with <jar name> JN, then an exception
condition israised: Java DDL — attempt to remove uninstalled JAR. Equivalence of <jar name>sis deter-
mined by the rulesfor equivalence of identifiers as specified in Subclause 5.2, “ <token> and <separator>",
in ISO/IEC 9075-2.

If the value of theundepl oy parameter is not O (zero), and if the JAR contains one or more deployment
descriptor files, then the remove actions implied by those instances are performed in the reverse of the
order in which the deployment descriptor files appear in the manifest.

NOTE 66 — Deployment descriptor files and their remove actions are specified in Subclause 4.11.1, “ Deployment descriptor
files".

NOTE 67 — These actions are performed prior to examining the condition specified in the following step.

©ISO/IEC 2003 — All rights reserved Built-in procedures 91

I SO/IEC 9075-13:2003 (E)
11.3 SQLJ.REMOVE_JAR procedure

6)

7)

8)

9

L et the dependent SQL routines of a JAR be the routines whose descriptor's <external routine name>
specifies an <external Javareference string> whoseimmediately contained <jar name> is equivalent to the
name of that JAR.

If there are any dependent SQL routines of the specified JAR, then an exception condition is raised: Java
DDL —invalid class deletion.

NOTE 68 — Thisrule prohibits deleting classes that are referenced by external Java routines. This prohibition does not, however,
prevent deletion of classes that are referenced only indirectly by other Java classes.

L et the dependent SQL types of a JAR be the external Java data types that have as their subject Java class
aJava class contained in that JAR.

NOTE 69 — “Subject Java class’ is defined in Subclause 9.4, “ <user-defined type definition>".

If there are any dependent SQL types of the specified JAR, then an exception condition is raised: Java
DDL —invalid class deletion.

NOTE 70— Thisrule prohibits del eting classesthat arereferenced by external Javadatatypes. This prohibition does not, however,
prevent deletion of classes that are referenced only indirectly by other Java classes.

10) The specified JAR and all visible and non-visible classes contained in it are deleted.
11) The USAGE privilege on the specified JAR is revoked from all usersthat haveit.
12) The effect of SQLJ. REMOVE_JAR on currently executing SQL statements that use an SQL routine or

structured type whose implementation has been removed is implementati on-dependent.

Conformance Rules

1)

Without Feature J531, “Deployment”, conforming SQL language shall not contain invocations of the
SQLJREMOVE_JAR procedure that provide non-zero values of the undepl oy parameter.

92 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-13:2003 (E)
114 SQLJ.ALTER_JAVA_PATH procedure

11.4 SQLJ.ALTER_JAVA_PATH procedure

Function

Alter the SQL-Java path of aJAR.

Signature

SQLJ. ALTER JAVA PATH (

jar IN CHARACTER VARYI NG (L),
pat h IN CHARACTER VARYI NG (L))

Where: L is an implementation-defined integer value.

Access Rules

1)
2)
3)

Theprivilegesrequired toinvokethe SQLJ. ALTER_JAVA PATH procedure are implementation-defined.
The current user shall be the owner of the JAR specified by the value of thej ar parameter.
The current user shall have the USAGE privilege on each JAR referenced in the pat h parameter.

General Rules

1)

2)

3)

4)

5)

6)

7)

TheSQLJ. ALTER JAVA PATHprocedureis subject toimplementation-defined rulesfor executing SQL -
schema statements within SQL -transactions.

Let J bethevalue of thej ar parameter. Let TJ be the value of
TRRM(BOTH' ' FROMJ)

If TJ does not conform to the format of <jar name>, then an exception condition is raised: Java DDL —
invalid JAR name.

Let IN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by TJ.

Whenthe SQLJ. ALTER JAVA PATH procedureis called, the current catalog and schema at the time of
the call are the default for each omitted <catalog name> and <schema name> in the <resolution jar>s of
thepat h parameter. Those defaults apply to any subsequent use of the pat h parameter as specified below.

If the value of the pat h parameter does not conform to the format for <SQL Java path>, then an exception
condition israised: Java DDL —invalid path name.

NOTE 71 — The pat h parameter can be an empty or all-blank string.

The value of the pat h parameter becomes the path associated with the JAR denoted by JN, replacing the
current path (if any) associated with that JAR.

If an invocation of the SQLJ. ALTER _JAVA PATH procedure raises an exception condition, then effect
on the path associated with the JAR is implementation-defined.

©ISO/IEC 2003 — All rights reserved Built-in procedures 93

1 SO/l EC 9075-13:2003 (E)
114 SQLJ.ALTER_JAVA_PATH procedure

8) Theeffect of SQLJ. ALTER _JAVA PATHon SQL statements that have already been prepared or are
currently executing is implementation-dependent.

Conformance Rules

1) Without Feature J601, “ SQL-Java paths’, conforming SQL language shall not contain invocations of the
SQLJ. ALTER_JAVA PATH procedure.

94 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
12.1 Javafacilities supported by thispart of | SO/IEC 9075

12 Javatopics

12.1 Javafacilities supported by thispart of 1 SO/IEC 9075

12.1.1 Packagejava.sql

SQL systems that implement this part of 1SO/IEC 9075 support the packagej ava. sql , which isthe JIDBC
driver, and all classesrequired by that package. The other Java packages supplied by SQL systems thati mplement
this part of 1SO/IEC 9075 are implementation-defined.

In an SQL system that implements this part of 1SO/IEC 9075, the packagej ava. sql supports the default
icsft)incnse:action. The default connection for a Java method invoked as an SQL routine has the following character-
— Thedefault connection is pre-allocated to provide efficient access to the database.

— Thedefault connection isincluded in the current session and transaction.

— The authorization ID of the default connection is the currentauthorization 1D.

— TheJDBC AUTOCOMMIT setting of the default connection is false.

Other data source URL s that are supported by j ava. sql areimplementation-defined.

12.1.2 System properties

SQL systems that implement this part of 1SO/IEC 9075 support the following system properties for use by the
get Property method of j ava. | ang. Syst em

Table 1 — System properties

Key Description of associated value

sql j . def aul t connecti on | If aJavamethod is executing in an SQL-implementation, then the
String "j dbc: def aul t : connect i on"!

sqlj.runtime The class name of a runtime context class?

1 otherwise, the null value.

©ISO/IEC 2003 — All rights reserved Javatopics 95

I SO/IEC 9075-13:2003 (E)
12.1 Javafacilities supported by thispart of | SO/IEC 9075

2 This classis a subclass of theclasssql j . runti ne. Runti neCont ext . Theget Def aul t Cont ext () method of the
class whose name is returned returns the default connection described in Subclause 12.1.1, “Package java.sql”.

96 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
12.2 Deployment descriptor files

12.2 Deployment descriptor files

Function

Supply information for actionsto betaken by the SQLJ. | NSTALL_JARand SQLJ. REMOVE_JAR procedures.

M oddl

A deployment descriptor fileis atext file contained in a JAR, which is specified with the following property
in the manifest for the JAR:

Nane: file_nane
SQLJIDepl oynment Descri ptor: TRUE

Properties
The text contained in a deployment descriptor file shall have the following form:

<descriptor file> ::=
SQ.Actions <left bracket> <right bracket> <equal sign>
{ [<doubl e quote> <action group> <doubl e quot e>
[<comma> <doubl e quot e> <action group> <double quote>1]] }
<action group> ::=
<install actions>
| <renpbve actions>
<install actions> ::=

BEGA N | NSTALL [<command> <semi col on>]... END | NSTALL
<renove actions> ::=

BEG N REMOVE [<command> <semni col on>]... END REMOVE
<command> ::=

<SQL st at enent >
| <inpl enentor bl ock>

<SQ statenent> ::= 1! See Description
<i npl enentor bl ock> ::=
BEG N <i npl ement or nane> <SQL token>... END <inpl enentor nanme>
<i npl enentor name> ::= <identifier>
<SQ. token> ::= 1! See Description
Description

1) <descriptor file> shall contain at most one <install actions> and at most one <remove actions>.

2) The <command>s specified in the <install actions> (if any) and <remove actions> (if any) specify the
install actions and remove actions of the deployment descriptor file, respectively.

3) An<SQL statement> specified in an <install actions> shall be either:

a) An<SQL-invoked routine> whose <language clause> specifies JAVA. The procedures and functions
created by those statements are called the deployed routines of the deployment descriptor file.

©ISO/IEC 2003 — All rights reserved Javatopics 97

I SO/IEC 9075-13:2003 (E)
12.2 Deployment descriptor files

4)

5)

6)

7)

8)

9)

b) A <grant privilege statement> that specifies the EXECUTE privilege for a deployed routine.

¢) A <user-defined type definition> that specifies an <external Javatype clause>. The types created by
those statements are called the deployed types of the deployment descriptor file.

d) A <grant privilege statement> that specifies the USAGE privilege for a deployed type.
€) A <user-defined ordering definition> that specifies ordering for a deployed type.

When a deployment descriptor file is executed by acall of the SQLJ. | NSTALL_JAR procedure, if the
<jar name> of any <external routine name> or an <SQL-invoked routine> in an <install actions> isthe
<jar name>“t hi sj ar”, then“t hi sj ar” is effectively replaced with thej ar parameter of the
SQLJ. | NSTALL_JAR procedure for purposes of that execution.

An <SQL statement> specified in a <remove actions> shall be either:

a) A <drop routine statement> for a deployed routine.

b) A <revoke statement> for the EXECUTE privilege on a deployed routine.

C) A <drop datatype statement> for a deployed type.

d) A <revoke statement> for the USAGE privilege on adeployed type.

€) A <drop user-defined ordering statement> that specifies ordering for a deployed type.

An <implementor block> specifiesimplementation-defined install actions (remove actions) when specified
in an <ingtall actions> (<remove actions>).

An <SQL token> isan SQL lexical unit specified by the term “<token>" in Subclause 5.2, “ <token> and
<sgparator>", in ISO/IEC 9075-2. That is, the comments, quotes, and double-quotes in an <implementor
block> follow SQL token conventions.

An <implementor name> isan implementation-defined SQL identifier. The <implementor name>s specified
following the BEGIN and END keywords shall be equivalent.

Whether an <implementor block> with a given <implementor name> contained in an <install actions>
(<remove actions>) isinterpreted as an install action (remove action) isimplementation-defined. That is,
an implementation may or may not performinstall or remove actions specified by some other implementation.

NOTE 72 — The deployment descriptor file format corresponds to the more general notion of a properties file supporting indexed
properties. Therefore, the deployment descriptor file can be used by the SQL -implementation to instantiate a Java Bean, as defined
in[JavaBeans], having an indexed property, SQLACt i ons. Y ou can then customize the resulting Java Bean instance with ordinary
Java Bean tools. For example, you can change the SQL procedures or permissions by changing the routine descriptors stored in
the SQLAct i ons property. The SQL system can then use the customized Java Bean instance to generate a modified version of
the deployment descriptor fileto use in arevised version of the JAR.

Conformance Rules

1)

2)

98

Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <user-defined type definition>.

Without Feature J531, “ Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <drop type statement>.

Routines and Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

3)

4)

5)

6)

7)

8)

I SO/IEC 9075-13:2003 (E)
12.2 Deployment descriptor files

Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains an <SQL -invoked routine>.

Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <drop routine statement>.

Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <user-defined ordering definition>.

Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <drop user-defined ordering statement>.

Without Feature J531, “ Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <grant privilege statement>.

Without Feature J531, “ Deployment”, conforming SQL language shall not contain an <SQL statement>
that contains a <revoke statement>.

©ISO/IEC 2003 — All rights reserved Javatopics 99

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

100 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-13:2003 (E)
13.1 JAR_JAR_USAGE view

13 Information Schema

This Clause modifies Clause 5, “ Information Schema” , in 1SO/IEC 9075-11.

13.1 JAR_JAR_USAGE view

Function

I dentify each JAR owned by a given user or role on which JARs defined in this catalog are dependent.
Definition

CREATE VI EW JAR JAR USAGE AS
SELECT SPECI FI C CATALOG, SPECI FI C_ SCHEMA, SPECI FI C_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAVE
FROM (DEFI NI TI ON_SCHEMA. JAR JAR USAGE JJU
JON
DEFI NI TI ON_SCHEMA. JARS J
USI NG (JAR CATALOG, JAR SCHEMA, JAR NAME))
JON
DEFI NI TI ON_SCHEMA. SCHEMATA S
ON ((JJU. PATH JAR CATALOG, JJU.PATH JAR SCHEMA)
= (S.CATALOG NAME, S.SCHEMA NAME))
WHERE (SCHEMA OWKER = CURRENT USER
R
SCHEMA_OWKER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))
AND
JAR_CATALQG =
(SELECT CATALOG NAVE
FROM | NFORMVATI ON_SCHEMA_CATALOG NAME) ;

GRANT SELECT ON TABLE JAR JAR USAGE
TO PUBLI C W TH GRANT OPTI ON,

Conformance Rules

1) Without Feature J652, “ SQL/JRT Usagetables’, conforming SQL language shall not reference INFORMA.-
TION_SCHEMA.JAR_JAR_USAGE.

©ISO/IEC 2003 — All rights reserved Information Schema 101

I SO/IEC 9075-13:2003 (E)
13.2 JARSview

13.2 JARSview

Function

Identify the installed JARs defined in this catal og that are accessible to the current user.

Definition

CREATE VI EW JARS AS
SELECT JAR CATALOG, JAR SCHEMA, JAR NAME
FROM DEFI NI TI ON_SCHEMA. JARS
WHERE (JAR CATALOG, JAR SCHEMA, JAR NAME, 'JAR) IN
(SELECT OBJECT CATALOG, OBJECT SCHEMA, OBJECT NAME, OBJECT TYPE
FROM DEFI NI TI ON_SCHEMA. USAGE_PRI VI LEGES
WHERE GRANTEE | N
('PUBLIC, CURRENT USER)
R
GRANTEE | N
(SELECT ROLE_NAME
FROM ENABLED_ROLES))
AND
JAR CATALOG =
(SELECT CATALOG NAMVE
FROM | NFORMATI ON_SCHEMA_CATALOG NAME) ;

GRANT SELECT ON TABLE JARS
TO PUBLI C W TH GRANT OPTI ON,

Conformance Rules

1) Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall not reference
INFORMATION_SCHEMA.JARS.

102 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)
13.3 METHOD_SPECIFICATIONS view

13.3 METHOD_SPECIFICATIONS view
This Subclause modifies Subclause 5.33, “ METHOD_SPECIFICATIONSview” , in ISO/IEC 9075-11.

Function

Identify the methods in the catalog that are accessible to agiven user or role.
Definition

|Add columns EXTERNAL_NAME and IS _FIELD in ISO/IEC 9075-11| Add “, EXTERNAL_NAME,
I S_FI ELD’ to the end of the outermost <select list> of the <view definition>.

Conformance Rules

1) |Insert this CR| Without Feature J651, “SQL/JRT Information Schema’, conforming SQL language shall
not reference INFORMATION_SCHEMA . METHOD_SPECIFICATIONS . EXTERNAL_NAME.

2) |Insert this CR|Without Feature J651, “ SQL/JRT Information Schema”, conforming SQL language shall
not reference INFORMATION_SCHEMA . METHOD_SPECIFICATIONS. IS _FIELD.

©ISO/IEC 2003 — All rights reserved Information Schema 103

1 SO/l EC 9075-13:2003 (E)
13.4 ROUTINE_JAR_USAGE view

13.4 ROUTINE_JAR_USAGE view

Function

I dentify the JARs owned by a given user or role on which external Java routines defined in this catalog are
dependent.

Definition

CREATE VI EW ROUTI NE_JAR USAGE AS
SELECT SPECI FI C CATALOG, SPECI FI C_ SCHEMA, SPECI FI C_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAME
FROM (DEFI NI TI ON_SCHEMA. ROUTI NE_JAR USAGE
JON
DEFI NI TI ON_SCHEMA. ROUTI NES
USI NG (SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME))
JON
DEFI NI TI ON_SCHEMA. SCHEMATA S
ON ((JAR CATALOG JAR SCHEMA) =
(S.CATALOG NAME, S.SCHEMA NAME))
WHERE (SCHEMA OWKNER = CURRENT USER
R
SCHEMA_ OWKER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))
AND
SPECI FI C_CATALCG =
(SELECT CATALOG NAVE
FROM | NFORMATI ON_SCHEMA CATALOG NAME) ;

GRANT SELECT ON TABLE ROUTI NE_JAR_USAGE
TO PUBLI C W TH GRANT OPTI ON,

Conformance Rules

1) Without Feature J652, “ SQL/JRT Usagetables’, conforming SQL language shall not reference INFORMA-
TION_SCHEMA.ROUTINE_JAR_USAGE.

104 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-13:2003 (E)
135 TYPE_JAR_USAGE view

13.5 TYPE_JAR_USAGE view

Function

I dentify the JARs owned by a given user or role on which external Javatypes defined in this catalog are
dependent.

Definition

CREATE VI EW TYPE_JAR USAGE AS
SELECT USER DEFI NED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFI NED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFI NED_TYPE_NAME AS UDT_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAME
FROM (DEFI NI TI ON_SCHEMA. TYPE_JAR USAGE
JON
DEFI NI TI ON_SCHEMA. USER_DEFI NED_TYPES
USI NG (USER DEFI NED TYPE CATALOG, USER DEFI NED TYPE_SCHEMA,
USER DEFI NED_TYPE_NAME))
JON
DEFI NI TI ON_SCHEMA. SCHEMATA S
ON ((JAR CATALOG JAR SCHEMA) =
(S.CATALOG NAME, S.SCHEMA NAME))
WHERE (SCHEMA OWKNER = CURRENT USER
R
SCHEMA_ OWKER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))
AND
USER DEFI NED_TYPE_CATALQG =
(SELECT CATALOG NAVE
FROM | NFORMATI ON_SCHEMA CATALOG NAME) ;

GRANT SELECT ON TABLE TYPE_JAR_USAGE
TO PUBLI C W TH GRANT OPTI ON,

Conformance Rules

1) Without Feature J652, “ SQL/JRT Usagetables’, conforming SQL language shall not reference INFORMA.-
TION_SCHEMA.TYPE_JAR_USAGE.

©ISO/IEC 2003 — All rights reserved Information Schema 105

1 SO/l EC 9075-13:2003 (E)
13.6 USER_DEFINED_TYPESview

13.6 USER_DEFINED_TYPESview

This Subclause modifies Subclause 5.72, “ USER DEFINED_TYPESview” , in ISO/IEC 9075-11.

Function

Identify the user-defined types defined in this catalog that are accessible to a given user or role.

Definition

|Add columns to the USER_DEFINED_TY PES view in ISO/IEC 9075-11| Add “, EXTERNAL_NANE,
EXTERNAL _LANGUAGE, JAVA | NTERFACE" to the end of the outermost <select list> of the <view
definition>.

Conformance Rules

1)

2)

3)

Insert this CR

not reference |

Insert thisCR

not reference |

Insert this CR

not reference |

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall
NFORMATION_SCHEMA . UDT_S. EXTERNAL_NAME.

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall
NFORMATION_SCHEMA . UDT_S. EXTERNAL_LANGUAGE.

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall

NFORMATION_SCHEMA . UDT_S. JAVA_INTERFACE.

106 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

13.7 Short nameviews

This Subclause modifies Subclause 5.77, “ Short name views’ , in I1SO/IEC 9075-11.

Function

I SO/IEC 9075-13:2003 (E)
13.7 Short nameviews

Provide alternative views that use only identifiers that do not require Feature F391, “Long identifiers’.

Definition

[Replace view METHOD_SPECS in ISO/IEC 9075-11]

CREATE VI EW METHCD_SPECS

(SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME,
UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
METHOD_NAME, | S_STATIC, | S_OVERRI DI NG,
| S_CONSTRUCTOR, DATA TYPE, CHAR_MAX_LENGTH,

CHAR OCTET_LENGTH, CHAR SET CATALOG, ~ CHAR SET_SCHEMA,
CHARACTER SET_NAME, COLLATI ON_CATALOG, ~ COLLATI ON_SCHEMA,

COLLATI ON_NAME, NUVERI C_PRECI SI ON, NUVERI C_PREC_RADI X,
NUVERI C_SCALE, DATETI ME_PRECI S| ON, | NTERVAL_TYPE,

| NTERVAL_PRECI S| ON, RETURN_UDT_CATALOG, RETURN_UDT SCHEMA,
RETURN_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDI NALI TY, DTD_| DENTI FI ER,
METHOD_LANGUAGE, PARAVETER_STYLE, | S_DETERM NI STI C,
SQL_DATA_ACCESS, I'S_ NULL_CALL, TO SQL_SPEC CAT,

TO SQL_SPEC SCHEMA, TO SQL_SPEC NAME, AS LOCATOR,
EXTERNAL_NAME, |'S_FI ELD, CREATED,

LAST ALTERED) AS
SELECT SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME,

USER_DEFI NED_TYPE_CATALOG, USER DEFI NED TYPE_SCHEMA, USER DEFI NED_TYPE_NAME,

METHOD _NAME, |S STATIC, |S OVERRI DI NG,
| S_CONSTRUCTOR, DATA TYPE, CHARACTER MAXI MUM LENGTH,

CHARACTER OCTET_LENGTH, CHARACTER SET_CATALOG, CHARACTER SET_SCHEMA,

CHARACTER SET_NAME, COLLATI ON_CATALOG, COLLATI ON_SCHEMA,

COLLATI ON_NAME, NUMERI C_PRECI SI ON, NUMERI C_PRECI SI ON_RADI X,

NUVERI C_SCALE, DATETI ME_PRECI SI ON, | NTERVAL_TYPE,
| NTERVAL_PRECI S| ON, RETURN_UDT_CATALOG, RETURN_UDT_SCHEMA,
RETURN_UDT_NAVE, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAXI MUM CARDI NALI TY, DTD_I DENTI FI ER,
METHOD LANGUAGE, PARAMETER STYLE, |S DETERM NI STIC,
SQL_DATA ACCESS, |S NULL_CALL, TO SQ._SPECI FI C_CATALOG,
TO SQL_SPECI FI C_SCHEMA, TO SQL_SPECI FI C_NAMVE, AS_LOCATOR
EXTERNAL_NAME, 1S FI ELD, CREATED,
LAST_ALTERED

FROM | NFORMATI ON_SCHEMA. METHOD_SPECI FI CATI ONS;

[Replace view UDT_Sin ISO/IEC 9075-11]

CREATE VI EW UDT_S
(UDT_CATALOG, UDT_SCHEMA, UDT_NAME,

©ISO/IEC 2003 — All rights reserved

Information Schema 107

I SO/IEC 9075-13:2003 (E)
13.7 Short nameviews

UDT_CATEGORY, |'S_| NSTANTI ABLE, I'S FI NAL,
ORDERI NG_FORM ORDERI NG _CATEGORY, ORDERI NG_ROUT_CAT,
ORDERI NG ROUT_SCH, ORDERI NG_ROUT_NAME, REFERENCE_TYPE,
DATA TYPE, CHAR MAX_LENGTH, CHAR OCTET_LENGTH,
CHAR SET CATALOG, CHAR SET_SCHEMA, CHARACTER_SET_NAME,

COLLATI ON_CATALOG, COLLATI ON_SCHEMA, COLLATI ON_NAMNE,
NUMERI C_PRECI SI ON, NUMERI C_PREC_RADI X, NUMERI C_SCALE,
DATETI ME_PRECI SI ON, | NTERVAL_TYPE, | NTERVAL_PREC! SI ON,
SOURCE_DTD | D, REF_DTD_| DENTI FI ER, EXTERNAL_NAME,
EXTERNAL_LANGUAGE, JAVA | NTERFACE) AS

SELECT USER DEFI NED_TYPE_CATALOG, USER DEFI NED TYPE SCHEMA, USER DEFI NED TYPE_ NAME,
CATEGORY, |'S_I NSTANTI ABLE, |S_FI NAL,
ORDERI NG_FORM ORDERI NG CATEGORY, ORDERI NG_ROUTI NE_CATALOG,
ORDERI NG_ROUTI NE_SCHEMA, ORDERI NG ROUTI NE_NAME, REFERENCE_TYPE,
DATA TYPE, CHARACTER MAXI MUM LENGTH, CHARACTER OCTET LENGTH,
CHARACTER SET_CATALOG, CHARACTER SET_SCHEMA, CHARACTER SET_NAME,
COLLATI ON_CATALOG, COLLATI ON_SCHEMA, COLLATI ON_NAME,
NUMERI C_PRECI S| ON, NUMERI C_PRECI SI ON_RADI X, NUVERI C_SCALE,
DATETI ME_PRECI SI ON, | NTERVAL_TYPE, | NTERVAL_PRECI SI ON,
SOURCE_DTD | DENTI FI ER, REF_DTD | DENTI FI ER, EXTERNAL_NAVE,
EXTERNAL_LANGUAGE, JAVA | NTERFACE

FROM | NFORMATI ON_SCHEMA. USER_DEFI NED_TYPES;

Conformance Rules

1) |InsertthisCR

2)

3)

4) |Insert thisCR
5) |Insert thisCR

not reference |

Insert this CR

not reference |

Insert thisCR

not reference |

not reference |

not reference |

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall
NFORMATION_SCHEMA . METHOD_SPECS. EXTERNAL_NAME.

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall
NFORMATION_ SCHEMA . METHOD_SPECS. IS FIELD.

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall
NFORMATION_SCHEMA . UDT_S. EXTERNAL_NAME.

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall
NFORMATION_SCHEMA . UDT_S. EXTERNAL_LANGUAGE.

Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall

NFORMATION_SCHEMA . UDT_S. JAVA_INTERFACE.

108 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

1 SO/l EC 9075-13:2003 (E)
14.1 JAR_JAR_USAGE basetable

14 Definition Schema

This Clause modifies Clause 6, “ Definition Schema” , in |SO/IEC 9075-11.

14.1 JAR_JAR_USAGE basetable

Function

The JAR_JAR_USAGE table has one row for each JAR included in the SQL -Java path of a JAR.

Definition

CREATE TABLE JAR_JAR USAGE (
JAR CATALOG | NFORMATI ON_SCHENA. SQL_| DENTI FI ER,
JAR _SCHEMA | NFORMATI ON_SCHENA. SQL_| DENTI FI ER,
JAR _NAME | NFORMATI ON_SCHENA. SQL_ | DENTI FI ER,
PATH JAR_CATALOG | NFORMATI ON_SCHENA. SQL_| DENTI FI ER,
PATH _JAR_SCHENA | NFORMATI ON_SCHENA. SQL_| DENTI FI ER,
PATH JAR NAME | NFORMATI ON_SCHEMA. SQL_ | DENTI FI ER,

CONSTRAI NT JAR JAR USAGE_PRI MARY_KEY
PRI MARY KEY (JAR CATALOG, JAR SCHEMA, JAR NAME,
PATH_JAR CATALOG, PATH JAR SCHEMA, PATH JAR NAME),
CONSTRAI NT JAR JAR USAGE_CHECK_REFERENCES JARS
CHECK (PATH_JAR CATALOG NOT I N
(SELECT CATALOG NAMVE
FROM SCHEMATA)
R
(PATH JAR CATALOG, PATH JAR SCHEMA, PATH JAR NAME) IN
(SELECT JAR CATALOG, JAR SCHEMA, JAR NAME
FROM JARS)),
CONSTRAI NT JAR JAR _USAGE_FOREl GN_KEY_JARS
FOREI GN KEY (JAR CATALOG JAR SCHEMA, JAR NAME)
REFERENCES JARS

Description

1

2)

The JAR_JAR_USAGE table has one row for each JAR JP identified by a <jar name> contained in an
<SQL Java path> associated with JAR J.

Thevaluesof JAR_CATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>, <unqualified
schema name>, and <jar id>, respectively, of the <jar name> of the JAR (J) being described.

©ISO/IEC 2003 — All rights reserved Definition Schema 109

1 SO/l EC 9075-13:2003 (E)
14.1 JAR_JAR_USAGE basetable

3) Thevauesof PATH_JAR CATALOG, PATH_JAR_SCHEMA, and PATH_JAR _NAME arethe<catalog
name>, <unqualified schemaname>, and <jar id>, respectively, of the <jar name> of aJAR (JP) thatisin
the <SQL Java path> associated with JAR J.

110 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
14.2 JARSbasetable

14.2 JARSbasetable

Function

The JARS table has one row for each installed JAR.

Definition

CREATE TABLE JARS (
JAR_CATALOG | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
JAR_SCHEMA | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
JAR_NANVE | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,

CONSTRAI NT JARS_PRI MARY_KEY
PRI MARY KEY (JAR CATALOG JAR SCHEMA, JAR NAME),
CONSTRAI NT JAR_FOREI GN_KEY_SCHEMATA
FOREI GN KEY (JAR CATALOG, JAR SCHEMA)
REFERENCES SCHEMATA

Description

1) Thevauesof JAR_CATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>, <unqualified
schema name>, and <jar id> of the <jar name> of the JAR being described.

©ISO/IEC 2003 — All rights reserved Definition Schema 111

1 SO/l EC 9075-13:2003 (E)
14.3 METHOD_SPECIFICATIONS basetable

143 METHOD_SPECIFICATIONS basetable

This Subclause modifies Subclause 6.29, “ METHOD _SPECIFICATION _PARAMETERSbasetable” , in ISO/IEC
9075-11.

Function

The METHOD_SPECIFICATIONS base table has one row for each method specification.
Definition

|Replace CONSTRAINT METHOD_SPECIFICATIONS LANGUAGE_CHECK in ISO/IEC 9075-11]

CONSTRAI NT METHOD_SPECI FI CATI ONS_LANGUAGE_CHECK
CHECK (METHOD_LANGUAGE | N
("sQ', "ADA', 'C, 'coBQ',
"FORTRAN , ' MUMPS' , ' PASCAL','PLI', "JAVA'))

|Add two columns and two constraintsin ISO/IEC 9075-11| Add the following <table element>s to the <table
element list> of the METHOD_SPECIFICATIONS base table:

EXTERNAL_NANE | NFORVATI ON_SCHEMA. CHARACTER DATA,
|'S_FI ELD | NFORVATI ON_SCHEMA. CHARACTER DATA
CONSTRAI NT METHOD_SPECI FI CATI ONS_| S_FI ELD_CHECK

CHECK (IS FIELD IN ('YES, 'NO)),
CONSTRAI NT METHOD_SPECI FI CATI ONS_METHOD_COVBI NATI ONS

CHECK (((METHOD LANGUAGE = ' JAVA')

AND
(EXTERNAL_NAMVE, IS FIELD) IS NOT NULL)

R
((METHOD_LANGUAGE <> 'JAVA')
AND
((EXTERNAL_NAME, 1S FIELD)
IS NULL))),

CONSTRAI NT METHOD_SPECI FI CATI ONS_FI ELD_CQOVBI NATI ONS
CHECK (IS FIELD = "'NO OR IS _STATIC = 'YES')

Description

1) |Insert this Description| Case:

a) If the method being described is an external Javaroutine, then the value of EXTERNAL_NAME is
the <Java method and parameter declarations> specified in the <external Java method clause> for that
external Java data type.

b) If the method being described is a static field of an external Javatype, then the value of EXTER-
NAL_NAME isthe <qualified Javafield name> specified in the <static field method spec> of the
method.

112 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)
143 METHOD_SPECIFICATIONS base table

c) Otherwise, the value of EXTERNAL_NAME isthe null value.

2) |Insert this Description| Case:
a) If the method being described is a static field of an external Javatype, then thevalue of IS FIELD is
'YES.
b) If the method being described is an external Javatype, then the value of IS FIELD is'NO..

¢) Otherwise, thevaue of IS FIELD isthe null value.

©ISO/IEC 2003 — All rights reserved Definition Schema 113

1 SO/l EC 9075-13:2003 (E)
14.4 ROUTINE_JAR_USAGE basetable

144 ROUTINE_JAR_USAGE basetable

Function

The ROUTINE_JAR_USAGE table has one row for each external Javaroutine that namesaJAR in an
<external Javareference string>.

Definition

CREATE TABLE ROUTI NE_JAR _USAGE (
SPECI FI C_CATALCOG I NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,
SPECI FI C_SCHENA I NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,
SPECI FI C_NAME I NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,
JAR_CATALOG I NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,
JAR_SCHEMA I NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,
JAR_NAME I NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,

CONSTRAI NT ROUTI NE_JAR USAGE_PRI MARY_KEY
PRI MARY KEY (SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAME),
CONSTRAI NT JAR JAR USAGE_CHECK_REFERENCES_JARS
CHECK (JAR CATALOG NOT I N
(SELECT CATALOG NAVE
FROM SCHEMATA)
R
(JAR CATALOG, JAR SCHEMA, JAR NAME) IN
(SELECT JAR CATALOG, JAR SCHEMA, JAR NAVE
FROM JARS)),
CONSTRAI NT JAR JAR USAGE_FOREI GN_KEY_ROUTI NES
FOREI GN KEY (SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME)
REFERENCES ROUTI NES

Description

1) The ROUTINE_JAR_USAGE table has one row for each external Javaroutine that namesaJAR in an
<external Javareference string>.

2) Thevauesof SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the <catalog
name>, <unqualified schema name>, and <qualified identifier>, respectively, of the <specific name> of
the external Java routine being described.

3) Thevauesof JAR_CATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>, <unqualified

schema name>, and <jar id>, respectively, of the <jar name> of the JAR being referenced in the external
Javaroutine's <external Javareference string>.

114 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)
145 ROUTINES basetable

145 ROUTINESbasetable

This Subclause modifies Subclause 6.40, “ ROUTINES base table” , in |SO/IEC 9075-11.

Function
The ROUTINES table has one row for each SQL-invoked routine.
Definition

|Replace CONSTRAINT EXTERNAL_LANGUAGE_CHECK in ISO/IEC 9075-11|Add“, ' JAVA' " to
the <in value list> of valid EXTERNAL_LANGUAGE values.

Description

No additional Descriptions.

©ISO/IEC 2003 — All rights reserved Definition Schema 115

1 SO/l EC 9075-13:2003 (E)
14.6 TYPE_JAR_USAGE basetable

146 TYPE_JAR_USAGE basetable

Function

The TYPE_JAR_USAGE table has one row for each external Javatype.

Definition

CREATE TABLE TYPE_JAR USAGE (
USER_DEFI NED_TYPE_CATALOG | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
USER_DEFI NED_TYPE_SCHEMA | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
USER_DEFI NED_TYPE_NANME | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
JAR_CATALOG | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
JAR_SCHEMA | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,
JAR_NANVE | NFORMATI ON_SCHEMA. SQL_| DENTI FI ER,

CONSTRAI NT TYPE_JAR_USAGE_PRI MARY_KEY
PRI MARY KEY (USER DEFI NED_TYPE CATALOG, USER DEFI NED TYPE_SCHEMA,
USER DEFI NED_TYPE_NAME, JAR CATALOG JAR SCHEMA, JAR NAME),
CONSTRAI NT TYPE_JAR USAGE_CHECK_REFERENCES JARS
CHECK (JAR CATALOG NOT IN
(SELECT CATALOG NAMVE
FROM SCHEMATA)
R
(JAR CATALOG JAR SCHEMA, JAR NAME) IN
(SELECT JAR CATALOG, JAR SCHEMA, JAR NAME
FROM JARS)),
CONSTRAI NT TYPE_JAR USAGE_FOREI GN_KEY_USER DEFI NED_TYPES
FOREI GN KEY (USER DEFI NED_TYPE_CATALOG, USER DEFI NED TYPE_SCHEMA,
USER_DEFI NED_TYPE_NAME) REFERENCES USER DEFI NED TYPES

Description

1) TheTYPE JAR USAGE table has one row for each external Javatype.

2) Thevauesof USER_DEFINED _TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the <catalog name>, <unqualified schema name>, and <qualified
identifier>, respectively, of the <user-defined type name> of the external Java type being described.

3) Thevauesof JAR_CATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>, <unqualified
schema name>, and <jar id>, respectively, of the <jar name> of the JAR being referenced in the external
Javatype's <externa Java class clause>.

116 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)
14.7 USAGE_PRIVILEGES basetable

14.7 USAGE_PRIVILEGESbasetable

This Subclause maodifies Subclause 6.60, “ USAGE_PRIVILEGESbase table” , in ISO/IEC 9075-11.

Function

The USAGE_PRIVILEGES table has one row for each usage privilege descriptor. It effectively contains a
representation of the usage privilege descriptors.

Definition

[Replace CONSTRAINT USAGE_PRIVILEGES_OBJECT_TYPE_CHECK in ISO/IEC 9075-11] Add “,

" JAR " tothe<in vauelist> of valid OBJECT_TY PE values.

[Replace CONSTRAINT USAGE_PRIVILEGES CHECK_REFERENCES_OBJECT in ISO/IEC 9075-11]

Add the following to the end of the <query expression> contained in the <in predicate>:

UNI ON

SELECT JAR CATALOG JAR SCHEMA, JAR NAME, 'JAR

FROM JARS

Description

1) |Augment Description 4)|

JAR

The object to which the privilege appliesisaJAR.

©ISO/IEC 2003 — All rights reserved Definition Schema 117

1 SO/l EC 9075-13:2003 (E)
14.8 USER_DEFINED_TYPES basetable

14.8 USER _DEFINED TYPESbasetable
This Subclause modifies Subclause 6.62, “ USER DEFINED_TYPESbasetable” , in 1ISO/IEC 9075-11.

Function

The USER_DEFINED_TY PES table has one row for each user-defined type.
Definition

|Add three columns to the USER_DEFINED_TY PES base table in SO/IEC 9075-11|

|Add CONSTRAINT USER_DEFINED_TYPES_COMBINATIONS in ISO/IEC 9075-11]
Add the following <table element>s to the <table element list> of the USER_DEFINED_TY PES base table:

EXTERNAL_NANE | NFORVATI ON_SCHEMA. CHARACTER DATA,
EXTERNAL_L ANGUAGE | NFORMATI ON_SCHEMA. CHARACTER DATA
CONSTRAI NT USER DEFI NED_TYPE_EXTERNAL_LANGUAGE_CHECK
CHECK (EXTERNAL_LANGUAGE IN ('JAVA')),
JAVA | NTERFACE | NFORVATI ON_SCHEMA. CHARACTER DATA
CONSTRAI NT USER DEFI NED_TYPE_JAVA | NTERFACE_CHECK
CHECK (JAVA | NTERFACE IN (' SERIALI ZABLE , ' SQLDATA')),
CONSTRAI NT USER DEFI NED_TYPES_COVBI NATI ONS
CHECK (((EXTERNAL_LANGUAGE = 'JAVA'") AND
(EXTERNAL_NAMVE, JAVA | NTERFACE) |'S NOT NULL)
R
((EXTERNAL_LANGUAGE, EXTERNAL NAME, JAVA | NTERFACE)
IS NULL))

\ﬂjgment CONSTRAINT USER_DEFINED_TYPES_ORDERING_CATEGORY_CHECK in|SO/IEC 9075-
1]

Add“, ' COMPARABLE' " tothe<invauelist> of valid ORDERING CATEGORY values.

Description

1) |Augment Desc. 7)|

COMPARABLE | Two values of thistype may be compared withj ava. | ang. Conpar abl e's
compar eTo() method.

2) |Insert this Description| Case:

a) If the user-defined type being described is an external Java datatype, then the value of EXTER-
NAL_NAME isthe <jar and class name> specified in the <external Java class clause> for that external
Java datatype.

118 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)
14.8 USER_DEFINED_TYPES basetable

b) Otherwise, the value of EXTERNAL_NAME isthe null value.

3) |Insert this Description| Case:

a) If the user-defined type being described is an external Java datatype, then the value of EXTER-
NAL_LANGUAGE is'JAVA'.

b) Otherwise, the value of EXTERNAL_LANGUAGE isthe null value.

4) |Insert this Description| Case:

a) If the user-defined type being described is an external Java data type, then the value of
JAVA_INTERFACE isthe <interface specification> specified for that external Java data type.

b) Otherwise, the value of JAVA_INTERFACE isthe null value.

©ISO/IEC 2003 — All rights reserved Definition Schema 119

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

120 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
15.1 Classand subclassvaluesfor uncaught Java exceptions

15 Statuscodes

This Clause modifies Clause 23, “ Satus codes’ , in | SO/IEC 9075-2.

15.1 Classand subclassvaluesfor uncaught Java exceptions

When the execution of a Java method compl etes with an uncaught Java exception E, then:
1) Let EM bethe result of the Java method call E. get Message() .

2) EM isthe message text associated with the SQL exception.

3) Case

a) Iftheclassof Eisj ava. sql . SQLExcept i on, then let SSbe the result of the Java method call
E. getSQLState():

i) If the length of SSis5 or more, and the first two characters of SS are '38' (corresponding to
external routine exception), and the third, fourth, and fifth characters are not '000', then let C be
'38' (corresponding to external routine exception) and let SC be the third, fourth, and fifth char-
acters of SS.

i) Otherwise, let C be'39' (corresponding to external routine invocation exception) and SC be ‘001"
(corresponding to invalid SQLSTATE returned).

b) Iftheclassof Eisnotj ava. sgl . SQLExcept i on, then let C be'38' (corresponding to external
routine exception) and SC be '000' (corresponding to no subclass).

4) C and SC are the class and subclass of the SQLSTATE for the SQL exception.

©ISO/IEC 2003 — All rights reserved Statuscodes 121

1 SO/l EC 9075-13:2003 (E)
152 SQLSTATE

15.2 SQLSTATE

This Subclause modifies Subclause 23.1, “ SQLSTATE”, in |SO/IEC 9075-2.

Table 2, “ SQLSTATE class and subclass values’ , modifies Table 32, “ SQLSTATE class and subclassvalues’ ,
in ISO/IEC 9075-2.

Table2 — SQLSTATE class and subclass values

Category | Condition Class | Subcondition Subclass
All alternatives from ISO/IEC
9075-2
X JavaDDLL 46 (no subclass) 000
invalid URL 001
invalid JAR name 002
invalid class deletion 003
invalid replacement 005
attempt to replace uninstalled JAR | 00A
attempt to remove uninstalled JAR | 00B
X Java executiont 46 (no subclass) 000
invalid JAR name in path 102
unresolved class name 103
1 The Condition names“ Java DDL” and “ Java execution” are given the same Class code given to Condition name “ OLB-specific
error” in ISO/IEC 9075-10; thereis no conflict with Subcondition values for the Class code.

122 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
16.1 Claimsof conformanceto SQL/JRT

16 Conformance

16.1 Claimsof conformanceto SQL/JRT

In addition to the requirements of 1SO/IEC 9075-1, Clause 8, “Conformance’, aclaim of conformance to this
part of 1ISO/IEC 9075 shall:

1) Claim conformance to at least one of:
— Feature J621, “externa Javaroutines’
— Feature J541, “SERIALIZABLE"
— Feature 551, “SQLDATA”
2) Claim conformanceto at least one of:
— Feature J511, “Commands’
— Feature J531, “Deployment”

16.2 Additional conformance requirementsfor SQL/JRT

Each claim of conformance to one of the following features:

— Feature J621, “external Javaroutines’

— Feature J622, “external Javatypes’

— Feature J561, “JAR privileges’

shall state that Feature J511, “Commands’, or Feature J531, “ Deployment”, or both support it.

16.3 Implied featurerelationships of SQL/JRT

Table 3— Implied feature relationships of SQL/JRT

Feature Feature Name Implied Implied Feature Name
ID Feature

ID
J51 SERIALIZABLE J622 external Javatypes

©ISO/IEC 2003 — All rights reserved Conformance 123

1 SO/l EC 9075-13:2003 (E)

16.3 Implied featurerelationships of SQL/JRT

Feature Feature Name Implied Implied Feature Name
ID Feature

ID
J551 SQLDATA J622 external Javatypes

124 Routinesand Types Using Java (SQL/JRT)

©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

Annex A
(informative)

SQL Conformance Summary

This Annex modifies Annex A, “ SQL Conformance Summary” , in | SO/IEC 9075-2.

The contents of this Annex summarizes all Conformance Rules, ordered by Feature ID and by Subclause.

1) Specifications for Feature J511, “Commands’:

a)

b)

d)

f)

Q)

Subclause 9.4, “ <user-defined type definition>":

i) Insert this CR| Without Feature 511, “ Commands’, conforming SQL language shall not contain
a<user-defined type definition> that contains an <external Javatype clause>that isnot contained

in a <descriptor file>.

Subclause 9.7, “<drop data type statement>":

i) Insert this CR| Without Feature 511, “Commands’, conforming SQL language shall not contain
a<drop type statement> that contains a <schema-resolved user-defined type name> that identifies

an external Javatype and that is not contained in a <descriptor file>.
Subclause 9.8, “<SQL-invoked routine>":

i) Insert this CR| Without Feature J511, “ Commands’, conforming SQL language shall not contain
aa <SQL -invoked routine> that contains a <language hame> that contains JAV A and that is not
contained in a <descriptor file>.

Subclause 9.10, “<drop routine statement>":

i) Insert this CR| Without Feature 511, “ Commands’, conforming SQL language shall not contain
a <drop routine statement> that contains a <specific routine designator> that identifies an

external Javaroutine and that is not contained in a <descriptor file>.

Subclause 9.11, “ <user-defined ordering definition>":

i) Insert this CR| Without Feature 511, “Commands’, conforming SQL language shall not contain
a<user-defined ordering definition> that contains a<schema-resol ved user-defined type name>

that identifies an external Javatype and that is not contained in a <deployment file>.
Subclause 9.12, “<drop user-defined ordering statement>":

i) Insert this CR| Without Feature J511, “ Commands’, conforming SQL language shall not contain
a<drop user-defined ordering statement> that contains a <schema-resolved user-defined type
name> that identifies an external Javatype and that is not contained in a <deployment file>.

Subclause 10.1, “<grant privilege statement>":

©ISO/IEC 2003 — Al rights reserved SQL Conformance Summary 125

1 SO/l EC 9075-13:2003 (E)

2)

3)

)] Insert this CR|Without Feature J511, “Commands’, conforming SQL language shall not contain
a<grant privilege statement> that contains an <object name> that immediately contains a<jar

name> and that is not contained in a <descriptor file>.

h) Subclause 10.3, “<revoke statement>":

i) Insert this CR| Without Feature J511, “ Commands’, conforming SQL language shall not contain
a <revoke statement> that an <object name> that immediately contains a <jar name> and that

is not contained in a <descriptor file>.
Specifications for Feature J521, “JDBC datatypes’:
a) Subclause 9.8, “<SQL-invoked routine>":

i) Insert this CR| Without Feature J521, “JDBC data types’, conforming SQL language shall not
contain a<Java data type> that is not the corresponding Java data type of some SQL data type.

Specifications for Feature J531, “Deployment”:
a) Subclause11.1, “SQLJINSTALL_JAR procedure’:

i) Without Feature J531, “Deployment”, conforming SQL language shall not contain invocations
of the SQLJINSTALL_JAR procedurethat provide non-zero values of thedepl oy parameter.

b) Subclause 11.3, “SQLJREMOVE_JAR procedure’:

i) Without Feature J531, “Deployment”, conforming SQL language shall not contain invocations
of the SQLJ.REMOVE_JAR procedure that provide non-zero values of the undepl oy
parameter.

¢) Subclause 12.2, “Deployment descriptor files’:

i) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <user-defined type definition>.

i) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <drop type statement>.

i) Without Feature J531, “ Deployment”, conforming SQL |anguage shall not contain an <SQL
statement> that contains an <SQL-invoked routine>.

iv) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <drop routine statement>.

V) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <user-defined ordering definition>.

vi) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <drop user-defined ordering statement>.

vii) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <grant privilege statement>.

viii) Without Feature J531, “Deployment”, conforming SQL language shall not contain an <SQL
statement> that contains a <revoke statement>.

126 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

4)

5)

6)

7)

8)

9)

| SO/l EC 9075-13:2003 (E)

Specifications for Feature J541, “SERIALIZABLE":
a) Subclause 9.4, “<user-defined type definition>":

i) Insert this CR| Without Feature J541, “SERIALIZABLE" , conforming SQL language shall not
contain an <interface specification> that contains SERIALIZABLE. conforming SQL language
shall not contain

Specifications for Feature J551, “SQLDATA”:
a) Subclause 9.4, “<user-defined type definition>":

i) Insert this CR| Without Feature J551, “ SQLDATA”, conforming SQL language shall not contain
an <interface specification> that contains SQLDATA.

Specifications for Feature J561, “ Jar privileges’:
a) Subclause 10.2, “<privileges>":

i) Insert this CR| Without Feature J561, “Jar privileges’, conforming SQL language shall not
contain an <object name> that immediately contains a <jar name>.

Specifications for Feature J571, “NEW operator”:
a) Subclause 6.2, “<new specification>":

)] Insert this CR| Without Feature J571, “NEW operator”, conforming SQL language shall not
contain a<new specification> in which the schemaidentified by theimplicit or explicit <schema

name> of the <routine name> RN immediately contained in <routine invocation> immediately
contained in the <new specification> contains a user-defined type whose user-defined type name
isRN and that is an external Java datatype.

Specifications for Feature J581, “Output parameters’:
a) Subclause 9.8, “<SQL-invoked routine>":

i) Insert this CR| Without Feature J581, “Output parameters’, conforming SQL language shall
not contain an <SQL -invoked routine> that contains a <language name> that contains JAVA

and that contains a <parameter mode> that contains either OUT or INOUT.
Specifications for Feature J591, “Overloading”:
a) Subclause 9.4, “<user-defined type definition>":

)] Insert this CR| Without Feature J591, “ Overloading”, conforming SQL language shall not contain
a <method specification> that contains a <method name> that is equivalent to the <method
name> of any other <method specification> in the same <user-defined type definition>.

10) Specifications for Feature J601, “ SQL -Java paths’:

a) Subclause 8.2, “<SQL Javapath>":

)] Without Feature J601, “ SQL -Javapaths’, conforming SQL language shall not contain an <SQL
Java path>.

b) Subclause11.4,“SQLJALTER_JAVA_PATH procedure’:

©ISO/IEC 2003 — Al rights reserved SQL Conformance Summary 127

1 SO/l EC 9075-13:2003 (E)

)] Without Feature J601, “ SQL -Javapaths’, conforming SQL language shall not contain invocations
of the SQLJ. ALTER _JAVA PATH procedure.

11) Specifications for Feature J611, “References’:
a) Subclause 8.3, “<routine invocation>":

i) Insert this CR|Without Feature J611, “ References’, conforming SQL language shall not contain
a<reference expression>.

i) Insert this CR|Without Feature J611, “ References’, conforming SQL language shall not contain
a<right arrow>.

12) Specifications for Feature J621, “external Javaroutines’:
a) Subclause 9.8, “<SQL-invoked routine>":

i) Insert this CR| Without Feature J621, “ external Javaroutines’, conforming SQL language shall
not contain an <SQL -invoked routine> that contains a <language name> that contains JAVA.

b) Subclause 9.10, “<drop routine statement>":

i) Insert this CR| Without Feature J621, “ external Javaroutines’, conforming SQL language shall
not contain a<drop routine statement> that contains a <specific routine designator> that identifies
an external Javaroutine.

13) Specifications for Feature J622, “external Javatypes’:
a) Subclause 9.4, “<user-defined type definition>":

i) Insert this CR| Without Feature J622, “external Javatypes’, conforming SQL language shall
not contain a <user-defined type definition> that contains an <external Javatype clause>.

b) Subclause 9.7, “<drop data type statement>":

i) Insert this CR| Without Feature J622, “external Javatypes’, conforming SQL language shall
not contain a <drop data type statement> that contains a <schema-resolved user-defined type

name> that identifies an external Javatype.

c) Subclause 9.11, “<user-defined ordering definition>":

)] Insert this CR| Without Feature J622, “externa Javatypes’, conforming SQL language shall
not contain a <user-defined ordering definition> that contains a <schema-resolved user-defined

type name> that identifies an external Javatype.
d) Subclause 9.12, “<drop user-defined ordering statement>":

i) Insert this CR| Without Feature J622, “external Javatypes’, conforming SQL language shall
not contain a <drop user-defined ordering statement> that contains a <schema-resolved user-

defined type name> that identifies an external Javatype.
14) Specifications for Feature J631, “ Java signatures’:

a) Subclause 8.1, “<Java parameter declaration list>":

128 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

)] Without Feature J631, “Java signatures’, conforming SQL |anguage shall not contain a<Java
parameter declaration list> that is not equivalent to the default Java method signature as deter-
mined in Subclause 8.6, “ Java routine signature determination”.

15) Specifications for Feature J641, “ Static fields’:
a) Subclause 9.4, “<user-defined type definition>":

i) Insert this CR| Without Feature J641, “ Static fields’, conforming SQL language shall not contain
a<dtatic field method spec>.

16) Specifications for Feature J651, “ SQL/JRT Information Schema’:
a) Subclause 13.2, “JARS view”:

i) Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL language shall not
reference INFORMATION_SCHEMA.JARS.

b) Subclause 13.3, “METHOD_SPECIFICATIONS view”:

i) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . METHOD_SPECIFICATIONS.
EXTERNAL_NAME.

i) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . METHOD_SPECIFICATIONS.
IS FIELD.

c) Subclause 13.6, “USER_DEFINED_TYPES view”:

i) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . UDT_S. EXTERNAL_NAME.

i) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . UDT_S. EXTERNAL_LANGUAGE.

iii) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . UDT_S. JAVA_INTERFACE.

d) Subclause 13.7, “ Short name views':

i) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . METHOD_SPECS . EXTER-

NAL_NAME.

i) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shal not reference INFORMATION_SCHEMA . METHOD_SPECS. IS FIELD.

iii) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . UDT_S. EXTERNAL_NAME.

iv) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . UDT_S. EXTERNAL_LANGUAGE.

V) Insert this CR| Without Feature J651, “ SQL/JRT Information Schema’, conforming SQL lan-
guage shall not reference INFORMATION_SCHEMA . UDT_S. JAVA_INTERFACE.

©ISO/IEC 2003 — Al rights reserved SQL Conformance Summary 129

1 SO/l EC 9075-13:2003 (E)

17) Specifications for Feature J652, “ SQL/JRT Usage tables’:
a) Subclause13.1, “JAR _JAR USAGE view”:

i) Without Feature J652, “ SQL/JRT Usagetables’, conforming SQL language shall not reference
INFORMATION_SCHEMA.JAR_JAR_USAGE.

b) Subclause 13.4, “ROUTINE_JAR_USAGE view":

i) Without Feature J652, “ SQL/JRT Usagetables’, conforming SQL language shall not reference
INFORMATION_SCHEMA.ROUTINE_JAR_USAGE.

¢) Subclause 13.5, “TYPE JAR _USAGE view”:

i) Without Feature J652, “ SQL/JRT Usagetables’, conforming SQL language shall not reference
INFORMATION_SCHEMA.TYPE_JAR_USAGE.

130 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

Annex B
(informative)

I mplementation-defined elements

This Annex modifies Annex B, “ |mplementation-defined elements’ , in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of |SO/IEC 9075 asimplemen-
tation-defined.

1

2)

3)

4)

5)

6)

Subclause 4.8.5, “ Converting objects between SQL and Java’:

a) If the <user-defined type definition> does not specify an <interface specification>, then it isimplemen-
tation-defined whether the Javainterfacej ava. i 0. Seri al i zabl e or the Javainterface
j ava. sqgl . SQLDat a will be used for object state conversion.

Subclause 4.10, “Privileges’:

a) The privilegesrequired to invokethe SQLJ. | NSTALL_JAR, SQLJ. REPLACE JAR, and
SQLJ. REMOVE_JAR procedures are implementati on-defined.

NOTE 73 — Thisis similar to the implementati on-defined privileges required for creating a schema.

b) Invocationsof Javamethods referenced by SQL names are governed by the normal EXECUTE privilege
on SQL routine names. It isimplementation-defined whether a Java method called by an SQL name
executeswith “definer'srights’ or “invoker'srights’ — that is, whether it executes with the user-name
of the user who performed the <SQL -invoked routine> or the user-name of the current user.

Subclause 4.11.1, “Deployment descriptor files™:

a) Animplementation-defined implementor block can be provided in adeployment descriptor fileto alow
specification of custom install and remove actions.

Subclause 5.2, “Names and identifiers’:

a) The character set supported, and the maximum lengths of the <package identifier>, <classidentifier>,
<Javafield name>, and <Java method name> are implementation-defined.

Subclause 6.2, “<new specification>":

a) If Feature J571, “NEW operator”, is not supported, then the mechanism used to invoke a constructor
of an external Java data type is implementation-defined.

Subclause 8.3, “ <routine invocation>":

a) If validation of the <Javaparameter declaration list> has been implementati on-defined to be performed
by <routineinvocation>, then the Syntax Rules of Subclause 8.6, “ Javaroutine signature determination”,
are applied with <routine invocation>, a method specification index of 0 (zero), and subject routine
R

©ISO/IEC 2003 — All rights reserved Implementation-defined elements 131

1 SO/l EC 9075-13:2003 (E)

7)

8)

9)

b)

f)

Q)

h)

For an external Javaroutine, let CPV; be an implementation-defined non-null value of declared type
T;.

The method of execution of a subject Java class's implementation of wr i t eCObj ect () to convert a
Java value to an SQL value is implementation-defined.

The method of execution of a subject Java class'simplementation of wri t eSQL() to convert aJava
value to an SQL value isimplementation-defined.

The method of execution of a subject Java class's implementation of r eadCbj ect () to convert an
SQL value to a Java object isimplementation-defined.

The method of execution of a subject Java class's implementation of r eadSQL() to convert an SQL
value to a Java object is implementation-defined.

If Risan external Javaroutine, then if the JDBC connection object that created any element of RSis
closed, then the effect is implementation-defined.

If Risan external Javaroutine, if any element of RSis not an object returned by a connection to the
current SQL system and SQL session, then the effect is implementation-defined.

If Risan external Javaroutine, then whether the call of P returns update counts as defined in JIDBC is
implementation-defined.

Subclause 9.4, “ <user-defined type definition>":

a)

b)

If an <interface using clause> is not explicitly specified, then an implementation-defined <interface
specification> isimplicit.

If UDT isan external Javadatatype, then it isimplementation-defined whether validation of the explicit
or implicit <Java parameter declaration list> is performed by <user-defined type definition> or when
the corresponding SQL -invoked method is invoked.

Subclause 9.5, “ <attribute definition>":

a)

b)

c)

d)

The method of execution of a subject Java class's implementation of wr i t eObj ect () to convert a
Javavalue to an SQL value isimplementation-defined.

The method of execution of a subject Java class's implementation of wr i t eSQL() to convert aJava
value to an SQL value isimplementation-defined.

The method of execution of a subject Java class'simplementation of r eadQObj ect () to convert an
SQL value to a Java object isimplementation-defined.

The method of execution of a subject Java class's implementation of r eadSQL() to convert an SQL
value to a Java object is implementation-defined.

Subclause 9.8, “<SQL-invoked routine>":

a)
b)

The maximum value of <maximum dynamic result sets> isimplementation-defined.

If Risan external Javaroutine, then it isimplementation-defined whether validation of the explicit or
implicit <Java parameter declaration list> is performed by <SQL-invoked routine> or when its SQL -
invoked routine isinvoked.

10) Subclause 11.1, “SQLJINSTALL_JAR procedure’:

132 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

a) The maximum length for the CHARACTER VARYING parameters is an implementation-defined
integer value.

b) The privileges required to invoke the SQLJ. | NSTALL_JAR procedure are implementation-defined.

¢) TheSQLJ. | NSTALL_JAR procedureis subject to implementation-defined rules for executing SQL -
schema statements within SQL -transactions.

d) If aninvocation of SQLJ. | NSTALL_JAR raises an exception condition, then the effect on the install
actions is implementation-defined.

€) Thevauesof theur| parameter that are valid are implementation-defined, and may include URLs
whose format is implementation-defined. If the value of theur | parameter does not conform to
implementation-defined restrictions and does not identify avalid JAR, then an exception condition is
raised: Java DDL —invalid URL.

11) Subclause 11.2, “SQLJ.REPLACE_JAR procedure”:

a) The maximum length for the CHARACTER VARYING parameters is an implementation-defined
integer value.

b) The privileges required to invoke the SQLJ. REPLACE_JAR procedure are implementation-defined.

¢) TheSQLJ. REPLACE JAR procedureis subject to implementation-defined rules for executing SQL -
schema statements within SQL -transactions.

d) Thevauesof theur| parameter that are valid are implementation-defined, and may include URLs
whose format is implementation-defined. If the value of theur | parameter does not conform to
implementation-defined restrictions and does not identify avalid JAR, then an exception condition is
raised: Java DDL —invalid URL.

12) Subclause 11.3, “SQLJREMOVE_JAR procedure’:

a) The maximum length for the CHARACTER VARYING parametersis an implementation-defined
integer value.

b) The privileges required to invoke the SQLJ. REMOVE_J AR procedure are implementation-defined.

¢) The SQ.J. REMOVE_JAR procedure is subject to implementation-defined rules for executing SQL -
schema statements within SQL -transactions.

d) If aninvocation of SQLJ. REMOVE_JAR raises an exception condition, then the effect on the remove
actions is implementation-defined.

13) Subclause 11.4, “SQLJALTER _JAVA PATH procedure’:

a) The maximum length for the CHARACTER VARYING parameters is an implementation-defined
integer value.

b) The privileges required to invoke the SQLJ. ALTER_JAVA PATH procedure are implementation-
defined.

¢) TheSQLJ. ALTER_JAVA PATH procedureis subject to implementation-defined rules for executing
SQL -schema statements within SQL-transactions.

©ISO/IEC 2003 — All rights reserved Implementation-defined elements 133

1 SO/l EC 9075-13:2003 (E)

d) If aninvocation of the SQLJ. ALTER_JAVA PATH procedure raises an exception condition, then
effect on the path associated with the JAR isimplementation-defined.

14) Subclause 12.1.1, “Package java.sql”:

a) SQL systemsthat implement this part of ISO/IEC 9075 support the packagej ava. sql , whichisthe
JDBC driver, and all classesrequired by that package. The other Java packages supplied by SQL systems
that implement this part of 1SO/IEC 9075 are implementation-defined.

b) Inan SQL system that implements this part of ISO/IEC 9075, the packagej ava. sql supportsthe
default connection. Other data source URL s that are supported by j ava. sql areimplementation-
defined.

15) Subclause 12.2, “Deployment descriptor files':
a) An <implementor name> is an implementation-defined SQL identifier.

b) The <install actions> and <remove action> specified by an <implementor block> are implementation-
defined.

¢) Whether an <implementor block> with a given <implementor name> contained in an <install actions>
(<remove actions>) isinterpreted as an install action (remove action) isimplementation-defined. That
is, an implementation may or may not perform install or remove actions specified by some other
implementation.

134 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

Annex C
(informative)

I mplementation-dependent elements

This Annex modifies Annex C, “ Implementation-dependent elements” , in ISO/IEC 9075-2.

This Annex references those places where this part of 1SO/IEC 9075 states explicitly that the actions of a con-
forming implementation are i mplementati on-dependent.

1)

2)

3)

4)

5

6)

Subclause 3.2.1, “ Specification of built-in procedures’:
a) The manner in which built-in procedures are defined is implementati on-dependent.
Subclause 4.8, “User-defined types’:

a) The scope and persistence of any modificationsto static attributes made during the execution of a Java
method is implementation-dependent.

Subclause 8.3, “ <routine invocation>":

a) If Risan externa Javaroutine, then the scope and persistence of any modifications of class variables
made before the completion of any execution of P isimplementation-dependent.

b) If thelanguage specifiesADA (respectively C, COBOL, FORTRAN, JAVA, MUMPS, PASCAL, PLI)
and P is not a standard-conforming Ada program (respectively C, COBOL, Fortran, Java, MUMPS,
Pascal, PL/I program), then the results of any execution of P are implementation-dependent.

Subclause 11.2, “SQLJ.REPLACE_JAR procedure”:

a) Theeffect of SQLJ. REPLACE_JAR on currently executing SQL statements that use an SQL routine
or structured type whose implementation has been replaced is implementati on-dependent.

Subclause 11.3, “SQLJ.REMOVE_JAR procedure’:

a) Theeffect of SQLJ. REMOVE _JAR on currently executing SQL statements that use an SQL routine
or structured type whose implementation has been removed is implementati on-dependent.

Subclause 11.4, “SQLJALTER_JAVA_PATH procedure”:

a) Theeffect of SQLJ. ALTER _JAVA PATHon SQL statementsthat have already been prepared or are
currently executing is implementation-dependent.

©ISO/IEC 2003 — All rights reserved Implementation-dependent elements 135

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

136 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

Annex D

(informative)

SQL feature taxonomy

This Annex describes ataxonomy of features defined in this part of 1SO/IEC 9075.

Table 4, “Feature taxonomy for optional features’, contains ataxonomy of the features of the SQL language

that are specified in this part of 1SO/IEC 9075.

In thistable, the first column contains a counter that may be used to quickly locate rows of the table; these
values otherwise have no use and are not stable — that is, they are subject to change in future editions of or
even Technical Corrigendato I SO/IEC 9075 without notice.

The “Feature ID” column of this table specifies the formal identification of each feature and each subfeature
contained in the table.

The “Feature Name” column of thistable contains a brief description of the feature or subfeature associated
with the Feature ID value.

Table 4 — Featuretaxonomy for optional features

Feature Feature Name
ID

1 J511 Commands

2 J521 JDBC datatypes
J531 Deployment
J541 SERIALIZABLE
J551 SQLDATA

JAR privileges

J571

NEW operator

J581

Output parameters

3
4
5
6 J561
7
8
9

J591

Overloading

10 | J601

SQL -Java paths

©ISO/IEC 2003 — All rights reserved

SQL featuretaxonomy 137

1 SO/l EC 9075-13:2003 (E)

Feature Feature Name
ID
11 | J611 References
12 | J621 external Javaroutines
13 | J622 external Javatypes
14]J631 Java signatures
15 | J641 Static fields
16 | J651 SQL/JRT Information Schema
17 | J652 SQL/JRT Usagetables

Table 4, “Feature taxonomy for optional features’, does not provide definitions of the features; the definition
of thosefeaturesisfound in the Conformance Rulesthat are further summarized in Annex A, “ SQL Conformance
Summary”.

138 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.1 Technical components

Annex E
(informative)

Routinestutorial

E.1 Technical components

This part of ISO/IEC 9075 includes the following:
— New built-in procedures.

e SQLJ. | NSTALL_JAR—toload aset of Java classesin an SQL system.

e SQLJ. REPLACE_ JAR— to supersede a set of Java classesin an SQL system.

e SQLJ. REMOVE_JAR— to delete aprevioudly installed set of Java classes.

* SQ.J. ALTER JAVA PATH— to specify a path for name resolution within Java classes.
— New built-in schema.

The built-in schema named SQLJ is assumed to bein all catalogs of an SQL system that implements the
SQL/JRT facility, and to contain all of the built-in procedures of the SQL/JRT facility.

— Extensions of the following SQL statements:
e CREATE PROCEDURE/FUNCTION — to specify an SQL name for a Java method.
DROP PROCEDURE/FUNCTION — to delete the SQL name of a Java method.
* CREATE TYPE — to specify an SQL name for a Java class.
« DROP TYPE — to delete the SQL name of a Java class.
e GRANT — to grant the USAGE privilege on Java JARSs.
« REVOKE — to revoke the USAGE privilege on Java JARs.
— Conventionsfor returning values of OUT and INOUT parameters, and for returning SQL result sets.

— New forms of reference: Qualified references to the fields and methods of columns whose data types are
defined on Java classes.

— Additional views and columnsin the Information Schema.

©ISO/IEC 2003 — All rights reserved Routinestutorial 139

I SO/IEC 9075-13:2003 (E)
E.2 Overview

E.2 Overview

Thistutorial shows a series of example Java classes, indicates how they can be installed, and shows how their
static, public methods can be referenced with SQL/JRT facilities in an SQL-environment.

The example Java methods assume an SQL table named EMPS, with the following columns:
— NAME — the employee's name.

— ID — the employee's identification.

— STATE — the state in which the employee is located.

— SALES — the amount of the employee's sales.

— JOBCODE — the job code of the employee.

The table definition is:

CREATE TABLE enps (
nane VARCHAR(50) ,
id CHARACTER(5) ,
state CHARACTER(20),
sal es DECI MAL (6, 2),
j obcode | NTEGER) ;

The exampl e classes and methods are:

— Routi nesl. regi on — A Javamethod that maps a US state code to a region number. This method
doesn't use SQL internally.

— Routi nesl. correct St at es — A Javamethod that performsan SQL UPDATE statement to correct
the spelling of state codes. The old and new spellings are specified by input-mode parameters.

— Rout i nes2. best TwoEnps — A Javamethod that determines the top two employees by their sales,
and returnsthe columns of those two empl oyee rows as output-mode parameter values. Thismethod creates
an SQL result set and processesit internally.

— Rout i nes3. or der edEnps — A Javamethod that creates an SQL result set consisting of selected
employee rows ordered by the sales column, and returns that result set to the client.

— Overl.isQdd and Over 2. i sCdd — Contrived Java methods to illustrate overloading rules.

— Rout i nes4.j obl and Rout i nes5. j ob2 — Java methods that return a string value corresponding
to an integer jobcode value. These methods illustrate the treatment of null arguments.

— Rout i nes6. j 0b3 — Anacther Javamethod that returns astring value corresponding to an integer jobcode
value. This method illustrates the behavior of static Java variables.

Unless otherwise noted, the methods that invoke SQL use JDBC. One of the methodsis shown in both aversion
using JDBC and aversion using SQL/OLB. The others could aso be coded with SQL/OLB.

It is assumed that theimport statementsi nport java. sql . *; andj ava. mat h. *; have been included
in all classes.

140 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.3 Example Java methods: region and correctStates

E.3 Example Java methods. region and correctStates

This clause shows an example Java class, Rout i nes 1, with two simple methods.

— Thei nt -valued static method r egi on categorizes 9 statesinto 3 geographic regions, returning an integer
indicating the region associated with avalid state or throwing an exception for invalid states. This method
will be called asafunctionin SQL.

— Thevoi d methodcor r ect St at es updatesthe EMPStableto correct spelling errorsin the state column.
This method will be called as a procedure in SQL.

public class Routinesl {
/1An int nethod that will be called as a function
public static int region(String s) throws SQ.Exception {
if (s.equals("MN') || s.equals("VT") || s.equals("NH")) return 1;
else if (s.equals("FL") || s.equals("GA") || s.equals("AL")) return 2;
else if (s.equals("CA") || s.equals("AZ") || s.equals("NV')) return 3;
el se throw new SQLException("lnvalid state code", "38001");
}
/1A void nethod that will be called as a stored procedure
public static void correctStates (String ol dSpelling, String newSpelling)
throws SQ.Exception {
Connecti on conn = Driver Manager. get Connection ("jdbc: default:connection");
Prepar edSt at ement stnt = conn. prepar eSt at enent
("UPDATE enps SET state = ? WHERE state = ?");
stnmt.setString(l, newSpelling);
stnt.setString(2, oldSpelling);
stnt. execut eUpdat e() ;
stnt.close();
conn. cl ose();
return;

E.4 Installingregion and correctStatesin SQL

The source code for Java classes such as Rout i nes1 will normally bein one or more Javafiles (i.e, files
with file type “java’). When youcompile them (using the j avac compile command), the resulting code will
bein one or more classfiles (i.e., fileswith file type “class’). Y ou then typically collect a set of classfilesinto
aJavaJAR, which isaZIP-coded collection of files.

To use Javaclassesin SQL, you load a JAR containing them into the SQL system by calling the SQL

SQ.J. | NSTALL_JAR procedure. The SQLJ. | NSTALL_JAR procedureis anew built-in SQL procedure
that makes the collection of Java classes contained in a specified JAR available for use in the current SQL cat-
alog. For example, assume that you have assembled the above Rout i nes1 classinto a JAR with local file
name*“~/ cl asses/ Routi nesl.jar”:

SQLJ. I NSTALL_JAR('file:~/classes/Routinesl.jar', 'routinesl _jar', 0)

©ISO/IEC 2003 — All rights reserved Routinestutorial 141

I SO/IEC 9075-13:2003 (E)
E.4 Ingallingregion and correctStatesin SQL

— Thefirst parameter of the SQLJ. | NSTALL _JAR procedure is a character string specifying the URL of
the given JAR. This parameter is never folded to upper case.

— The second parameter of the SQLJ. | NSTALL_JAR procedure is a character string that will be used as
the name of the JAR in the SQL system. The JAR nameis an SQL qualified name, and follows SQL con-
ventions for qualified names.

The JAR namethat you specify asthe second parameter of the SQLJ. | NSTALL_JARprocedureidentifies
the JAR within the SQL system. That is, the JAR name that you specify isused only in SQL, and has
nothing to do with the contents of the JAR itself. The JAR nameis used in the following contexts, which
are described in later clauses:

* Asaparameter of the SQLJ. REMOVE_JAR and SQLJ. REPLACE_JAR procedures.

e Asaqudlifier of Javaclass namesin SQL CREATE PROCEDURE/FUNCTION statements.

e Asan operand of the extended SQL GRANT and REVOKE statements.

* Asagquadifier of Javaclass namesin SQL CREATE TY PE statements.

The JAR name may also be used in follow-on facilities for downloading JARs from the SQL system.

— JARs can also contain deployment descriptors, which specify implicit actions to be taken by the
SQLJ. I NSTALL_JARand SQLJ. REMOVE_JAR procedures. The third parameter of the
SQLJ. | NSTALL_JAR procedureis an integer that specifies whether you do or do not (indicated by non-
zero or zero values, respectively) want the SQLJ. | NSTALL_J AR procedure to execute the actions specified
by a deployment descriptor in the JAR. Deployment descriptors are further described in Subclause 12.2,
“Deployment descriptor files”.

The name of the INSTALL_JAR procedure is qualified with the schema name SQLJ. All built-in procedures
of the SQL/JRT facility are defined to be contained in that built-in schema. The SQLJ schemais assumed to
be present in each catalog of an SQL system that implements the SQL/JRT facility.

Thefirst two parametersof SQLJ. | NSTALL _JARare character strings, so if you specify them asliterals, you
will use single quotes, not the double quotes used for SQL delimited identifiers.

The actions of the SQLJ. | NSTALL_JAR procedure are as follows:

— Obtain the JAR designated by the first parameter.

— Extract the classfiles that it contains and install them into the current SQL schema.

— Retain a copy of the JAR itself, and associate it with the value of the second parameter.

— If the third parameter is non-zero, then perform the actions specified by the deployment descriptor of the
JAR.

After youinstall a JAR with the SQLJ. | NSTALL_JAR procedure, you can reference the static methods of
the classes contained in that JAR in the CREATE PROCEDURE/FUNCTION statement, as we will describe
in the next Subclause.

142 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.5 Defining SQL namesfor region and correctStates

E.5 Defining SQL namesfor region and correctStates

Before you can call a Javamethod in SQL, you shall define an SQL name for it. Y ou do this with new options
on the SQL CREATE PROCEDURE/FUNCTION statement. For example:

CREATE PROCEDURE correct_states(old CHARACTER(20), new CHARACTER(20))
MODI FI ES SQL DATA
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routinesl_jar:Routinesl.correctStates';
CREATE FUNCTI ON regi on_of (state CHARACTER(20)) RETURNS | NTEGER
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routinesl_jar:Routinesl.region';

The CREATE PROCEDURE and CREATE FUNCTION statements specify SQL names and Java method
signatures for the Javamethods specified in the EXTERNAL NAME clauses. The format of the method names
inthe external name clause consists of the JAR namethat was specifiedinthe SQLJ. | NSTALL_JARprocedure
followed by the Java method name, fully qualified with the package name(s) (if any) and class name.

The CREATE PROCEDURE for cor r ect _st at es specifiesthe clause MODIFIES SQL DATA. This
indicates that the specified Java method modifies (via INSERT, UPDATE, or DELETE) datain SQL tables.
The CREATE FUNCTION for r egi on_of specifiesNO SQL. Thisindicates that the specified Java method
performs no SQL operations.

Other clauses that you can specify are READS SQL DATA, which indicates that the specified Java method
reads (through SELECT) datain SQL tables, but does not modify SQL data, and CONTAINS SQL, which
indicates that the specified method invokes SQL operations, but neither reads nor modifies SQL data. The
alternative CONTAINS SQL isthe default.

Y ou usethe SQL procedure and function namesthat you define with such CREATE PROCEDURE/FUNCTION
statements as normal SQL procedure and function names:

SELECT nane, region_of(state) AS region
FROM enps

VWHERE regi on_of (state) = 3;

CALL correct_states ("CEO, "GA');

Y ou can define multiple SQL names for the same Java method:

CREATE PROCEDURE state_correction(old CHARACTER(20), new CHARACTER(20))
MODI FI ES SQL DATA
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routinesl_jar:Routinesl.correctStates';

CREATE FUNCTI ON state_regi on(state CHARACTER(20)) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routinesl jar:Routinesl.region';

The various SQL function and procedure names for a Java method can be used equivaently:

SELECT nane, state_region(state) AS region
FROM enps

WHERE regi on_of (state) = 2;

CALL state_correction ('ORE', 'OR);

©ISO/IEC 2003 — All rights reserved Routinestutorial 143

I SO/IEC 9075-13:2003 (E)
E.5 Defining SQL namesfor region and correctStates

The SQL names are normal 3-part SQL names, and the first two parts of the 3-part names are defaulted as
defined in SQL for CREATE PROCEDURE and CREATE FUNCTION statements.

There are other considerationsfor the CREATE PROCEDURE/FUNCTION statement, dealing with parameter
datatypes, overloaded names, and privileges, which we will discussin later Subclauses.

E.6 A Javamethod with output parameters. bestTwoEmps

The parameters of ther egi on and cor r ect St at es methods are all input-only parameters. Thisisthe
normal Java parameter convention.

SQL procedures also support parameters with mode OUT and INOUT. The Javalanguage does not directly
have a nation of output parameters. SQL/JRT therefore uses arrays to return output values for parameters of
Javamethods. That is, if you want an| nt eger parameter to return avalueto the caller, you specify the type
of that parameter tobel nt eger[],i.e anarray of | nt eger . Such an array will contain only one element:
the input value of the parameter is contained in that element when the method is called, and the method sets
the value of that element to the desired output value.

Aswe will seein the following clauses, this use of arrays for output parametersin the Java methodsisvisible
only to the Java method. When you call such a method as an SQL procedure, you supply normal scalar data
items as parameters. The SQL system performs the mapping between those scalar data items and Java arrays
implicitly.

The following Java method illustrates the way that you code output parametersin Java. This method,

best TwoEnps, returnsthenamne, i d, r egi on, and sal es of the two employees that have the highest
sal es in theregions with numbers higher than a parameter value. That is, each of the first 8 parametersisan
OUT parameter, and is therefore declared to be an array of the given type.

The following version of the best TwoEnps method uses SQL/OLB for statements that access SQL :

public class Routines2 {
public static void best TwoEnps (
String[] nl1, String[] idl, int[] rl, BigDecimal[] s1,
String[] n2, String[] id2, int[] r2, BigDecimal[] s2,
int regionParm throws SQLException {
#sqgl iterator ByNanes (String nane, String id, int region, BigDecinmal sales);

N1[0] = "****"; n2[0]= "****"; id1[0]= ""; id2[0]= "";
r1[0]=0; r2[0]=0; s1[0]= new Bi gDeci mal (0): s2[0]= new Bi gDeci mal (0):
ByNanes r;

try {
#sql r = {SELECT nanme, id, region_of(state) AS region, sales
FROM enp
VWHERE regi on_of (state) > :regionParm
AND sal es I'S NOT NULL
ORDER BY sal es DESC};
if (r.next()) {

nl[0] = r.nanme();
idi[0] =r.id();
ri[0] = r.region();
s1l[0] = r.sales();

144 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

el se return;

if (r.next()) {
n2[0] = r.nane();
id2[0] =r.id();
r2[0] r.region();
s2[0] r.sales();

}

el sereturn;

} finally r.close();
}
}

| SO/l EC 9075-13:2003 (E)

E.6 A Java method with output parameters. bestTwoEmps

Note that since the above Java method uses SQL/OLB for SQL operations, it does not have to explicitly obtain
aconnection to the SQL system. By default, SQL/OLB executes any SQL contained in aroutinein the context

of the SQL statement invoking that routine.

For comparison, here's aversion of the best TwoEnps method using JDBC instead of SQL/OLB:

public class Routines2 {
public static void best TwEnps (
String[] n1, String[] id1,
String[] n2, String[] id2,

try {

Connecti on conn = Driver Manager . get Connecti on

id2[0]="";
s2[0] = new Bi gbDeci nal (0);

}

}

("j dbc: def aul t: connection");

Bi gDeci mal [] s1,
r2, BigbDecimal[] s2,
int regionParm throws SQLException {
N1[0] = "****". n2[0] = "****", jd1[0]= "";
ri1[0] =0; r2[0]=0; s1[0]= new Bi gDeci nal (0);

java. sql . PreparedStatenment stnt = conn. prepar eSt at ement

(" SELECT name, id, region_of(state) AS region,

FROM enmp
WHERE regi on_of (state) > ?
AND sal es |I'S NOT NULL
CRDER BY sal es DESC');
stnt.setInt(1l, regionParm
Resul tSet r = stnt.executeQery();
if (r.next()) {
ni[0] = r.getString("name");
idl[0] = r.getString("id");
r1[0] r.getlnt("region");
s1[0] r.get Bi gDeci mal ("sal es");
}
el sereturn;
if (r.next()) {
n2[0] = r.getString("name");
id2[0] =r.getString("id");
r2[0] r.getlnt("region");
s2[0] r.get Bi gDeci mal ("sal es");
}

el se return;

} finally { stnt.close() };

©ISO/IEC 2003 — All rights reserved

sal es

Routinestutorial 145

I SO/IEC 9075-13:2003 (E)
E.7 A CREATE PROCEDURE best2 for bestTwoEmMps

E.7 A CREATE PROCEDURE best2 for bestTwoEmps

Assumethat you call the SQLJ. | NSTALL _JAR procedure for aJJAR containing the Rout i nes2 classwith
the best TwoEnps method:

SQLJ. INSTALL_JAR ('file:~/classes/Routines2.jar', 'routines2_jar', 0)

Asindicated previously, in order to call amethod such asbest TwoEnps in SQL, you shall define an SQL
name for it, using the CREATE PROCEDURE statement:

CREATE PROCEDURE best 2 (

QUT nl CHARACTER VARYI NG 50), OUT idl CHARACTER VARYI NG 5), QUT r1 | NTEGER,
OUT s1 DECI MAL(6, 2),
OUT n2 CHARACTER VARYI NG(50), OUT id2 CHARACTER VARYI NG(5), OUT r2 | NTEGER,
QUT s2 DECI MAL(6,2), region | NTEGER)

READS SQL DATA

LANGUAGE JAVA PARAMETER STYLE JAVA

EXTERNAL NAME 'routines2_jar: Routines2. best TwoEnps' ;

For parameters that are specified to be OUT or INOUT, the corresponding Java parameter shall be an array of
the corresponding data type.

E.8 Callingthebest2 procedure

After you haveinstalled the Rout i nes2 classin an SQL system and executed the CREATE PROCEDURE
for best 2, you can call the best TwoEnps method asif it were an SQL stored procedure, with normal con-
ventions for OUT parameters. Such acall could be written with embedded SQL, CLI, ODBC, or JDBC. The
following is an example of such acall using JDBC:

java.sql . Cal | abl eStatenment stnt = conn. prepareCall (
“{call best2(?,?,2,2,2,2,2,2,?2)}");

stnt.registerQutParanmeter (1, java.sql.Types. STRING;
stnt.registerQutParanmeter (2, java.sql.Types. STRING;
stnt.registerQutParaneter(3, java.sql.Types.|NTEGER);
stnt.registerQutParaneter (4, java.sql.Types. DECI MAL);
stnt.registerQutParaneter(5, java.sql.Types. STRING ;
stnt.registerQutParaneter (6, java.sql.Types.STRING;
stnt.registerQutParaneter (7, java.sql.Types.|NTEGER);
stnt.registerQutParaneter(8, java.sql.Types. DECI MAL);
stnt.setlnt(9, 3);
stnt. execut eUpdat e();
String nl = stnt.getString(1l);
String idl = stnt.getString(2);
int rl = stnt.getlnt(3);
Bi gDeci mal s1 = stnt.getBi gDeci mal (4);
String n2 = stnt.getString(5);
String id2 = stnt.getString(6);
int r2 = stnt.getlnt(7);
Bi gDeci mal s2 = stnt.getBi gDeci mal (8);

146 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.9 A Java method returning aresult set: orderedEmps

E.9 A Javamethod returning aresult set: orderedEmps

SQL stored procedures can generate SQL result sets as their output. An SQL result set (as defined in JDBC
and SQL) isan ordered sequence of SQL rows. SQL result setsaren't processed as normal function result val ues,
but are instead bound to caller-specified iterators or cursors, which are subsequently used to process the rows
of the result set.

The following Java method, or der edEnps, generates an SQL result setand then returns that result set to the
client. Note that the or der edEnps method internally generates the result set in the same way asthe

best TwoEnps method. However, the best TwoEnps method processes the result set within the

best TwoEnps method itself, whereasthisor der edEnps method returns the result set to the client as an
SQL result set.

To write a Java method that returns a result set to the client, you specify the method to have an additional
parameter that isasingle-element array of either the JavaResul t Set classor aclassgenerated by an SQL/OLB
iterator declaration (“#sql iterator...").

Thefollowing version of the or der edEnps procedure uses SQL/OLB to accessthe SQL server, and returns
the result set as an SQL/OLB iterator, Sal esReport :

/1 #sqgl public iterator Sal esReport (String nane, int region, BigDecimal sales);
public class Routines3 {
public static void orderedEnps (int regionParm Sal esReport[] rs)
throws SQLException {
#sqgl rs[0] = { SELECT nane, region_of(state) AS region, sales
FROM enmp
WHERE regi on_of (state) > :regionParm
AND sal es 1S NOT NULL
ORDER BY sal es DESC };
return;
}
}

The Sal esReport iterator class could be a public static inner class of Rout i nes3. However, the above
example presumes existence of an“*. sql j ” file, named Sal esReport. sql j, inthe same package as

Rout i nes3, containing the public definition of the Sal esRepor t iterator. Thatis, Sal esReport . sql j
contains:

#sqgl public iterator Sal esReport (String nane, int region, BigDecinmal sales);

Assume, for this example, that both class Rout i nes3 and theiterator Sal esReport aredefinedina
package named cl asses.

For comparison, the following shows or der edEnps written using JDBC instead of SQL/OLB.

public class Routines3 {
public static void orderedEmps(int regionParm ResultSet[] rs)
throws SQLException {
Connecti on conn = Driver Manager. get Connection ("jdbc: default:connection");
java. sql . PreparedStatenment stnt = conn. prepar eSt at ement
(" SELECT name, region_of(state) AS region, sales
FROM enp WHERE region_of (state) > ?

©ISO/IEC 2003 — All rights reserved Routinestutorial 147

I SO/IEC 9075-13:2003 (E)
E.9 A Javamethod returning aresult set: orderedEmps

AND sal es IS NOT NULL

ORDER BY sal es DESC');
stnt.setlnt (1, regionParn;
rs[0] = stnt.executeQuery();
return;

}
}

Themethod setsthefirst ement of theResul t Set [] parameter toreferencetheJavaResul t Set containing
the SQL result set to be returned. The method does not close either the returned Resul t Set object or the
Java statement object that generated the result set. The SQL system will implicitly close both of those objects.

You can call amethod such asor der edEnps in Javain the normal manner, supplying explicit arguments
for both parameters. You canalso cal itin SQL, asastored procedure that generates aresult set to be processed
in the SQL manner. We illustrate how this is done in the following two clauses.

Each of theaboveor der edEnps exampleshasasingleresult set parameter, r s, inwhich you canonly return
asingle result set. You can also specify multiple result set parameters. See Subclause 9.8, “<SQL -invoked
routine>".

Note that, in comparison to the prior examples of best TWwoEnps, thereisnotry. .. fi nal | y block to
close the SQL/OLB iterator or Resul t Set , r s[0] , or the IDBC PreparedStatement, st nt . For aresult set
to be returned from a stored procedure it shall not be explicitly closed, which means, in the case of JDBC, that
the statement executed to generate the result set aso shall not be explicitly closed.

E.10 A CREATE PROCEDURE rankedEmpsfor orderedEmps

Assumethat you call the SQLJ. | NSTALL_JAR procedure for a JAR containing the Rout i nes3 classwith
the or der edEnps method:

SQLJ. INSTALL_JAR('file:~/classes/Routines3.jar', 'routines3_ jar', 0)

As with previous methods, you will now need to define an SQL name for the or der edEnps method before
you can call it asan SQL procedure. As above, you will do thiswith a CREATE PROCEDURE statement that
specifiesan EXTERNAL...LANGUAGE JAVA clauseto referencetheor der edEnps method. Thefollowing
isan example CREATE PROCEDURE...DYNAMIC RESULT SETS for the above or der edEnps method:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines3_jar:classes. Routi nes3. orderedEnps';

A CREATE PROCEDURE statement for a Java method that generates SQL result sets has the following
characteristics:

— TheDYNAMIC RESULT SETS clause indicates that the procedure generates one or more result sets. The
integer specified inthe DYNAMIC RESULT SETS clause is the maximum number of result sets that the
procedure will generate. If an execution generates more than this number of result sets, awarning will be
issued, and only the specified number of result setswill be returned.

148 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.10 A CREATE PROCEDURE rankedEmpsfor orderedEmps

— The SQL signature specifies only the parameters that the caller explicitly supplies.

— The specified Java method actually has one or more additional, trailing parameters, whose data types shall
beaJavaarray of eitherj ava. sql . Resul t Set or animplementationof sql j . runti nme. Resul t -
Setlterator.

The above CREATE PROCEDURE statement could be used to reference either an SQL/OL B-based or JIDBC-
based version of Rout i nes3. or der edEnps. When it is necessary to choose a particular implementation,
the Java method signature of the desired Java method shall be explicitly stated. For the SQL/OLB-based

or der edEnps:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME
"routines3_jar:classes. Routines3. orderedEnps(int, classes. Sal esReport[])";

And, for the JDBC-based orderedEmps:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME
"routines3_jar:classes. Routines3. orderedEnps(int, java.sql.ResultSet[])";

The only difference in the above CREATE PROCEDURE r anked_enps statementsisin the Java method
signature's description of the dynamic result set returned. In both cases, afully qualified class nameis provided
for, respectively, the SQL/OLB iterator (remember that Sal esRepor t isin the package named cl asses)
and the JDBC result set.

The next clause will show an example invocation of this procedure.

E.11 CallingtherankedEmps procedure

After you haveinstalled the Rout i nes3 classin an SQL system and executed the CREATE PROCEDURE
for r ankedEnps, you can call ther ankedEnps procedure asif it were an SQL stored procedure. Such a
call could be written with any facility that defines mechanisms for processing SQL result sets— that is,
SQL/CLI, JDBC, and SQL/OLB. Thefollowing is an example of such a call using JDBC:

java.sql.Call abl eStatenment stnt = conn.prepareCall("{call ranked_enps(?)}");
stnt.setint(1l, 3);
Resul t Set rs = stnt.executeQuery();
while (rs.next()) {
String nane = rs.getString(1l);
int region = rs.getlnt(2);
Bi gDeci mal sal es = rs. get Bi gDeci mal (3);

Systemout.print("Nane = " + nane);
Systemout.print("Region =" + region);
Systemout.print("Sales = " + sales);

©ISO/IEC 2003 — All rights reserved Routinestutorial 149

I SO/IEC 9075-13:2003 (E)
E.11 CallingtherankedEmps procedure

Systemout. println();
}

Note that the call of ther anked_enps procedure supplies only the single parameter that was declared in the
CREATE PROCEDURE statement. The SQL system then implicitly supplies, as applicable, a parameter that
isan empty array of Resul t Set or anempty array of cl asses. Sal esRepor t, and callsthe Javamethod.
That Java method assigns the output result set or iterator to the array parameter. And, when the Java method
completes, the SQL system returns the result set or iterator in that output array element as an SQL result set.

E.12 Overloading Java method names and SQL names

When you use CREATE PROCEDURE/FUNCTION statements to specify SQL names for Java methods, the
SQL names can be overloaded. That is, you can specify the same SQL name in multiple CREATE PROCE-
DURE/FUNCTION statements. Note that support for such SQL overloading is an optional feature.

Consider the following Java classes and methods. These are contrived routines intended only to illustrate
overloading, and we won't show the routine bodies.

public class Overl {
public static int isCQdd (int i) {...};
public static int isCQdd (float f) {...};
public static int testOdd (double d) {...};

}

public class Over2 {
public static int isOdd (java.sql.Timestamp t) {...};
public static int oddDateTine (java.sql.Date d) {...};
public static int oddDateTinme (java.sql.Tine t) {...};

}

Note that thei sOdd method name is overloaded in the Over 1 class, and the oddDat eTi ne method name
isoverloaded inthe Over 2 class.

Assume that the above classesareinaJAR ~/ cl asses/ Over. j ar, which you install:

SQLJ. INSTALL_JAR ('file:~/classes/Over.jar', 'over_jar', 0)

To reference these methods in SQL, you will of course need to specify SQL names for them with CREATE
FUNCTION statements. These CREATE FUNCTION statements can specify SQL namesthat are overloaded.
The overloading of the SQL namesis completely separate from the overloading in the Java names. Thisis
illustrated in the following.

Recall that you can specify the same Javamethod in multiple CREATE PROCEDURE/FUNCTION statements.

CREATE FUNCTI ON odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARANMETER STYLE JAVA
EXTERNAL NAME ' over _jar: Overl.isQdd' ;

CREATE FUNCTI ON odd (REAL) RETURNS | NTEGER
LANGUAGE JAVA PARANMETER STYLE JAVA
EXTERNAL NAME ' over _jar: Overl.isQdd' ;

CREATE FUNCTI ON odd (DOUBLE PRECI SI ON) RETURNS | NTEGER
LANGUAGE JAVA PARANMETER STYLE JAVA

150 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.12 Overloading Java method namesand SQL names

EXTERNAL NAME 'over _jar:Overl.testQdd' ;
CREATE FUNCTI ON odd (Tl MESTAMP) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over _jar: Over2.isCOdd';
CREATE FUNCTI ON odd (DATE) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over _j ar: Over 2. oddDat eTi ne' ;
CREATE FUNCTI ON odd (TI ME) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over _j ar: Over2. oddDat eTi ne' ;
CREATE FUNCTI ON i s_odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over _jar: Overl.isCOdd';
CREATE FUNCTI ON test _odd (REAL) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over _jar: Overl.isCOdd';

Note the following characteristics of these CREATE FUNCTION statements:

— The SQL name odd isdefined onthetwoi sOdd methods and thet est Odd method of Over 1, and aso
thei sCOdd method and two oddDat eTi ne methods of Over 2. That is, the SQL name odd spans both
overloaded and non-overloaded Java names.

— The SQL namesi s_odd andt est _odd are defined on thetwo i sQdd methods of Over 1. That is,
those two different SQL names are defined on the same Java name.

Therulesgoverning overloading are those of the SQL language as defined in Subclause 11.50, “ <SQL -invoked
routine>", in ISO/IEC 9075-2, and in Subclause 10.4, “ <routineinvocation>", in ISO/IEC 9075-2. Thisincludes:

— Rules governing what parameter combinations can be overloaded. That is, the legality (or not) of the fol-
lowing CREATE statementsis determined by SQL language rules:

CREATE FUNCTI ON i s_odd (I NTEGER) RETURNS | NTEGER. ..
CREATE FUNCTI ON i s_odd (SVALLI NT) RETURNS | NTECER. ..
CREATE PROCEDURE is_odd (SMVALLINT) ...

— Rules governing the resolution of calls using overloaded SQL names. That is, the determination of which
Javamethod is called by “odd(x) ” for some dataitem “x” is determined by SQL language rules.

The EXTERNAL NAME clauses of the above CREATE FUNCTION statements specify only the JAR name
and method name of the Java method. For example:

CREATE FUNCTI ON odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARANMETER STYLE JAVA
EXTERNAL NAME ' over _jar: Overl.isQdd' ;

Y ou can also include the Java method signature (i.e., alist of the parameter data types) of a method in the
EXTERNAL NAME clause. For example:

CREATE FUNCTI ON odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over jar:Overl.isGdd (int)';

©ISO/IEC 2003 — All rights reserved Routinestutorial 151

I SO/IEC 9075-13:2003 (E)
E.12 Overloading Java method namesand SQL names

Thegroup of eight example CREATE FUNCTION statements, shown earlier in this clause, do not require Java
method signatures, but you can include them for clarity. Subclause E. 14, “ Javamethod signaturesinthe CREATE
statements”, describes cases where the Java method signature is required.

E.13 Java main methods

[Java] places specia no requirements on any method named mai n. However, a VM recognizes a method
named mai n, with the following Java method signature, as the method to invoke when only a class nameis
provided:

public static void main (String[]);

If you specify a Java method named main in an SQL CREATE PROCEDURE...EXTERNAL statement, then
that Java method shall have the above Java method signature. The signature of the SQL procedure can either
be:

— A single parameter that is an array of CHARACTER or CHARACTER VARYING. That array is passed
to the Java method as the String array parameter. Note: This SQL method signature can only be used in
SQL systems that support array datatypesin SQL.

— Zero or more parameters, each of whichis CHARACTER or CHARACTER VARYING. Those N param-
eters are passed to the Java method as asingle N element array of String.

E.14 Javamethod signaturesin the CREATE statements

Consider the following method, j ob1, which has an integer parameter and returnsa St r i ng with the job
corresponding with a jobcode value:

public class Routines4 {
/1A String method that will be called as a function
public static String jobl (Integer jc) throws SQ.Exception {
if (jc == 1) return "Admn";

else if (jc == 2) return "Sal es";
else if (jc == 3) return "derk";
else if (jc == null) return null;

el se return "unknown j obcode";

}
}

Note thatwe suffix the method name with a*“1” in anticipation of subsequent variants of the method.

Assume that you install this classin SQL:

SQLJ. I NSTALL_JAR ('file:~/classes/Routines4.jar', 'routines4_jar', 0)

Y ou might want to specify an SQL functionj ob_of 1 defined on thej ob1 method:

CREATE FUNCTI ON job_of 1(j ¢ | NTEGER) RETURNS CHARACTER VARYI NG 20)

152 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.14 Javamethod signaturesin the CREATE statements

LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines4_jar: Routines4.jobl';

However, as written above, this CREATE statement is not valid. Note that the data type of the parameter of
the Javamethodj obl isJaval nt eger (whichisshortforj ava. | ang. | nt eger), and we have specified
the SQL datatype INTEGER for the corresponding parameter of the SQL j ob_of 1 function. However, the
detailed rules (see Subclause 9.8, “<SQL-invoked routine>" for the external Javaform of the SQL CREATE
PROCEDURE/FUNCTION statement specifiesthat the default Java parameter datatypefor an SQL INTEGER
parameter isthe Javai nt datatype, not the Javal nt eger datatype. Subclause E.15, “Null argument values
and the RETURNS NULL clause”, describes some reasons why you may want to specify Javal nt eger
rather than Javai nt .

If you want to specify an SQL CREATE PROCEDURE/FUNCTION statement for a Java method whose
parameter data types include Java types differing from their default Java types, then you specify those data
typesin a Java method signature in the CREATE statement. This Java method signature is written after the
Java method name in the EXTERNAL NAME clause. For example, the above CREATE statement for the
j ob1 method would be written as:

CREATE FUNCTI ON job_of 1(j ¢ | NTEGER) RETURNS CHARACTER VARYI NG 20)
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines4_jar: Routines4.jobl(java.lang.|nteger)';

If you specify data types in the Java method signature of a CREATE statement that specifiesDYNAMIC

RESULT SETS, then you shall include theimplicit trailing result set or iterator parametersin that Java method
signature. Y ou do not, however, include thosetrailing parametersin the SQL signature. For example, you would
writethe CREATE of Subclause E.10, “A CREATE PROCEDURE rankedEmpsfor orderedEmps’, asfollows:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines3_jar: Routines3.orderedEnps (int, java.sql.ResultSet[]);

See Subclause 9.8, “<SQL-invoked routine>".

E.15 Null argument valuesand the RETURNSNULL clause

Consider the Javamethod j ob1 and the corresponding SQL functionj ob_of 1, which we defined in
Subclause E.14, “ Java method signatures in the CREATE statements”.

You can call the SQL functionj ob_of 1 in SQL statements such as the following:

SELECT nane, job_of 1(j obcode)
FROM enps
VWHERE j ob_of 1(j obcode) <> 'Admin';

Suppose that arow of the EMPS table has a null value in the JOBCODE column. Note that the Java data type
of theparameter of thej ob1 methodisJaval nt eger (thatis,j ava. | ang. | nt eger). TheJaval nt eger
datatypeisaclass, rather than a scalar datatype, so its values include both numeric values, and aso the null
reference value. When an SQL null value is passed as an argument to a Java parameter whose datatypeisa

©ISO/IEC 2003 — All rights reserved Routinestutorial 153

I SO/IEC 9075-13:2003 (E)
E.15 Null argument values and the RETURNS NULL clause

Java class, the null SQL valueis passed as a Java null reference. Such anull reference can be tested within the
Javamethod, asshownin Rout i nes4. j obl.

Now consider the following similar method, which specifiesits parameter data type to be the Java scalar data
typei nt, rather than the Javaclass| nt eger .

public class Routines5 {
/1A String nethod that will be called as a function
public static String job2 (int jc)
throws SQLException {
if (jc == 1) return "Admin";
else if (jc == 2) return "Sal es";
elseif (jc == 3) return "C erk";
el se return "unknown j obcode";

Assume that you install this classin SQL:

SQ.J. I NSTALL_JAR('file:~/classes/Routines5.jar', 'routines5_ jar', 0)
CREATE FUNCTI ON job_of2 (jc | NTEGER) RETURNS CHARACTER VARY!I NG& 20)
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines5_jar: Routines5.job2';

Y ou can then call the SQL functionj ob_of 2 in SQL statements such as the following:

SELECT nane, job_of2 (jobcode)
FROM enps
VWHERE j ob_of 2(j obcode) <> " Adnmin';

When this SELECT statement encounters arow of the EM PS table in which the JOBCODE columnisnull, the
effect of the null value on the call(s) of thej ob_of 2 function is different than for the previousj ob_of
function. Thej ob_of 2 function is defined on the method Rout i nes5. j ob2, whose parameter has the
scalar datatypei nt , rather than the class datatypej ava. | ang. | nt eger. TheJavai nt datatype (and
other Java scalar datatypes) has no null reference value, and no other representation of anull value. Therefore,
if thej ob2 method isinvoked with anull SQL value, then an exception condition is raised.

To summarize;

— Thefollowing Java data types have null reference values, and can accommodate SQL argumentsthat are
null:

java. lang. String,java. mat h. Bi gDeci nal ,byte[],java. sql. Date,java.sql.Ti ne,
j ava. sqgl . Ti mest anp, j ava. | ang. Doubl e, ava. | ang. Fl oat,j ava. | ang. | nt eger,
java. l ang. Short,java.l ang. Long,j ava. | ang. Bool ean

— Thefollowing Javadatatypes are scalar datatypesthat cannot accommodate nulls. An exception condition
will be raised if an argument value passed as such a parameter data typeis null:

bool ean, byt e,short,int,l ong,fl oat,doubl e

The exception condition that is raised when you attempt to pass a null argument to a Java parameter that isa
non-nullable data type is analogous to the traditional SQL exception condition that is raised when you attempt
to FETCH or SELECT anull column value into a host variable for which you did not specify anull indicator

154 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.15 Null argument values and the RETURNS NULL clause

variable. In both cases, the “receiving” parameter or variable is unable to accommodate the actual run-time
null value, so an exception condition is raised.

When you code Java methods specifically for usein SQL, you will probably tend to specify Java parameter
datatypesthat are the nullable Javadata types. Y ou may, however, also want to use Java methodsin SQL that
were not coded for usein SQL, and that are more likely to specify Java parameter data types that are the scalar
(non-nullable) Java data types.

Y ou can call such functions in contexts where null values will occur by invoking them conditionaly, e.g., in
CASE expressions. For example:

SELECT nane,
CASE
WHEN j obcode |'S NOT NULL THEN j ob_of 2 (j obcode)
ELSE NULL
END
FROM enps
VHERE CASE
VWHEN j obcode IS NOT NULL THEN job_of 2 (j obcode)
ELSE NULL

END<> ' Adni ni strator';

Y ou can also make such CASE expressions implicit, by specifying the RETURNS NULL ON NULL INPUT
option in the CREATE FUNCTION statement:

CREATE FUNCTI ON job_of 22 (jc I NTEGER) RETURNS CHARACTER VARYI N& 20)
RETURNS NULL ON NULL | NPUT
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines5_jar: Routines5.job2';

When an SQL function is called whose CREATE FUNCTION statement specifies RETURNS NULL ON
NULL INPUT, then if the runtime value of any argument is null, the result of the function call is set to null,
and the function itself is not invoked.

The following SELECT statementinvokesthej ob_of 22 function.

SELECT nane, job_of 22(j obcode)
FROM enps
VWHERE j ob_of 22(j obcode) <> ' Adninistrator';

This SELECT is equivalent to the previous SELECT that invokesthej ob_of 2 function within CASE
expressions. That is, the RETURNS NULL ON NULL INPUT clause in the CREATE FUNCTION statement
forj ob_of 22 makesthe null-testing CASE expressionsimplicit.

The RETURNS NULL ON NULL INPUT option appliesto all of the parameters of the function, not just to
the parameters whose Java data type is not nullable.

The convention that the RETURNSNULL ON NULL INPUT option definesfor afunction isthe same conven-
tion that isfollowed for most built-in SQL functions and operators: if any operand is null, then the value of the
operationis null.

The aternative to the RETURNS NULL ON NULL INPUT clauseis CALLED ON NULL INPUT, whichis
the default.

©ISO/IEC 2003 — All rights reserved Routinestutorial 155

I SO/IEC 9075-13:2003 (E)
E.15 Null argument values and the RETURNS NULL clause

Y ou can specify the same Java method in multiple CREATE FUNCTION statements (i.e., defining SQL syn-
onyms), and those CREATE FUNCTION statements can either specify RETURNS NULL ON NULL INPUT
or CALLED ON NULL INPUT, asillustrated by the abovej ob_of 2 andj ob_of 22.

If you create multiple SQL functionsnamed j ob_of 22 (with different numbers and/or types of parameters),
you can specify (or default to) CALLED ON NULL INPUT in some of the CREATE FUNCTION j ob_of 22
statements, and specify RETURNS NULL ON NULL INPUT in others. The actions of the RETURNS NULL
ON NULL INPUT clause are taken after overloading resolution has been done and a particular CREATE
FUNCTION statement has been identified.

The RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT clauses can only be specifiedin
CREATE FUNCTION statements, that is, not in CREATE PROCEDURE statements. Thisis because thereis
no equivalent conditional treatment of procedure calls that would be as generally useful.

E.16 Static variables

Java static methods can be contained in Java classes that have static variables, and, in Java, static methods can
both reference and set static variables. For example:

public class Routines6 {
static String jobs;
public static void setJobs (String js) throws SQ.Exception {jobs=js;}
public static String job3(int jc) throws SQLException {
if (jc<1]|| jc* 5 >1length(jobs)+1l) return "lInvalid jobcode";
el se return jobs.substring(5*(jc-1), 5*jc);
}
}

Assume that you install this classin an SQL system:

SQLJ. INSTALL_JAR('file:~/classes/Routines6.jar', 'routines6_jar', 0);

TheclassRout i nes6 hasastatic variablej obs, whichisset by the static method set Jobs and referenced
by the static methodj ob3. A classsuchasRout i nes6 that dynamically modifiesthe values of static variables
iswell-defined in Java, and can be useful. However, when such aclassisinstalled in an SQL system, and the
methods set Jobs andj ob3 are defined as SQL procedures and functions (<SQL-invoked routine>), the
scope of the assignments to the static variable j obs isimplementation-dependent. That is, the scope of that
variableis not specified, and is likely to differ across implementations (and possibly across the releases of a
given implementation).

For example:

CREATE PROCEDURE set jobs (js CHARACTER VARYI NG 100))
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines6_jar: Routi nes6. set Jobs';
CREATE FUNCTION job_of3 (jc integer) RETURNS CHARACTER VARYI NG 20)
RETURNS NULL ON NULL | NPUT
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines6_jar: Routi nes6.job3';
CALL set_jobs ('Adm nSal esC erk');
SELECT nane, job_of3 (jobcode)

156 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.16 Staticvariables

FROM enps
VWHERE j ob_of 3(j obcode) <> 'Adnmin';

This appears to be a straightforward use of the Rout i nes6 classin SQL. Thecall of set _j obs specifiesa
list of job code values, which a user might reasonably assume is “ cached” by the SQL-environment and used
insubsequent callsof j ob_of 3. However, sincethe scope of the static variablej obs inthe SQL environment
is implementation-dependent, the answers to the following questions regarding the values passed to the

set _j obs procedure are likely to differ across implementations:

— Istheset _j obs vauevisible only to the current session? Or also to concurrent sessions and to later non-
concurrent sessions?

— Doestheset j obs value persist acrossa COMMIT?Isit reset by a ROLLBACK?

The implication of this uncertainty isthat you should not use classes that assign to static variablesin SQL.
Note, however, that such assignments will not (necessarily) be detected by the SQL implementation, either
when you CREATE PROCEDURE/FUNCTION or when you call aroutine.

Y ou can prevent assignments to static variables in Java by declaring them with thef i nal property.

E.17 Dropping SQL names of Java methods

After you have created SQL procedure or function names for Java methods, you can drop those SQL names
with anormal SQL DROP statement:

DROP FUNCTI ON r egi on RESTRI CT;

A DROP statement has no effect on the Java method (or class) on which the SQL name was defined. Dropping
an SQL procedure or function implicitly revokes any granted privileges for that routine.

E.18 Removing Java classesfrom SQL

Y ou can completely uninstall aJAR with the SQLJ. REMOVE_J AR procedure. For example:

SQLJ. REMOVE_JAR ('routines_jar', 0);

Asnoted earlier, JARS can contain deployment descriptors, which specify implicit actions to be taken by the
SQ.J. I NSTALL_JARand SQLJ. REMOVE_JAR procedures. The second parameter isan integer that specifies
whether you do or do not (indicated by non-zero or zero values, respectively) want the SQLJ. REMOVE_JAR
procedure to execute the actions specified by a deployment descriptor in the JAR. Deployment descriptors are
further described in Subclause 12.2, “Deployment descriptor files”.

After the SQLJ. REMOVE_J AR procedure performs any actions specified by the JAR's deployment descriptor
file(s), there shall be no remaining SQL procedure or function whose external name references any method of
any classin the specified JAR. Any such remaining SQL procedures or functions shall be explicitly dropped
before the SQLJ. REMOVE_J AR procedure will be able to complete successfully.

©ISO/IEC 2003 — All rights reserved Routinestutorial 157

I SO/IEC 9075-13:2003 (E)
E.19 Replacing Java classesin SQL

E.19 Replacing Java classesin SQL

Assumethat you haveinstalled aJavaJAR in SQL, and you want to replace someor all of the contained classes,
e.g., to correct or improve them. Y ou can do this by using the SQLJ. REMOVE_J AR procedure to remove the
current JAR, and then using the SQLJ. | NSTALL_JAR procedure to install the new version. However, you
will probably have executed one or more SQL DDL statements that depend on the methods of the classes that
you want to replace. That is, you may have executed one or more of the following DDL operations:

— CREATE PROCEDURE/FUNCTION statements referencing the classes.
— GRANT statements referencing those SQL procedures and functions.

— CREATEPROCEDURE/FUNCTION statementsfor SQL proceduresand functionsthat invokethose SQL
procedures and functions.

— CREATE VIEW/TABLE statements for SQL views and tables that invoke those SQL procedures and
functions.

The rulesfor the SQLJ. REMOVE_JAR procedure require that you drop all SQL procedure/functions that
directly reference methods of a class before you can remove the JAR containing the class. And, SQL rulesfor
RESTRICT, as specified in the SQL <drop routine statement>, require that you drop all SQL objects (tables,
views, SQL -server modules, and routines whose bodies are written in SQL) that invoke a procedure/function
before you drop the procedure/function.

Thus, if you usethe SQLJ. REMOVE_JARand SQLJ. | NSTALL _JAR proceduresto replace aJAR, you will
have to drop the SQL objects that directly or indirectly depend on the methods of the classesin the JAR, and
then re-create those items.

The SQLJ. REPLACE_JAR procedure avoids this requirement, by performing an instantaneous remove and
install, with suitablevalidity checks. Y ou can therefore call the SQLJ. REPLACE_JAR procedurewithout first
dropping the dependent SQL objects.

For example, in Subclause E.4, “Installing region and correctStates in SQL”, we installed the class of Rou-
t i nes1 with the following statement:

SQLJ. INSTALL_JAR('file:~/classes/Routinesl.jar', 'routinesl jar', 0)

Y ou can replace that JAR with a statement such as:

SQ.J. REPLACE JAR('file:~/revised_classes/Routinesl.jar', 'routinesl_ jar')

Note that the JAR name shall be the same. It identifies the existing JAR, and will subsequently identify the
replacement JAR. The URL of the replacement JAR can be the same as or different from the URL of the orig-
ina JAR.

In the general case, there will be classesin the old JAR that are not in the new JAR, classes that are in both
JARs, and classesthat areinthe new JAR and not inthe old JAR. These are referred to respectively as unmatched
old classes, matching old/new classes, and unmatched new classes.

The validity requirements on the replacement JAR are:

158 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.19 Replacing Java classesin SQL

— Thereshall be no SQL procedure or function whose routine descriptor's <external routine name> specified
an <external Java reference string> that references any method of any unmatched old class (since all
unmatched old classes will be removed).

— Any CREATE PROCEDURE/FUNCTION statement that references a method of a matching class shall
be avalid statement for the new class.

— Thereshall be no SQL user-defined type whose descriptor's <jar and class name> references any unmatched
old class.

— Any CREATE TY PE statement that references a method of a matching class shall be avalid statement for
the new class.

If theserequirementsare satisfied, the SQLJ. REPLACE_J AR procedure deletesthe old classes (both unmatched
and matching) and installs the new classes (both unmatched and matching).

E.20 Visbility

The SQLJ. | NSTALL_JAR procedure will install any Java classes into the SQL system. However, not all
methods of all classes can be referenced in SQL. Only visible methods of visible classes can be referenced in
SQL. The nation of visible classes and methods is based on the concept of mappable data types. The detailed
definitions of mappable and visible are specified in Subclause 4.5, “ Parameter mapping”. They may be summa-
rized asfollows:

— A Javadatatypeis mappable to SQL (and vice versa) if and only ifit has a corresponding SQL datatype,
or itisan array that isused for OUT parameters, or it is an array that is used for result sets.

— A Javamethod is mappable (to SQL) if and only if the data type of each parameter is mappable, and the
result typeis either amappable datatype or isvoi d.

A Javamethod isvisiblein SQL if and only if itispubl i ¢, st ati ¢, and mappable.

Only thevisibleinstalled methods can be referenced in SQL. Other methods simply don't exist in SQL. Attempts
to reference them will raise implementation-defined syntax errors such as unknown name.

Non-visible classes and methods can, however, be used by the visible methods.

E.21 Exceptions

SQL exception conditions are defined for the SQL/JRT procedures. For example, if the URL argument specified
incalsto SQLJ. | NSTALL_JARor SQLJ. REPLACE JAR (etc.) isinvalid, an SQL exception condition

(ava. sql . SQLExcept i on) with aspecified SQLSTATE will be raised. These exception conditions are
specified in the definitions of the procedures, and arelisted in Subclause 15.2, “SQLSTATE". Java exceptions
that are thrown during execution of a Java method in SQL can be caught within Java, and if thisis done, then
those exceptions do not affect SQL processing.

Any Java exceptions that are uncaught when a Java method called from SQL completes will be returned in
SQL as SQL exception conditions.

©ISO/IEC 2003 — All rights reserved Routinestutorial 159

I SO/IEC 9075-13:2003 (E)
E.21 Exceptions

For example, in Subclause E.3, “ Example Java methods: region and correctStates’, we defined theJava method
Rout i nes1. r egi on. And, in Subclause E.5, “ Defining SQL namesfor region and correctStates’, we defined
the SQL function namer egi on_of for the Javamethod Rout i nes1. r egi on.

The Javamethod Rout i nes1. r egi on throwsan exception if the argument value is not in a specified range
of values:

public class routinesl {
public static int region(String s) throws SQ.Exception {
if (s.equals ("MN') || s.equals ("VT") || s.equals ("NH')) return 1;
else if (s.equals ("FL") || s.equals ("GA") || s.equals ("AL")) return 2;
else if (s.equals ("CA") || s.equals ("AZ") || s.equals ("NV')) return 3;
el se throw new SQLException("lnvalid state code", "38001");

}
}

Assume that the EMPS table contains arow for which the value of the STATE column is 'TX'. The following
SELECT will therefore raise an exception condition when it encounters that row of EMPS:

SELECT nane, regi on_of (state)
FROM enps
VWHERE r egi on_of (state) = 1;

Thecall of ther egi on_of function with aninvalid parameter ('TX") will raise the SQL exception condition
with the SQLSTATE of '38001'. The SQL message text associated with that exception will be the following
string:

"Invalid state code'

Themessagetext and SQLSTATE may be specified in the Javaexception specified inthe Javat hr owstatement.
If that exception specifies an SQLSTATE, the first two characters of that SQLSTATE shall be'38'". (If this
requirement is violated, then the effects are implementation-defined.) If that exception does not specify an
SQLSTATE, then the default SQL exception condition for an uncaught Java exception is raised. See
Subclause 15.1, “Class and subclass values for uncaught Java exceptions”.

When a Java method executes an SQL statement, any exception condition raised in the SQL statement will be
raised in the Java method as a Java exception that is specifically the SQLExcept i on subclass of the Java
Except i on class. The effect of such an SQL exception condition on the outer SQL statement that called the
Java method is implementation-defined. For portability, a Java method that is called from SQL, that itself
executes an SQL statement, and that catches an SQLExcept i on from that inner SQL statement should re-
throw that SQLExcept i on.

E.22 Deployment descriptors

When you install a JAR containing a set of Java classesinto SQL, you shall execute one or more CREATE
PROCEDURE/FUNCTION statements before you can call the static methods of those classes as SQL procedures
andfunctions. And, you may also want to perform various GRANT statements for the SQL names created by
those CREATE PROCEDURE FUNCTION statements. When you later removeaJAR, you will want to execute
corresponding DROP PROCEDURE/FUNCTION statements and REV OKE statements.

160 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.22 Deployment descriptors

If you plantoinstall aJAR in several SQL systems, the various CREATE, GRANT, DROP, and REVOKE
statements will often be the same for each such SQL system. One way that you could simplify the install and
remove actions would be as follows:

— Provide methods called“af t er I nst al | ” and “bef or eRenpbve” to be executed as an “install script”
and “remove script”, performing such actions as the following:

e Theafterlnstall method: The CREATE and GRANT statements that you want to be performed
when the JAR isinstalled.

* Thebef or eRenbve method: The DROP and REV OKE statements (the inverse of the actions of the
af ter I nst al | method) that you want to be performed when the JAR is removed.

Thatis,theafterlnstal |l andbef oreRenbve methodswould use SQL/OLB or JDBC to invoke
SQL for the desired CREATE, GRANT, DROP, and REVOKE statements.

— Includetheaf t er I nst al | andbef or eRenbve methodsinaclass, which youmight call thedepl oy
class, and include that depl oy classin the JAR that you plan to distribute.

— Instruct recipients of the JAR to do the following to install the JAR:
e CaltheSQ.J. | NSTALL_JAR procedure for the JAR.

» Execute a CREATE procedure statement for theaf t er I nstal | method, giving it an SQL name
suchasaft er i nst al | . Notethat this*bootstrap” action cannot beincludedintheaf t er | nst al |
method itself.

e Cdltheafter_install procedure. Note: We can assumethat theaft er i nstal | procedure
will include a CREATE PROCEDURE statement to give the bef or eRenbve method an SQL name
suchasbef or e_r enove.

— Instruct recipients of the JAR to proceed as follows to remove the JAR:
e Callthebef ore_r enove procedure.

e Droptheafter _install andbefore renove procedures. Note that this action cannot be
included in the bef or eRenpve procedure itself.

e Cadll the SQ.J. REMOVE_JAR procedure.

Note that this simplification of theinstall and remove actions still requires several manual steps. SQL/JRT
therefore provides amechanism, called deployment descriptors, with which you can specify the SQL statements
that you want to be executed implicitly by the SQLJ. | NSTALL _JARand SQLJ. REMOVE _JAR procedures.

If you want the deployment descriptorsin a JAR to be interpreted when you install and remove the JAR, then
you specify anon-zero valuefor thedepl oy parameter of the SQLJ. | NSTALL_JAR procedureand similarly
for the undepl oy parameter of the SQLJ. REMOVE_JAR procedure. If aJAR contains a deployment
descriptor, then the SQLJINSTALL_JAR procedure will use that deployment descriptor to determine the
CREATE and GRANT statements to execute after it has installed the classes of the JAR. The corresponding
SQLJ. REMOVE_JAR procedure uses the deployment descriptor to determine the DROP and REV OKE state-
ments to execute before it removes the JAR and its classes.

A deployment descriptor isatext file containing alist of SQL CREATE and GRANT statementsto be executed
when the JAR isinstalled, and alist of SQL DROP and REV OKE statements to be executed when the JAR is
removed.

©ISO/IEC 2003 — All rights reserved Routinestutorial 161

I SO/IEC 9075-13:2003 (E)
E.22 Deployment descriptors

For example, supposethat you haveincorporated the aboveclassesRout i nes1, Rout i nes2,andRout i nes3
into asingle JAR. The following is a possible deployment descriptor that you might want to include in that
JAR.

Notes:

— Within adeployment descriptor file, you use the JAR name“t hi sj ar” asaplaceholder JAR namein the
EXTERNAL NAME clauses of CREATE statements.

— Thevarious user names in this example are of course hypothetical.

SQ.Actions[] = {
"BEG N | NSTALL
CREATE PROCEDURE correct_states (ol d CHARACTER(20), new CHARACTER(20))
MODI FI ES SQL DATA
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'thisjar: Routinesl.correctStates';
GRANT EXECUTE ON correct_states TO Baker;
CREATE FUNCTI ON r egi on_of (st ate CHARACTER(20)) RETURNS | NTEGER
NO SQL
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 't hi sjar: Routinesl. region';
GRANT EXECUTE ON regi on_of TO PUBLI C,
CREATE PROCEDURE best2 (OUT nl CHARACTER VARYI NG(50), OUT idl CHARACTER(5),
OUT regionl I NTEGER, OUT sl1 DECI MAL(®6, 2),
OUT n2 CHARACTER VARYI NG(50), OUT id2 CHARACTER(5),
QUT region2 I NTEGER, OUT s2 DECI MAL(®6, 2),
regi on | NTEGER)
READS SQL DATA
LANGUAGE PARAMETER STYLE JAVA
EXTERNAL NAME 't hi sj ar: Routi nes2. best TwoEnps' ;
GRANT EXECUTE ON best2 TO Baker, Cook, Farner;
CREATE PROCEDURE or der ed_enps (region | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 't hi sj ar: Routi nes3. rankedEnps';
GRANT EXECUTE ON ordered_enps TO PUBLI C;
END | NSTALL",
"BEG N REMOVE
REVOKE EXECUTE ON correct_states FROM Baker RESTRI CT;
DROP PROCEDURE correct_states RESTRICT;
REVOKE EXECUTE ON regi on_of FROM PUBLI C RESTRI CT;
DROP FUNCTI ON r egi on_of RESTRI CT;
REVOKE EXECUTE ON best 2 FROM Baker, Cook, Farnmer RESTRI CT;
DROP PROCEDURE best 2 RESTRI CT;
REVOKE EXECUTE ON or der ed_enps FROM PUBLI C RESTRI CT;
DROP PROCEDURE or der ed_enps RESTRI CT;
END REMOVE"

Assumethat depl oy_routi nes. t xt isthename of atext file containing the above depl oyment descriptor.
Y ou would build a JAR containing the following:

— Thetextfiledepl oy_routines. txt.

162 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.22 Deployment descriptors

— Theclassfilesfor Rout i nes1, Routi nes2, and Routi nes3.

— A manifest file with the following manifest entry:

Name: depl oy_routines.txt
SQLJIDepl oynment Descri ptor: TRUE

This manifest entry identifiesthe filedepl oy_r out i nes. t xt asadeployment descriptor in the JAR, for
the SQLJ. | NSTALL_JARand SQLJ. REMOVE _JAR procedures to interpret.

Deployment descriptor files can contain syntax errors. In general, any error that can arisein aCREATE or
GRANT statement can occur in a deployment descriptor file.

Y ou may want to install aJAR that contains a deployment file without performing the deployment actions. For
example, those actions may contain syntax errors, or may simply be inappropriate for some SQL system. You
can do this by specifying a zero value for the depl oy parameter of the SQLJ. | NSTALL_JAR procedure,
and azero value for the undepl oy parameter of the SQLJ. REMOVE _JAR procedure.

E.23 Paths

In the preceding clauses, the example JARs and their Java classes referenced other Java classesin the packages
java.l angandj ava. sql . The JARsand their Java classes that you install can also reference Java classes
in other JARsthat you haveinstalled or will install. For example, suppose that you have three JARS, containing
Java classes relating to administration, project management, and property management.

SQLJ. INSTALL_JAR ('file:~/classes/admin.jar', "admn_jar', 0);

At this point, you can execute CREATE PROCEDURE/FUNCTION statements referencing the methods of
classesinadm n_j ar . And, you can call those procedures and functions. If, at runtime, the Java methods of
adm n_j ar reference system classes or other Java classes that are contained inadm n_j ar , then those
references will be resolved implicitly. If theadm n_j ar methods reference Java classes that are contained
inproperty_jar (whichwewill install below), thenan exception condition will be raised for an unresolved
class reference.

SQLJ. INSTALL_JAR ('file:~/classes/property.jar', 'property_ jar', 0);
SQLJ. INSTALL_JAR ('file:~/classes/project.jar', 'project_jar', 0);

Thesecallsof SQLJ. | NSTALL_JARinstall property_j ar and proj ect _j ar . However, referencesto
theproperty_j ar classesby classesinadm n_j ar will till not be resolved. Similarly, references within
property jar toclassesinproj ect j ar will not beresolved, and vice versa.

To summarize;

— Whenyou install aJAR, any references within the classes of that JAR to system classes, or to classes that
are contained in the same JAR, will be implicitly resolved.

— Referencesto any other classes, installed or not, are unresolved.

— Youcaninstall JARsthat have unresolved classreferences, and you can use CREATE PROCEDURE/FUNC-
TION statements to define SQL routines on the methods of those classes.

©ISO/IEC 2003 — All rights reserved Routinestutorial 163

I SO/IEC 9075-13:2003 (E)
E.23 Paths

— When you call SQL routines defined on Java methods, exceptions for unresolved class references may
occur at any time alowed by [Java].

Invoking classes that contain unresolved references can be useful:
— Touseor to test partially-written applications.

— Touseclassesthat have some methodsthat are not appropriate for usein an SQL environment. For example,
aclass that has display-oriented or interactive methods that are used in other Java-enabled environments,
but not within an SQL system.

To resolve referencesto classesin other JARS, you usethe SQLJ. ALTER_JAVA PATH procedure.

SQLJ. ALTER _JAVA PATH ('admin_jar', '(property.*, property_jar)
(project.*, project_jar)');
SQ.J. ALTER_JAVA PATH (' property_jar', '(project.*,project_jar)');
SQJ. ALTER_JAVA PATH ('project_jar', '(*, property_jar) (*, admin_jar)');

The SQLJ. ALTER_JAVA_PATH procedure has two arguments, both of which are character strings. In a call
SQLJ. ALTER JAVA PATH(JX, PX):

— JX isthe name of the JAR for which you want to specify a path. Thisis the JAR name that you specified
inthe INSTALL_JAR procedure.

— PX isthe path of JARsin which you want unresolved class names that are referenced by classes contained
in JX to beresolved. The path argument isacharacter string containing alist of path elements (not comma-
separated). Each path element isaparenthesized pair (comma-separated), in which thefirst itemisapattern,
and the second item isa JAR name.

Supposethat at runtime, some method of aclass C that is contained in JAR JX isbeing evaluated. And, suppose
that within the execution of class C, areference to some other class named X C is encountered, such that no
classnamed XC isdefined in JAR JX. The path PX specified for JAR JX inthe SQLJ. ALTER _JAVA PATH
call determines the resolution, if any, of class name XC:

— Each path element '(PAT;, J)' is examined.

— If PAT; isafully quaified class name that is equivalent to XC, then XC shall be defined in JAR J,. If itis
not, then the reference to X C is unresolved.

— If PAT; isapackage name followed by an *', and XC is the name of aclassin that package, then X C shall
be defined in JAR J. If it is not, then the reference to XC is unresolved.

— If PAT;isasingle™’, thenif XC isdefined in JAR J;, that resolution is used; otherwise, subsequent path
elements are tested.

The paths that we specified above for adni n_j ar, property_j ar,andproj ect _j ar therefore have
the following effect:

— When executing withinadm n_j ar, classesthat areinthe pr operty or pr oj ect packageswill be
resolvedin property_j ar andproj ect _j ar, respectively.

— When executing within pr operty_j ar, classesthat arein the pr oj ect package will be resolved in
project _jar.

164 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
E.23 Paths

— When executing within pr oj ect _j ar, all classeswill first beresolved in pr operty_j ar, and then
inadm n_j ar.
Note that if aclass C contained in pr operty_j ar directly contains areferenceto aclass AC contained in
adm n_j ar, then that reference to AC will be unresolved, sinceadmni n_j ar isnot specified in the path for
property jar.But, if that class C invokes amethod pr oj ect . C2. Mof aclass contained in
proj ect _j ar,andproj ect. C2. Mreferences class AC, then that reference to AC will be resolved in
adm n_j ar,sinceadnmi n_j ar isspecified in the path for pr oj ect _j ar. That is, while class Cisbeing
executed, the path specified for pr operty_j ar isused, and while class C2 is being executed, the path
specified for pr oj ect _j ar isused. Thus, as execution transfersto classes contained in different JARs, the
current path changes to the path specified for each such JAR. In other words, the path specified for aJAR J1
applies only to class references that occur directly within the classes of J1, not to class references that occur in
some class contained in another JAR that isinvoked from aclass of J1.

The path that you specify in acall of the SQLJ. ALTER_JAVA PATH procedure becomes a property of the
specified JAR. A given JAR has at most one path. The path (if any) for aJAR appliesto all users of the classes
and methodsin the JAR.

When you call the SQLJ. ALTER_JAVA PATH procedure, the path you specify replaces the current path (if
any) for the specified JAR. The effect of this replacement on currently running classes and methodsis imple-
mentati on-defined.

When you execute the SQLJ. ALTER _JAVA PATH procedure, you shall be the owner of the JAR that you
specify asthefirst argument, and you shall have the USAGE privilege on each JAR that you specify in the path
argument.

The path facility is an optional feature.

E.24 Privileges

The SQL privilege system is extended for SQL/JRT.

First, the SQLJ build-in procedures are considered to be SQL -schema statements, and as such require imple-
mentation-defined privileges to be invoked.

Second, the USAGE privilegeis defined for JARs. USAGE is needed on a JAR in order to:
— Referenceitin a CREATE PROCEDURE/FUNCTION/TY PE statement.
— Listitinan SQL-Javapathinan SQLJ. ALTER JAVA PATH procedure call.

The user who installs a JAR is the owner of that JAR and implicitly has USAGE on the JAR, and can grant
USAGE to other users and roles. Only the owner can replace, remove, or ater the JAR.

USAGE privileges on a JAR is an optional feature.

©ISO/IEC 2003 — All rights reserved Routinestutorial 165

I SO/IEC 9075-13:2003 (E)
E.25 Information Schema

E.25 Information Schema

Additional views and columns are defined for the Information Schema to describe external Java routines and
external Javatypes.

— JARSIliststhe JARs installed in a database.

— METHOD_SPECIFICATIONS is augmented to include information about static field methods.

— ROUTINES contains information about external Java routines.

— USAGE_PRIVILEGES contains information on USAGE privileges granted on JARS.

— USER _DEFINED_TYPES isaugmented to include information about external Java types.

In addition, the usage of JARS by routines, types, and other JARsis shown in a collection of new usage views:
— JAR_JAR_USAGE liststhe JARs used in the SQL-Java path of agiven JAR.

— ROUTINE_JAR_USAGE namesthe JAR used in an external Java routine.

— TYPE_JAR_USAGE names the JAR used in an external Javatype.

These Information Schema views are optional features.

166 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.1 Overview

Annex F
(informative)

Typestutorial

F.1 Oveview

Thistutorial clause shows a series of example Java classes and their methods, and shows how they can be
installed in an SQL system and used as data typesin SQL.

F.2 ExampleJava classes

This Subclause shows example Java classes Addr ess and Addr ess2Li ne.

— TheAddr ess classrepresents street addressesin the USA, withast r eet field containing a street name
and building number, and azi p field containing a postal code.

— TheAddr ess2Li ne classisasubclassof the Addr ess class. It addsone additional field, named | i ne2,
which would contain data such as an apartment number.

— The Addr ess and Addr ess2Li ne classes both have the following methods:
* A default niladic constructor.
e A constructor with parameters.
e AtoString method to return a string representation of an address.

— The Addr ess and Addr ess2Li ne classes are both specified to implement the Java interfaces
java.io. Serializableandjava. sql . SQLDat a.

A Javaclassthat will be used as adatatype in SQL shall implement either the Javainterface
java.io. Serializabl e ortheJavainterfacej ava. sql . SQLDat a or both. Thisisrequiredto transfer
class instances between JVMs and between Javaand SQL.

It is assumed that the import statementsi nport j ava. sql . *; andj ava. mat h. *; have been included
inal classes.

The following is the text of the Addr ess class:

public class Address inplenments java.io.Serializable, java.sql.SQData {
public String street;
public String zip;
public static int recomendedW dth = 25;

©ISO/IEC 2003 — All rights reserved Typestutorial 167

I SO/IEC 9075-13:2003 (E)
F.2 Example Java classes

private String sql _type; // For the java.sql.SQData interface
/1 A default constructor
public Address () {
street = "Unknown";
zip = "None";
}
/1 A constructor with paraneters
public Address (String S, String 2) {
street = S
zip = Z
}
/1 A method to return a string representation of the full address
public String toString() {
return "Street=" + street + " ZIP=" + zip;
}
/1 A void nethod to renove | eadi ng bl anks
/1 This uses the static nmethod M sc. striplLeadi ngBl anks.
public void renpbvelLeadi ngBl anks() {
street = M sc.striplLeadi ngBl anks(street);
zip = Msc. stripLeadi ngBl anks(zip);
}
/1 A static nmethod to determine if two addresses
/1 are in arithnetically contiguous zones.
public static String contiguous(Address al, Address a2) {

if (Integer.parselnt(al.zip) == Integer.parselnt(a2.zip)+1 ||
I nt eger. parsel nt(al. zip) == |Integer.parselnt(a2.zip) -1)
return("yes");
el se

return("no");
}
/1 java.sqgl.SQ.Data inplenentation:
public void readSQ (SQInput in, String type)
throws SQLException {
sql _type = type;
street = in.readString();
zip = in.readString();

}
public void witeSQ (SQQutput out)
throws SQ.Exception {

out.witeString(street);
out.witeString(zip);

}

public String get SQ.TypeNane () {
return sql _type;

}

The following isthe text of the Addr ess2Li ne class, which isasubclass of the Addr ess class:

public class Address2Li ne extends Address
i npl ements java.io.Serializable, java.sql.SQData {
public String line2;
/1 A default constructor
public Address2Line () {
super ()

168 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.2 Example Java classes

line2 =" ",
}
/1 A constructor with paraneters
public Address2Line (String S, String L2, String 2) {
street = S
line2 = L2;
zip = Z
}
/1 A method to return a string representation of the full address
public String toString() {
return "Street=" + street +" Line2=" + line2 + " ZIP=" + zip;
}
/1 A void nethod to renpve | eadi ng bl anks.
/1 Note that this is an inperative nethod that nodifies the instance.
/'l This uses the static nmethod M sc.stripLeadi ngBl anks defi ned bel ow.
public void renpbvelLeadi ngBl anks() {
line2 = M sc. striplLeadi ngBl anks(Iline2);
super . renovelLeadi ngBl anks() ;
}
/1 java.sqgl.SQ.Data inplenentation:
public void readSQ (SQ.Input in, String type)
throws SQ.Exception {
super.readSQ.(in,type);
line2 = in.readString();

}
public void witeSQ (SQQutput out)
throws SQLException {
super.witeSQ (out);
out.witeString(line2);

}

/1 The follow ng class and method is used only internally in the above Java nethods.
//We won't define an SQ function for this nethod.
public class Msc {

/'l renove | eading blanks froma String
public static String stripLeadi ngBl anks(String s) {

int scan;

for (scan=0; scan < s.length() ; scan++)

if (!java.lang. Character.isSpace(s.charAt(scan)))

br eak;
if (scan == s.length()) return"";
el se return s.substring(scan);

}

F.3 Installing Addressand Address2Linein an SQL system

Toinstall classes such as Addr ess and Addr ess2Li ne in an SQL system, you proceed asin Annex E,
“Routines tutorial”. The source code for the classes will bein files with filetypej ava, which you compile
using thej avac command to produce object codefileswithfiletypecl ass. Y outhen assemblethosecl ass
filesintoaJavaJAR withfiletypej ar , and you placethat JAR in adirectory for which you can specify aURL.

©ISO/IEC 2003 — All rights reserved Typestutorial 169

I SO/IEC 9075-13:2003 (E)
F.3 Installing Addressand Address2Linein an SQL system

Assumethatfil e: ~/ cl asses/ Addr Jar . j ar issuchaURL. Now, you can install the classesinto an
SQL system by callingthe SQLJ. | NSTALL_JAR procedurethat was described in Annex E, “ Routinestutorial”:

SQLJ. INSTALL_JAR ('file:~/classes/AddrJar.jar', 'address_classes jar', 0);

F4 CREATE TYPE for Addressand Address2Line

Before you can use a Java class as an SQL datatype, you shall define SQL names for the SQL data type and
its fields and methods. Y ou do this with extended forms of the SQL CREATE TY PE statement.

An implementation of this part of | SO/IEC 9075 may support these extended forms of the CREATE TY PE
statement explicitly as standalone SQL statements, or in deployment descriptor files, or may support an
implementati on-defined mechani sm that achievesthe same effect asthe CREATE TY PE statement. Deployment
descriptor files are included in JARs, and executed implicitly during calls of the built-in SQL/JRT procedure
SQLJ. | NSTALL_JAR that specify adeploy action (third parameter non-zero). Thisis described in
Subclause E.22, “ Deployment descriptors’. In this Annex, we will show the CREATE TY PE statements as
standalone SQL statements.

Thefollowing SQL CREATE TY PE statements reference the above Java Addr ess and Addr ess2Li ne
classes:

CREATE TYPE addr EXTERNAL NAME 'address_cl asses_j ar: Addr ess'
LANGUACGE JAVA

AS (
street_attr CHARACTER VARYI NG(50) EXTERNAL NAME 'street',
zip_attr CHARACTER(10) EXTERNAL NAME 'zip')

STATI C METHOD rec_width ()
RETURNS | NTEGER
EXTERNAL VARI ABLE NAME ' recommendedW dt h',
CONSTRUCTOR METHOD addr ()
RETURNS addr SELF AS RESULT
EXTERNAL NAME ' Address',
CONSTRUCTOR METHOD addr (s_par m CHARACTER VARYI NG 50),
z_par m CHARACTER(10))
RETURNS addr SELF AS RESULT
EXTERNAL NAME ' Address',
METHCD to_string ()
RETURNS CHARACTER VARYI NG 255)
EXTERNAL NAME 'toString',
METHOD r enove_I eadi ng_bl anks ()
RETURNS addr SELF AS RESULT
EXTERNAL NAME ' r enpveleadi ngBl anks',
STATI C METHOD conti guous (Al addr, A2 addr)
RETURNS CHARACTER(3)
EXTERNAL NAME ' conti guous';
CREATE TYPE addr_2_line
UNDER addr
EXTERNAL NAME ' address_cl asses_j ar: Addr ess2Li ne'
LANGUAGE JAVA
AS (
line2_attr CHARACTER VARYI NG (100) EXTERNAL NAME 'line2')

170 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.4 CREATE TYPE for Addressand Address2Line

CONSTRUCTOR METHOD addr _2_line ()
RETURNS addr_2_|ine SELF AS RESULT
EXTERNAL NAME ' Address2Li ne',

CONSTRUCTOR METHCD addr_2_line (s_parm CHARACTER VARYI NG 50),
s2_par m CHARACTER(100),
z_parm CHARACTER(10))

RETURNS addr_2_|ine SELF AS RESULT
EXTERNAL NAME ' Address2Li ne',

METHOD strip ()

RETURNS addr_2_|ine SELF AS RESULT
EXTERNAL NAME ' r enpveleadi ngBl anks' ;

These CREATE TY PE statementsare an extension of the SQL CREATE TY PE statement. The above extensions
add the EXTERNAL clauses, which are patterned after the EXTERNAL clause of the SQL CREATE PROCE-
DURE/FUNCTION statement, and the METHOD clauses, which are patterned after SQL CREATE PROCE-
DURE/FUNCTION statements.

In this Annex, we'll describe the basic e ements of these CREATE TY PE statements, and defer to later sections
discussions of the following less intuitive clauses:

— The Javastatic field r ecommendedW dt h of the Addr ess classisrepresented in the SQL CREATE
TY PE by astatic method with no arguments, named r ec_wi dt h. Thisis described in Subclause F.15,
“Static fields”.

— TheJavavoi d method r enoveleadi ngBl anks of the Addr ess classisrepresented in the SQL
CREATE TYPEfor theaddr typeby amethod, r enove_| eadi ng_bl anks that specifiesRETURNS
SELFASRESULT. Ther enovelLeadi ngBl anks and st ri p methods of the Addr ess2Li ne class
aretreated similarly. Thisisdescribed in Subclause F.16, “Instance-update methods’. Thest r i p method
isincluded to illustrate that multiple SQL methods can reference a single Java method.

— The other clauses of the CREATE TY PE statements are straightforward trandliterations of the signatures
of the Java classes.

The EXTERNAL clausefollowing the CREATE TY PE clause shall reference aJavaclassthat isinitsidentified
installed JAR. Thisisreferred to as the subject Java class, and the SQL datatype isthe subject SQL data type.

If the EXTERNAL clause of aMETHOD clause references a Java constructor method (i.e., a method with no
explicitly specified return type whose name is the same as the class name), then the SQL method name shall
be the same as the SQL datatype name. That is, the same conventions for constructor function calls will be
used in SQL asin Java.

SQL datatypessuch asaddr andaddr 2 | i ne that are defined on Java classes are referred to as external
Java data types.

F.5 Multiple SQL typesfor a single Java class

Y ou can define more than one SQL data type on a given Java class. For example:
CREATE TYPE anot her _addr

EXTERNAL NAME ' address_cl asses_j ar: Addr ess'
LANGUAGE JAVA

©ISO/IEC 2003 — All rights reserved Typestutorial 171

I SO/IEC 9075-13:2003 (E)
F.5 Multiple SQL typesfor asingle Java class

AS (
zi p_part CHARACTER(10) EXTERNAL NAME ' zip',
street _part CHARACTER VARYI NG(50) EXTERNAL NAME 'street')
STATI C METHOD rec_wi dth_part () RETURNS | NTEGER
EXTERNAL VARI ABLE NAME ' recommendedW dt h'
CONSTRUCTOR METHOD anot her _addr ()
RETURNS anot her _addr SELF AS RESULT
EXTERNAL NAME ' Address',
CONSTRUCTOR METHOD anot her _addr (s_par m CHARACTER VARYI NG 50),
z_par m CHARACTER(10))
RETURNS anot her _addr SELF AS RESULT
EXTERNAL NAME ' Address',
METHOD string_rep ()
RETURNS CHARACTER VARYI NG 255)
EXTERNAL NAME 'toString',
STATI C METHOD conti g (Al anot her _addr,
A2 anot her _addr)
RETURNS CHARACTER(3)
EXTERNAL NAME ' conti guous';

The SQL datatypeanot her _addr isadifferent datatypethantheaddr datatype. Thetwo datatypesaren't
comparable, assignable, or union compatible. Y ou can include or omit an SQL datatype that is a subtype of
theanot her _addr typefor “2line” data. If you define such a subtype, with a name such as

anot her 2 1i ne,theninstancesof anot her _2 | i ne arespecidizationsof anot her _addr , and not
of addr .

F.6 Collapsing subclasses

Given Java classes and subclasses such as Addr ess and Addr ess2Li ne, you can either define SQL data
types for each such class, or for a subset of those classes.

Assumethat in SQL you only want to use the Java class Addr ess2Li ne. You can define an SQL datatype
for that class without a corresponding SQL data type for the Addr ess class. For example:

CREATE TYPE conpl et e_addr
EXTERNAL NAME ' addr ess_cl asses_j ar: Addr ess2Li ne'
LANGUAGE JAVA
AS (

zip_attr CHARACTER(10) EXTERNAL NAME ' zip',

street_attr CHARACTER VARYI NG(50) EXTERNAL NAME 'street',

line2_attr CHARACTER VARYI NG(100) EXTERNAL NAME 'line2')

STATI C METHOD rec_width ()

RETURNS | NTEGER
EXTERNAL VARI ABLE NAME ' r ecommendedW dt h'

CONSTRUCTOR METHOD conpl et e_addr ()

RETURNS conpl et e_addr SELF AS RESULT
EXTERNAL NAME ' Addr ess2Li ne',

CONSTRUCTOR METHOD conpl et e_addr (s_parm CHARACTER VARYI NG 50),
s2_par m CHARACTER(100),
z_parm CHARACTER(10))

RETURNS conpl et e_addr SELF AS RESULT
EXTERNAL NAME ' Addr ess2Li ne',

172 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.6 Collapsing subclasses

STATI C METHOD conti guous (Al conpl et e_addr,
A2 conpl et e_addr)

RETURNS CHARACTER(3)
EXTERNAL NAME ' conti guous',

METHOD to_string ()
RETURNS CHARACTER VARYI NG 255)
EXTERNAL NAME 'toString',

METHOD strip ()
RETURNS conpl et e_addr SELF AS RESULT
EXTERNAL NAME ' r enpveleadi ngBl anks' ;

Note that this CREATE TY PE includes attribute and method definitions for attributes and methods of the
superclass, Addr . You can include such superclass attributes and methods in a CREATE TY PE only if the
CREATE TYPE does not specify UNDER. That is, if aCREATE TY PE specifies a supertype with an UNDER
clause, then the CREATE TY PE can only include attributes and methods of itsimmediate subject Java class.

The subsets of the classes that you can specify in CREATE TY PE statements are restricted. For example,
assume that you install a hierarchy of classes Per son, Enpl oyee, Manager, and Di r ect or , where each
isasubclass of the preceding. Y ou can then define SQL data types for the following subsets of the classes:

— Per son, Enpl oyee, Manager ,andDi r ect or : Thisisthefull subset. Each SQL datatype caninclude
only members of its subject Java class.

— Any oneof Per son, Enpl oyee, Manager , or Di r ect or . That type can include members from any
of its superclasses.

— Manager and Di r ect or : The SQL datatype for Manager can include membersfrom Per son and
Enpl oyee. The SQL datatypefor Di r ect or caninclude only membersof Di r ect or .

— Enpl oyee, Manager ,and Di r ect or : The SQL datatypefor Enpl oyee caninclude membersfrom
Per son. The SQL datatypesfor Manager and Di r ect or can include only members of those classes.

— Enpl oyee and Manager . The SQL datatype for Enpl oyee can include members from Per son. The
SQL datatypesfor Manager caninclude only members of that class.

— Per son, Enpl oyee, and Manager , or Per son and Enpl oyee. Each class can include only members
of its subject Javaclass.

The subsetsthat are not allowed are those that omit an intermediate level of subclass. That is, you cannot define
SQL datatypesfor (only) the following subsets of the classes:

— Per son and Manager , or Per son, Manager ,and Di r ect or .

— PersonandDirector.

— Per son, Enpl oyee,and Di r ect or, or Enpl oyee and Di r ect or .
Therule is simpler than the explanation:

If aCREATE TY PE statement for SQL type S2 specifies“UNDER S1”, then the subject Java class of S1
shall be the direct superclass of the subject Java class of S2.

Subclause F.5, “Multiple SQL typesfor asingle Java class’, describes how you can define multiple SQL data
types on asingle Javaclass. This also can be done for subtype hierarchies. For example, let P;, Ej, M;, and D;

be SQL datatypes defined on Per son, Enpl oyee, Manager , and Di r ect or . For agiven number i, each
type is defined to be a subtype of the preceding i type. Y ou can define SQL data types such as:

©ISO/IEC 2003 — All rights reserved Typestutorial 173

I SO/IEC 9075-13:2003 (E)
F.6 Collapsing subclasses

— Eland M1, and P2 and E2. That is, M1 is defined to be a subtype of E1, and E2 is defined to be a subtype
of P2. Inthis case, E1 and E2 are different types. Instances of E1 are not specializations of P2.

— P1,E1,and M1, and M2 and D2. That is, E1 isdefined to be a subtype of P1, M1 is defined to be a subtype
of E1, and D2 is defined to be a subtype of M2. In this case, M1 and M2 are different types. Instances of
M2 are not specializations of either P1 or E1, and instances of D2 are not specializations of either P1, E1,
orM1.

F.7 GRANT and REVOKE statementsfor data types

After you have performed the CREATE TY PE statements shown in the preceding clause, you can perform
norma SQL GRANT statements to grant the SQL USAGE privilege on the new data type:

GRANT USAGE ON TYPE addr TO PUBLI C;
GRANT USAGE ON TYPE addr2line TO adm n;

The syntax and semantics for GRANT and REV OKE of the USAGE privilege for user-defined types are as
specified in 1ISO/IEC 9075-2, and are not further described by this part of |SO/IEC 9075.

F.8 Deployment descriptorsfor classes

Y ou may want to perform the same set of SQL CREATE and GRANT statementsin any SQL system inwhich
you install agiven JAR of Java classes, together with the corresponding SQL DROP and REV OK E statements
when you removethat JAR. Y ou can automate this process by specifying those SQL statementsin adeployment
descriptor fileinthe JAR. A deployment descriptor file containsalist of CREATE and GRANT statements to
be executed when the JAR isinstaled, and alist of REVOKE and DROP statements to be executed when the
JAR isremoved.

The following is an example deployment descriptor file for the above Java classes and SQL CREATE and
GRANT statements.

SQLActions[] ={
"BEG N | NSTALL
CREATE TYPE addr
EXTERNAL NAME ' address_cl asses_j ar: Addr ess'
LANGUAGE JAVA

AS (
zip_attr CHARACTER(10) EXTERNAL NAME ' zip',
street _attr CHARACTER VARYI NG(50) EXTERNAL NAME 'street')

STATI C METHOD rec_wi dt h()

RETURNS | NTEGER

EXTERNAL VARI ABLE NAME ' recommendedW dt h',
CONSTRUCTOR METHOD addr ()

RETURNS addr SELF AS RESULT

EXTERNAL NAME ' Address',
CONSTRUCTOR METHOD addr (s_par m CHARACTER VARYI NG 50),

z_par m CHARACTER(10))

174 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.8 Deployment descriptorsfor classes

RETURNS addr SELF AS RESULT
EXTERNAL NAME ' Address',
METHOD to_string ()
RETURNS CHARACTER VARYI NG 255)
EXTERNAL NAME 'toString',
VMETHOD r enove_| eadi ng_bl anks ()
RETURNS addr SELF AS RESULT
EXTERNAL NAME 'renoveleadi ngBl anks',
METHOD strip ()
RETURNS addr SELF AS RESULT
EXTERNAL NAME 'renpveleadi ngBl anks',
STATI C METHOD conti guous (al addr, a2 addr)
RETURNS CHARACTER(3)
EXTERNAL NAME ' conti guous';
GRANT USAGE ON TYPE addr TO PUBLI C;
CREATE TYPE addr_2_| i ne UNDER addr
EXTERNAL NAME ' address_cl asses_j ar: Addr ess2Li ne'
LANGUAGE JAVA
AS (

line2_attr CHARACTER VARY!I NG(100) EXTERNAL NAME 'line2')

CONSTRUCTOR METHOD addr _2_line ()

RETURNS addr_2_|ine SELF AS RESULT
EXTERNAL NAME ' Address2Li ne',

CONSTRUCTOR METHOD addr _2_line (s_parm CHARACTER VARYI NG 50),
s2_par m CHARACTER(100),
z_par m CHARACTER(10))

RETURNS addr_2_|ine SELF AS RESULT
EXTERNAL NAME ' Addr ess2Li ne',
METHOD strip ()
RETURNS addr_2_|ine SELF AS RESULT
EXTERNAL NAME ' renoveleadi ngBl anks' ;
GRANT USAGE ON TYPE addr_2_|ineTO admi n;
END | NSTALL",
"BEG N REMOVE
REVOKE USAGE ON TYPE addr_2_|ine FROM adnmi n RESTRI CT;
DROP TYPE addr _2_|ine RESTRICT,;
REVOKE USAGE ON TYPE addr FROM PUBLI C RESTRI CT;
DROP TYPE addr RESTRI CT;
END REMOVE'

F.9 UsingJava classesasdata types

After you have installed a set of Java classes with the SQLJ. | NSTALL_JAR procedure, and executed the
appropriate SQL CREATE statements to specify SQL types defined on the Java classes, you can specify those
external Java data types as the data types of SQL columns. For example:

CREATE TABLE enps (

nane CHARACTER VARYI NGE 30) ,
hone_addr addr,

©ISO/IEC 2003 — All rights reserved Typestutorial 175

I SO/IEC 9075-13:2003 (E)
F.9 Using Java classes as data types

mai | i ng_addr addr_2_line

)

Inthistable, thenane columnisan ordinary SQL character string, andthehone_addr andmai | i ng_addr
columns are instances of the external Java data types.

SQL columns whose data types are external Java datatypes are referred to as SQL/JRT columns.

Alternatively, if theimplementation of this part of 1SO/IEC 9075 supportstyped tables as specified in ISO/IEC
9075-2, you can use the SQL typeto create atyped table. Other tables can then reference the objectsin the
typed table. Thisrepresentation allowsthe abjectsin the typed tableto be shared (i.e., referenced from multiple
objects).

For example, you could store objects of typeaddr inatyped tableaddr esses and reference them from one
or more other tables:

CREATE TABLE addresses OF addr (
REF 1S id SYSTEM GENERATED) ;

CREATE TABLE comnpani es (
nanme CHARACTER VARYI NG 100),
address REF(addr) SCOPE addresses

)

CREATE TABLE emps2 (
nane CHARACTER VARYI NG 30) ,
home_addr REF(addr) SCOPE addresses,
mai | i ng_addr addr_2_line

In atyped table such asaddr esses, each attribute of the type becomes a separate column of the same name
in the typed table. In addition, the typed table has an implicit identifier column, which identifiesarow (i.e., an
object) in the table. In the example above, the name of thiscolumnisi d and the values for the column are
automatically generated by the database system. 1 SO/IEC 9075-2 supports additional generation mechanisms
for object identifiers, which can be defined through extended syntax in the CREATE TY PE statement (see
Subclause 9.4, “ <user-defined type definition>", and | SO/IEC 9075-2 for more details).

Y ou can store references to the objects of the addr esses tablein columns of type REF(addr) . The defi-
nition for these columns also identifiesthe addr esses table as the scope of the reference column.

F.10 SELECT, INSERT, and UPDATE

After you have specified SQL/JRT columns such asenps. home_addr and enps. nai | i ng_addr, the
values that you assign to those columns shall be Javainstances. Such instances are initially generated by calls
to constructor methods, using the NEW operator as in Java. For example:

| NSERT | NTO enps VALUES ('John Doe', NEWaddr(), NEWaddr_2_line())
I NSERT | NTO enps VALUES ('Bob Smith', NEWaddr('432 Elm Street', '95123"),
NEW addr _2_|ine(' PO Box 99', "attn: Bob Smith', '99678'))

Theinitial values specified for the SQL/JRT columns are the results of constructor method invocations. Note
the use of the NEWkeyword, whose role is the same in the facilities of this part of ISO/IEC 9075 asin Java.

176 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)
F.10 SELECT, INSERT, and UPDATE

Values of such columns can a'so be copied from one table to another. For example, assume the following
additional table:

CREATE TABLE trai nees (

name CHARACTER(30) ,

honme_addr addr,

mai | i ng_addr addr_2_line
)
I NSERT | NTO enps

(SELECT * FROM trai nees
VWHERE nane IN ('Bill Baker', 'Chuck Mrgan', 'Frank Jones')) ;

Inserting objects into typed tables uses the same syntax as for regular base tables. For example:

| NSERT | NTO addr esses
VALUES (' 1357 Ccean Blvd.', '99111")

Reference values can be obtained either directly from the referenced table (using the identifier column), or
from other reference columns. For example, the following statement obtains a reference value stored in the
companies table and inserts it into the enps 2 table. Thisresultsin a situations where the addr object is
“shared” by multiple referencing parties, thereby avoiding multiple redundant copies of the sameaddr object.

| NSERT | NTO enps2
VALUES ('Rob Wite , NEWaddr('165 Cak Street', '95234'),
(SELECT address FROM conpani es
VWHERE nane = 'eBiz Unlinmited))

F.11 Referencing Java fields and methodsin SQL

Y ou can invoke the methods andreference and update the fields of SQL/JRT columns such as
enps. hone_addr andenps. mai | i ng_addr using SQL field qualification.

SELECT hone_addr.to_string() , mailing_addr.to_string()
FROM enps
WHERE nanme = 'Bob Smith';
SELECT nane, hone_addr. zip_attr
FROM enps
VWHERE hone_addr. street _attr= '456 Shoreline Drive';
UPDATE enps
SET hone_addr.street _attr = '457 Shoreline Drive',
home_addr. zip_attr = '99323
VWHERE home_addr.to_string() LIKE '%56%5hore% ;

Y ou can also access columns of objects in typed tables and invoke methods on objects in typed tables through
references by using the dereference operator (“- >").

SELECT name, mailing_addr->to_string()
FROM enps2

WHERE nane = 'Bob Smith';

SELECT nane, numiling_addr->street_attr

©ISO/IEC 2003 — All rights reserved Typestutorial 177

I SO/IEC 9075-13:2003 (E)
F.11 Referencing Java fieldsand methodsin SQL

FROM enps2
VWHERE mai | i ng_addr->zip_attr = '99111';

F.12 Extended visibility rules

We have now defined SQL data types on the Java classes Addr ess and Addr ess2Li ne, and shown how
you can use those classes as the data types of SQL columns.

Defining those SQL data types on the Java classes has one additional effect. Those SQL data types and the
Java classesthat they are defined upon are now added to the list of corresponding Java and SQL data types, so
that we can now use Java methods whose data types are those Java classes. For example:

public class Uility {
/1 A function version of the renovelLeadi ngBl anks met hod of Address.
public static Address striplLeadi ngBl anks(Address a) {
return a.renovelLeadi ngBl anks() ;

}

/1 A function version of the renovelLeadi ngBl anks net hod of Addr2Li ne.
public static Addr2Li ne striplLeadi ngBl anks(Addr2Li ne a) {
return a.renovelLeadi ngBl anks() ;

}
}
CREATE FUNCTION strip(a addr) RETURNS addr

LANGUAGE JAVA PARAMETER STYLE JAVA

EXTERNAL NAME ' address_classes_jar:Utility.stripLeadi ngBl anks';
CREATE FUNCTION strip(a addr_2_line) RETURNS addr_2_line

LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' address_classes_jar:Utility.stripLeadi ngBl anks';

Note that the CREATE FUNCTION statement has no syntax to indicate that the referenced method specifies
SELF AS RESULT. Because the referenced methods have that specification, thetwo st r i p functions both
return copies of their input parameters.

F.13 Logical representation of Javainstancesin SQL

We saw in Subclause F.10, “SELECT, INSERT, and UPDATE”, that the values assigned to such SQL/JRT
columns are assigned from other SQL/JRT columns or from the results of calling Java constructors or other
methods. Hence, the values assigned to SQL/JRT columns are ultimately derived from values constructed by
Java methods in the VM. Such values are represented in SQL/JRT columns by a value that is obtained from
either the Javainterfacej ava. i 0. Seri al i zabl e or the Javainterfacej ava. sql . SQLDat a. One or
both of those interfaces shall be implemented by a Java classthat is used as a datatype in SQL. The value
obtained from that interface is effectively a copy of the Javainstance.

For example:

I NSERT | NTO enps

178 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.13 Logical representation of Javainstancesin SQL

VALUES ('Don Green', NEWaddr('234 Stone Road', '99777'),
NEW addr _2_line());

Theaddr constructor method with the NEW operator constructsan addr instance and RETURNS areference
toit. However, since the target is an SQL/JRT column, the SQL system usestheinterfacej ava. i 0. Seri -
al i zabl e orj ava. sqgl . SQLDat a to obtain datathat is effectively a copy of the new Javavalue, and
copies that value into the new row of the enps table.

Theaddr _2 | i ne constructor method operates the same way asthe addr method, except that it returns a
default instance rather than an instance with specified parameter values. The action taken is, however, the same
asfor theaddr instance.

Note that the values stored into SQL/JRT columns are copies of Javainstances, not references. For example:

| NSERT | NTO enps (nane, home_addr)
VALUES ('Sally Green',
SELECT hone_addr
FROM enps e2
VWHERE e2. nane=' Don Green');

This INSERT statement copiesthe hone_addr column from the 'Don Green' row to the new 'Sally Green'
row. Note that the column value, which contains a copy of the Javainstance, isitself copied. Thus, the
honme_addr columns of the'Sally Green' row and the 'Don Green' row are independent copies, not references
to ashared copy. In particular, the following statement has no effect on the 'Sally Green' hone_addr :

UPDATE enps
SET hone_addr.zip_attr = '94608'
VWHERE nane = 'Don Green';

Thevaluesstored in SQL/JRT columns are*reassembled” when acolumn is passed as a parameter to afunction
that is defined on a Java method. For example:

UPDATE enps
SET hone_addr = strip(hone_addr)
VWHERE SUBSTRI NG(hone_addr.street_attr, 1, 1) ="

Thest ri p functionisan SQL function defined onthe Javastaticmethod Ut i | i ty. st ri pLeadi ngBl anks.
The parameter datatype of the functionistheaddr datatype. When we passthe hone_addr column asan
argument, the value in the current row is reassembled into the VM, and a reference to the reassembled value
ispassed to themethod Ut i | i ty. stri pLeadi ngBl anks. Theresult of that function is of data type
Addr ess , which correspondswith the SQL datatypeaddr . The Javainterfacej ava. i 0. Seri al i zabl e
orjava. sql . SQLDat a isapplied to this returned value, and the result is copied back into the column.

Finally, consider the role of SQL nulls. For example:

| NSERT | NTO enps (nhane)
VALUES (' M ke Geen');

TheINSERT statement specifiesno valuesfor thehome_addr ormai | i ng_addr columns, so those columns
will be set to the null value, in the same manner as any other SQL column whose value is not specified in an
INSERT. Thisnull value is generated entirely in SQL, and initialization of themai | i ng_addr column does
not involve the VM at all.

©ISO/IEC 2003 — All rights reserved Typestutorial 179

I SO/IEC 9075-13:2003 (E)
F.14 Static methods

F.14 Static methods

The methods of aJavaclass can be specified aseither STATIC or non-STATIC. For example, inthe Addr ess
class, thet oSt r i ng method isnon-STATIC and the cont i guous method is STATIC.

The METHOD clauses of SQL CREATE TY PE statements can al so specify that amethod is STATIC or
non-STATIC. For example, the CREATE TYPE for theaddr SQL type specifiesthatt o_stri ngisa
non-STATIC method and cont i guous isa STATIC method.

In Javaand SQL, anon-STATIC method is referenced by qualification on an instance of the class/type. For
example, assume that JAI and SAl are respectively Java and SQL variables of type/class Addr ess or addr .
You would referencethet oSt ri ng ort o_st ri ng methods of those instances by the expressions

JAI . toString() orSAl.to_string() .

In Java, a STATIC method can be referenced by qualification on either the class or on an instance of the class.
For example, you can reference the cont i guous method as either Addr ess. conti guous(...) oras
JAI . contiguous(...).

In SQL, aSTATIC method is referenced by qualification on the type, not on an instance. For example, you
referencethecont i guous methodasaddr : : conti guous(.. .).Youcannot referencethe SQL con-
t i guous method as (for example) SAI . cont i guous(. . .) . Notethat in SQL, static method qualification
on the type name specifies a <doubl e colon> as the qualification punctuation, rather than a single <period>.
This avoids ambiguities with other SQL constructs.

NOTE 74 — In addition to referencing static methods by such field qualification, you can also reference static methods by specifying
standal one procedures or functions, using the SQL routines facilities of this part of this International Standard. For example:

CREATE FUNCTI ON contig_function (Al addr, A2 addr)
RETURNS CHARACTER(3)
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' address_cl asses_j ar: Addr ess. conti guous' ;

F.15 Staticfields

Thefields of aJava class can be specified as either STATIC or non-STATIC. Inthe example Addr ess class,
thest r eet and zi p fieldsare non-STATIC and ther ecommendedW dt h field is STATIC.

The static fields of a Java class can be specified as FINAL, which makes them read-only. Non-FINAL fields
can be updated. Users do not always specify the FINAL clause for read-only static fields.

The SQL CREATE TY PE does not include afacility for specifying atributes to be STATIC. Thisis because
of the difficulty in specifying what the scope, persistence, and transactional properties of static fieldswould be
in a database environment.

The SQL CREATE TY PE does, however, provide a shorthand mechanism for read-only access to the values
of Javastatic fields. Thisisillustrated in the CREATE TYPE for addr , which specifiesaSTATIC METHOD
clause for ther ecomrendedW dt h field:

CREATE TYPE addr EXTERNAL NAME 'address_cl asses_j ar: Addr ess'
LANGUAGE JAVA

180 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.15 Staticfields

USI NG SERI ALI ZABLE

AS (
zi p_attr CHARACTER(10) EXTERNAL NAME 'zip',
street _attr CHARACTER VARYI NG 50) EXTERNAL NAME 'street')
STATI C METHOD rec_wi dth () RETURNS | NTEGER

EXTERNAL VARI ABLE NAME ' recommendedW dt h'

The STATICMETHOD clauseforr ec_wi dt h specifiesthat it isan integer-valued method with no parameters.
The EXTERNAL clause for a static method would normally specify the name of a static method of the Java
class. In this case, however, the EXTERNAL clause specifies the keyword VARIABLE, and gives the name
of astatic field of the Java class. When a STATIC METHOD clause specifies EXTERNAL VARIABLE, the
method shall have no parameters, and the specified Javaname shall bethat of astatic field. Such astatic method
isinvoked in the normal manner, and returns the value of the specified Java static field.

Given such adeclaration, you can reference ther ec_w dt h method in the same manner as other static
methods, and accessther econmendedW dt h field:

SELECT *
FROM enps
VWHERE LENGTH(horme_addr.street_attr) > addr::rec_wi dth();

SQL provides no way to update the values of Java static fields.

F.16 Instance-update methods

A non-static Java class method is invoked by qualification on an instance of the class. For example, assuming
that JAI is an instance of the Java Addr ess class, you would referencethet oSt ri ng orrenovelead-
i ngBl anks methodsasJAI .t oStri ng() or JAl . renovelLeadi ngBl anks() .

Such non-static methods generally reference the fields of the instance that qualifies the method reference, e.g.,
theinstance JAI. Thet oSt r i ng method referencestheinstance JAI in aread-only manner, returning a string
representation of that instance. Ther enovelLeadi ngBl anks method, however, references the qualifying
instance in amanner that updates the value of the instance. That update is intended to be a side-effect of the
method invocation.

Read-only methods such ast oSt r i ng fit naturally into SQL. For example, given the above enps table:

SELECT nane, hone_addr.to_string()
FROM enps
WHERE hone_addr.to_string() <> x;

Asdescribed in Subclause F.13, “Logical representation of Javainstancesin SQL”, Javainstances stored in
SQL columns and variables are copies of the Java values, not references to such values. Therefore, methods
suchasr enoveleadi ngBl anks that have side-effects on the qualifying instances do not fit naturally into
the SQL framework. For this reason, the SQL CREATE TY PE for a Java class provides a special mechanism
for referencing Java methods that have side effects. Thisisillustrated by the METHOD clause for

renove_| eadi ng_bl anks:

CREATE TYPE addr EXTERNAL NAME ' address_cl asses_j ar: Addr ess'
LANGUAGE JAVA

©ISO/IEC 2003 — All rights reserved Typestutorial 181

I SO/IEC 9075-13:2003 (E)
F.16 Instance-update methods

USI NG SERI ALI ZABLE

AS ...

METHOD renove_I eadi ng_bl anks () RETURNS addr SELF AS RESULT
EXTERNAL NAME ' r enpveleadi ngBl anks' ;

Recall that ther enovelLeadi ngBl anks method of the Java Address classisavoi d method. Y ou might
therefore expect to specify the SQL r enove_| eadi ng_bl anks asavoi d method, that is, a“procedure
method”. However, the SQL CREATE TY PE does not provide away to specify voi d methods or procedure
methods. Thisis because such methods would almost always perform side effects on the qualifying instance,
and would therefore not be suitable for avalue-oriented SQL context.

The SQL r enove_| eadi ng_bl anks method specifies the clause RETURNS SELF ASRESULT. This
clause has the following significance:

— Thereturn type of the method is defined to be the containing SQL datatype. That is, the SQL
renmove_| eadi ng_bl anks method isan addr -valued method. Thisis the case irrespective of the
return type of the underlying Java method. In the typical case, the underlying Java method will beavoi d
method, but as we will discuss below, thisis not required.

— At runtime, the specified Java method is invoked in the normal manner, and updates the fields of a copy
of the qualifying instance. When the invocation is complete, the SQL system then makes a copy of the
updated value of the qualifying instance, and returns that copy as the result of the method.

As example invocation of r enove_| eadi ng_bl anks isasfollows:

UPDATE enps
SET hone_addr = hone_addr.renove_| eadi ng_bl anks()
VWHERE . ..

Such an UPDATE statement proceedsin the normal manner to process each row of the enps table, and to
perform the SET actionsin each row for which the WHERE clause is true. For such arow, the value of the
hone_addr column is passed to the Java virtual machine, which evaluatesther enoveleadi ngBl anks
method for that instance of the Addr ess class. That method performs side effects on the fields of that copy
of the current honme_addr column, and returns. The SQL system then makes a copy of that updated value
of the Addr ess instance, and returnsthat copy astheresult of thecall tor enove_| eadi ng_bl anks. That
copy isthen assigned back to the hone_addr column of the current row.

Consider a somewhat different invocation of r enove_| eadi ng_bl anks:

SELECT nane, hone_addr.renove_l eadi ng_bl anks().street _attr
FROM enps
WHERE . .

This SELECT statement processes the enps rows, and evaluates the select-list for selected rows. The second
element of that select-listinvokesther enmove_| eadi ng_bl anks method of thehore_addr column. As
above, thisinvocation passesacopy of thehone_addr valuetothe VM, wherether enoveleadi ngBl anks
method updates the copy. The SQL system then returns a copy of that updated copy, and extracts the
street _attr attribute. Thatstreet _attr attribute will reflect the removal of leading blanks that has
been done. However, these actions do not affect the value of the homre_addr columnin the enps table.

This SELF ASRESULT mechanism provides ageneral way for SQL to apply the side-effects of arbitrary Java
methods.

182 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.16 Instance-update methods

Java methods that update the qualifying instance will commonly be written as void methods. In some cases,
however, such methods are written to return (for example) integer values that provide some sort of status
feedback, such asan “OK” indication. For this reason, you can specify the RETURNS SELF ASRESULT
clausefor arbitrary Javamethods, irrespective of the return type of the method. Note, however, that thisreturn
value that the method invocation explicitly providesis simply discarded by the SQL system, which replaces
that explicit returned value with the implicit copy of the qualifying instance.

F.17 Subtypesin SQL/JRT data

Recall the example Java classes Addr ess and Addr ess2Li ne , and the corresponding SQL datatypes
addr andaddr _2 | i ne. TheAddr ess2Li ne classisasubclass of the Addr ess class, so you can make
use of the substitutability and method overloading characteristics of Java.

For example, you can assign addr _2_1 i ne valuesto addr columns. We canillustrate this with the enps
table, inwhichthehone_addr columnisanaddr andthemai | i ng_addr columnisanaddr 2 1i ne:

UPDATE enps
SET hone_addr = nailing_addr
VWHERE hone_addr |'S NULL;

For the rows in which we perform the above SET clause, the hone_addr column will contain an
addr _2_1i ne, even though the declared type of horre_addr isaddr .

Such an assignment does not modify the actual instance value or its runtime data type. Thus, when you store
addr _2 | i ne vauesfromthenai | i ng_addr columnintothehone_addr ess column, those values
still have the run-time type of addr _2_| i ne. The effect of this can be seen in the following example.

Recall that the addr type andtheaddr _2_I i ne subtype both have amethod namedt oSt ri ng, which
returnsa St ri ng form of the complete address data.

Consider the following call ofthet o_st ri ng method:

SELECT nane, hone_addr.to_string()
FROM enps
VWHERE hone_addr.to_string() NOT LIKE '%.ine2=% ;

For each row of enps, the declared type of the hone_addr columnisaddr , but the runtime typc of the
home_addr value will be either addr or addr _2_1 i ne, depending on the effect of the previous UPDATE
statement. For rows in which the runtime value of the honme_addr columnisanaddr,theto_string
method of theaddr classwill beinvoked, and for rowsin which the runtimevalue of thehone_addr column
isanaddr _2 |i ne,thet o_stri ng method of theaddr 2 | i ne subclasswill be invoked.

The way that this runtime selection of thet o_st ri ng method is performed is as follows:

— Atcompiletime, the SQL system determinesthat thecallsof home_addr .t o_stri ng() aresyntacticdly
correct, and that the result type is suitable (e.g., for the LIKE predicate).

— Atruntime, the SQL system will processthecallsof home_addr .t o_stri ng() foreachrow of enps
in the following steps:

©ISO/IEC 2003 — All rights reserved Typestutorial 183

I SO/IEC 9075-13:2003 (E)
F.17 Subtypesin SQL/JRT data

e Thevaueof thehonme_addr column for the row isreassembled into the VM, and areference R for
that reassembled value is obtained.

* TheinvocationR. t oStri ng() ispassedtotheJVM for evaluation. The VM performsthe runtime
selection of the appropriatet oSt r i hg method, and returns the result.

F.18 Referencesto fields and methods of null instances

Assume that you insert the following row into the enps table:

| NSERT | NTO enps (nhane)
VALUES (' Charles Green')

Notethat thehorme_addr ess andnai | i ng_addr ess columnsareboth null, since no valueswere specified
for them.

Consider the following SELECT statement:

SELECT nane, hone_addr.zip_attr
FROM enps
VWHERE home_addr.zip_attr IN ('95123", '95125', '95128');

The intention of this SELECT isto retrieve the given values of those enps rows for which the zi p field of
honme_addr hasone of the specified values. Thiswould not includethe rowsof enps for whichhome_addr
isnull.

When we execute this SELECT statement, the WHERE clause will be evaluated for each row of enps,
including the rows in which thehome_addr columnisnull. In Java, and other programming languages, if
you attempt to reference afield of anull instance, an exception condition israised. If we usethat rulein SQL,
then the above SELECT would raise an exception if the hone_addr columnin any row of enps were null.
Notethat thisisan exception for the entire SELECT statement, not for particular rows. To get the desired effect,
we would have to write the SELECT as follows:

SELECT nane, hone_addr.zip_attr
FROM enps
WHERE CASE
VWHEN hone_addr IS NOT NULL
THEN hore_addr. zi p_attr
ELSE NULL
END I N ('95123", '95125', '95128");

Infact, if we specify that field references to null instances raise an exception, then virtually all WHERE clause
referencesto fieldswould have to be written with such a CA SE expression. Thiswould be exceedingly tedious,
so the SQL/JRT rulefor field references to null instances is different from Java:

If the value of the instance specified in afield referenceis null, then the field referenceis null.
Thisruleis equivalent to specifying that the above CASE expression isimplicit.

Thisruletherefore allowsyou to writethe SELECT inthe original form. For rowswhose hoe_addr column
isnull, the field reference home_addr . zi p_at t r will be null.

184 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.18 Referencesto fields and methods of null instances

Thisrulefor field referenceswith null instances only appliesto field referencesin “value’, or “right-hand-side’
contexts, not to field references that are targets of assignments or SET clauses.

For example:

UPDATE enps
SET home_addr.zip_attr = '99123
WHERE nane = 'Charles Geen';

This WHERE clause will obviously be true for the 'Charles Green' row, so the UPDATE statement will try to
perform the given SET clause. Thiswill raise an exception, since you cannot assign avalueto afield of anull
instance. Thisis because the null instance has no field to which a value can be assigned.

In other words, field referencesto fields of null instances are valid and return the null value in right-hand-side
contexts, and cause exceptions in left-hand-side contexts.

Exactly the same considerations apply to invocations of methods of null instances, and the sameruleis applied.

For example, suppose that we modify the previous example and invoke thet o_st ri ng method of the
hore_addr column:

SELECT nane, home_addr.to_string()
FROM enps
VWHERE hone_addr.to_string() = 'Street=234 Stone Road ZI P=99777

If weapply thestrict Javarule, theninvocationsof thet o_st ri ng method for rowsinwhichthehone_addr
column is null will raise an exception. We would therefore, as above, need to code the SELECT asfollows:

SELECT nane, hone_addr.to_string()
FROM enps
WHERE CASE
VWHEN hore_addr IS NOT NULL
THEN hone_addr.to_string()
ELSE NULL
END = ' Street=234 Stone Road ZI P=99777'

We therefore extend the Java rule for method invocation in the same manner that we extended the Javarule
for field references:

If thevalue of theinstance specified in an instance method invocation isnull, then the result of theinvocation
isnull.

F.19 Ordering of SQL/JRT data

In an earlier clause, we created the enps table, with columnshome_addr and mai | i ng_addr whose data
types are declared to be the Java classes, respectively, Addr ess and Addr ess2Li ne. Now suppose that
you reference those columns in statements such as the following:

SELECT DI STI NCT *
FROM enps E1, enps E2
VWHERE E1. hone_addr = E2. hone_addr
AND El. rmmi |l i ng_addr > E2.mailing_addr

©ISO/IEC 2003 — All rights reserved Typestutorial 185

I SO/IEC 9075-13:2003 (E)
F.19 Ordering of SQL/JRT data

UNI ON

SELECT DI STI NCT *

FROM enps El1, emp E2

VWHERE E1. nmi |l i ng_addr = E2. mailing_addr
AND E1. hone_addr > E2. hone_addr

GROUP BY hone_addr

ORDER BY hone_addr, nuailing_addr;

This statement involves numerous referencesto home_addr and mai | i ng_addr that imply ordering rela-
tionships:

1) TheDISTINCT keyword isdefined in termsof equality of rows, which is specified as a pairwise comparison
of corresponding columns. That is, to determine if two rows of empsare DISTINCT, you have to compare
their respective horre_addr and mai | i ng_addr columns.

2) Thedirect comparisonsusing “=" and “>", etc. al require ordering properties.

3) The UNION operator doesn't specify UNION ALL, so it will eliminate duplicates. Thiswill require the
same kind of comparisons asthe DISTINCT clause.

4) The GROUP BY requires partitioning the rows into sets with equal values of the grouping column.
5) The ORDER BY requires determination of the ordering properties of the order columns.

Whenyou createan external JavadatatypewithaCREATE TY PE...EXTERNAL LANGUAGE JAVA statement,
the new external Java data type has no ordering capability. That is, its “ordering form” is“none”. Instances of
an external Javadatatype whaose ordering form isnone cannot be used in any of the above ordering relationships.

To define ordering for an external Java datatype, you use the CREATE ORDERING statement:

<create user-defined ordering statenent> ::=
CREATE ORDERI NG FOR <user-defined type nane>
<ordering forne
<ordering fornp ::=
EQUALS ONLY BY <ordering category>
| ORDER FULL BY <ordering category>
<ordering category> ::=
MAP W TH <or dering routine>
| RELATIVE W TH <ordering routine>
| RELATIVE W TH COVPARABLE | NTERFACE
| STATE

The significance of the EQUALS ONLY and FULL alternativesis asfollows:

— EQUALSONLY specifies that instances of the associated class can be referenced in equals (=) and not
equals (<>) operations, SELECT DISTINCT, UNION with duplicate elimination, and GROUP BY/, but
not in other ordering contexts.

— FULL specifies that instances of the associated class can be referenced in any ordering context.
The STATE clause specifies that instances will be ordered on the values of the attributes of the type.

The MAP clause specifies the name of amethod or function that will map instances of the associated class to
values of some built-in SQL data type, whose ordering defines the ordering of the associated class. The map
routine needn't define a 1-1 into correspondence. It can map distinct instance values to the same result. This

186 Routinesand TypesUsing Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

I SO/IEC 9075-13:2003 (E)
F.19 Ordering of SQL/JRT data

would be done in order to equate 6/8 and ¥4 for a class that implements rational numbers. It can also be done
for folded comparisons, and other cases where it is desirable to equate distinct instances.

The RELATIVE WITH <ordering routine> clause specifies the name of a method or function that compares
instances of the associated class and returns an integer result. The runtime result value for two instances X and
Y is-1, 0, or +1 to indicate respectively that X islessthan, equal to, or greater than Y.

The RELATIVE WITH COMPARABLE INTERFACE clause may be used only in orderings for SQL data
types whose subject Javaclassimplementsj ava. | ang. Conpar abl e. Thei nt conpar eTo method of
the subject Java class determines the relative ordering for two instances X and Y, returning anegative integer,
0 (zero), or apositive integer to indicate respectively that X isless than, equal to, or greater than Y.

©ISO/IEC 2003 — All rights reserved Typestutorial 187

1 SO/l EC 9075-13:2003 (E)

This page intentionally left blank.

188 Routinesand Types Using Java (SQL/JRT) ©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

I ndex

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index
entries appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing
in roman type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule,
Access Rule, General Rule, Leveling Rule, Table, or other descriptive text.

— A —
ADA « 39, 112, 135
ALL + 186

AND - 101, 102, 104, 105, 112, 118, 144, 145, 147, 148,
185, 186

ARRAY « 54

AS 17,58, 65, 66, 70, 101, 102, 104, 105, 107, 108, 143,
144,145, 147, 170, 171, 172, 173, 174, 175, 178, 181,
182, 183

attempt to remove uninstalled JAR « 91, 122
attempt to replace uninstalled JAR « 89, 122
<attribute definition> ¢ 69, 70, 72, 132

— B —
BEGIN « 97, 98, 162, 174, 175
BOTH - 87, 89, 91, 93

BY « 144, 145, 147, 148, 186

—C—
C+39,135

CALL » 61, 62, 143, 156

CALLED - 155, 156

CASE « 155, 184, 185

CAST+ 70

CATALOG_NAME - 101, 102, 104, 105, 109, 114, 116

CHARACTER -« 54, 87, 89, 91, 93, 133, 140, 143, 146,
152, 153, 154, 155, 156, 162, 170, 171, 172, 173, 174,
175, 176, 177, 180, 181

CHARACTER_SET_CATALOG « 107, 108
CHARACTER_SET_NAME « 107, 108
CHARACTER_SET_SCHEMA « 107, 108
CHECK « 109, 112, 114, 116, 118

<class identifier> « 25, 26, 32, 33, 67, 131
COBOL « 39, 112, 135
COLLATION_CATALOG - 107, 108
COLLATION_NAME » 107, 108
COLLATION_SCHEMA - 107, 108

©ISO/IEC 2003 — All rights reserved

COMMIT « 157

COMPARABLE - 16, 18, 23, 29, 81, 118, 186, 187
<comparable category> ¢ 81

CONSTRAINT 109, 111, 112, 114, 116, 118
CONSTRUCTOR + 17, 18, 55,57, 170, 171, 172,174, 175
CONTAINS « 77, 143

CREATE ¢ 16, 101, 102, 104, 105, 107, 109, 111, 114,
116, 139, 140, 142, 143, 144, 146, 148, 149, 150, 151,
152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 165, 170, 171, 172, 173, 174, 175, 176, 177, 178,
180, 181, 182, 186

CURRENT_PATH « 12
CURRENT_USER 101, 102, 104, 105

— D —
DATA « 77, 143, 146, 148, 149, 153, 162
data exception « 71
DATE « 151
DECIMAL « 140, 146, 162
DELETE « 143
DESC « 144, 145, 147, 148
DISTINCT » 185, 186
DOUBLE « 150
DROP « 139, 157, 160, 161, 162, 174, 175
DYNAMIC « 38, 51, 148, 149, 153, 162
dynamic result sets returned ¢ 42

— E—
ELSE « 155, 184, 185

END « 97, 98, 155, 162, 175, 184, 185
EQUALS - 186

EXECUTE » 21, 98, 131, 162

EXTERNAL - 20, 65, 69, 143, 146, 148, 149, 150, 151,
152, 153, 154, 155, 156, 162, 170, 171, 172, 173, 174,
175,178, 180, 181, 182, 186

<external Java attribute clause> ¢ 19, 20, 69, 70
<external Java class clause> ¢ 19, 20, 65, 66, 116, 118

Index 189

1 SO/l EC 9075-13:2003 (E)

<external Java method clause> ¢ 65, 66, 67, 112

<external Java reference string> « 51, 53, 75, 77, 85, 90,
92, 114, 159

<external Java type clause> « 6, 19, 52, 65, 66, 68, 98,
125, 128

external routine exception « 121
external routine invocation exception « 37, 44, 121
<external variable name clause> ¢ 18, 65

—F —
Feature F391, “Long identifiers” « 107
FETCH « 154
FINAL » 180
FOR « 186

FOREIGN « 109, 111, 114, 116

FORTRAN » 39, 112, 135

FROM <87, 89, 91, 93, 101, 102, 104, 105, 107, 108, 109,
114, 116, 117, 143, 144, 145, 147, 153, 154, 155, 157,
160, 162, 175, 177, 178, 179, 181, 182, 183, 184, 185,
186

FULL » 186

FUNCTION - 6, 80, 139, 142, 143, 144, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 165,
171, 178, 180

G —
GENERAL « 12, 77
GENERATED « 176

GRANT « 101, 102, 104, 105, 139, 142, 158, 160, 161,
162, 163, 174, 175

GROUP - 186
— | —

IN + 51, 53, 54, 55, 56, 77, 87, 89, 91, 93, 101, 102, 104,
105, 109, 112, 114, 116, 118, 177, 184

INOUT « 51, 52, 54, 55, 56, 77, 78, 127, 139, 144, 146

INPUT « 155, 156

INSERT - 143, 176, 177,178, 179, 184

INSTALL » 97, 162, 174, 175

INSTANCE - 55, 57

INTEGER - 87, 91, 140, 143, 146, 148, 149, 150, 151,
152, 153, 154, 155, 162, 170, 172, 174, 181

INTERFACE - 23, 81, 186, 187

<interface specification>« 16, 17, 19, 20, 36, 37, 40, 41,
45, 46, 48, 49, 63, 64, 65, 66, 68, 69, 70, 71, 119, 127,
131, 132

<interface using clause> « 20, 65, 66, 132

INTO « 176, 177, 178, 179, 184

invalid class deletion « 90, 92, 122

190 Routinesand Types Using Java (SQL/JRT)

invalid JAR name « 87, 89, 91, 93, 122

invalid JAR name in path « 32, 122

invalid path name « 93

invalid replacement « 90, 122

invalid SQLSTATE returned « 121

invalid URL « 87, 89, 122, 133

IS« 112,118, 144, 145, 147, 148, 155, 176, 183, 184, 185

—J —
Feature J511, “Commands” » 22, 68, 74, 77, 80, 81, 82,
83, 86, 123, 125, 126
Feature J521, “JDBC data types” « 78, 126

Feature J531, “Deployment” « 22, 61, 88, 92, 98, 99, 123,
126

Feature J541, “SERIALIZABLE” « 68, 123, 127

Feature J551, “SQLDATA”" « 68, 123, 127

Feature J561, “Jar privileges” « 84, 123, 127

Feature J571, “NEW operator” « 28, 127, 131

Feature J581, “Output parameters” « 78, 127

Feature J591, “Overloading” « 68, 127

Feature J601, “SQL-Java paths” « 33, 94, 127, 128
Feature J611, “References” « 42, 128

Feature J621, “external Java routines” » 78, 80, 123, 128

Feature J622, “external Java types” « 68, 74, 81, 82, 123,
128

Feature J631, “Java signatures” « 31, 128, 129
Feature J641, “Static fields” « 68, 129

Feature J651, “SQL/JRT Information Schema” ¢ 102, 103,
106, 108, 129

Feature J652, “SQL/JRT Usage tables” » 101, 104, 105,
130

JAR «6,7,10,11, 12, 21, 22, 23, 26, 32, 55, 56, 57, 61,
66, 76, 77, 84, 85, 87, 88, 89, 90, 91, 92, 93, 97, 98, 101,
102, 109, 110, 111, 114, 116, 117, 123, 133, 134, 141,
142, 143, 146, 148, 150, 151, 157, 158, 160, 161, 162,
163, 164, 165, 166, 169, 171, 174

<jar and class name> « 13, 14, 16, 25, 52, 53, 66, 67, 75,
85, 118, 159

<jar id> « 25, 26, 66, 87, 89, 91, 93, 109, 110, 111, 114,
116

<jar name> « 25, 26, 32, 51, 52, 53, 61, 76, 83, 84, 85, 86,
87, 89, 90, 91, 92, 93, 98, 109, 110, 111, 114, 116, 126,
127

JAR, « 21

JAVA « 6, 12, 15, 16, 23, 34, 39, 41, 43, 65, 66, 67, 75,
76,77,78,97,112, 115, 118, 119, 125, 127, 128, 135,
143, 146, 148, 149, 150, 151, 153, 154, 155, 156, 162,
170, 171,172, 174, 175, 178, 180, 181, 186

<Java class name> 13, 14, 17, 25, 26, 33, 51, 52, 53,
66, 76

©ISO/IEC 2003 — All rights reserved

<Java data type> « 31, 55, 56, 57, 78, 126

Java DDL « 87, 89, 90, 91, 92, 93, 122, 133

Java execution ¢ 32, 33, 122

<Java field name> ¢ 17, 25, 26, 52, 53, 69, 70, 72, 131
<Java identifier> « 25, 52, 53, 67

<Java method and parameter declarations> ¢ 52, 65, 67,
112

<Java method name> ¢ 25, 26, 51, 52, 53, 58, 65, 67, 75,
76, 131

<Java parameter declaration list> « 31, 34, 51, 52, 53, 55,
57, 65, 66, 67, 75, 77, 128, 129, 131, 132

<Java parameters> ¢ 31, 55, 56

JOIN « 101, 104, 105

— K —

KEY « 109, 111, 114, 116

L —

LANGUAGE - 6, 65, 67, 75, 77, 143, 146, 148, 149, 150,
151, 153, 154, 155, 156, 162, 170, 171, 172, 174, 175,
178, 180, 181, 186

<language name> « 17, 43, 67, 77, 78, 125, 127, 128
LENGTH » 181

LIKE » 177, 183

LN « 45

LOCATOR - 66

— M=
M 39
MAP - 18, 29, 186

METHOD - 16, 65, 170, 171, 172, 173, 174, 175, 180,
181, 182

<method characteristic> * 65, 66, 67

<method specification>« 17, 18, 52, 65, 66, 68, 127
MODIFIES » 77, 143, 162

MUMPS « 112, 135

— N—

NAME - 65, 69, 110, 140, 143, 146, 148, 149, 150, 151,
153, 154, 155, 156, 162, 170, 171, 172, 173, 174, 175,
178, 180, 181, 182

NEW - 28, 127, 131, 176, 177, 179
NO 112,113, 143, 162

no data * 46, 49

no subclass » 121, 122
<non-reserved word> « 23

NOT « 109, 112, 114, 116, 118, 144, 145, 147, 148, 155,
183, 184, 185

©ISO/IEC 2003 — All rights reserved

| SO/l EC 9075-13:2003 (E)

NULL « 70, 112, 118, 144, 145, 147, 148, 155, 156, 183,
184, 185

null instance used in mutator function « 71
null value not allowed « 37, 44

— 00—
<object name> ¢ 83, 84, 85, 86, 126, 127
OF « 176
OLB-specific error « 122
ON « 101, 102, 104, 105, 155, 156, 162, 174, 175
ONLY + 186
OPTION « 101, 102, 104, 105
OR « 101, 102, 104, 105, 109, 112, 114, 116, 118, 143
ORDER ¢ 144, 145, 147, 148, 186
ORDERING ¢ 186
<ordering category> « 81, 186

OUT « 51, 52, 54, 55, 56, 76, 78, 127, 139, 144, 146, 159,
162

— P —
<package identifier> « 25, 26, 131
<packages> « 25, 26, 32, 33

PARAMETER » 34, 41, 67, 76, 77, 143, 146, 148, 149,
150, 151, 153, 154, 155, 156, 162, 178, 180

<parameter style>« 17, 67, 75
PASCAL « 39, 112, 135

<path element> ¢ 32, 33, 85
PLI 39,112,135

PRECISION « 150

PRIMARY ¢ 109, 111, 114, 116

PROCEDURE - 6, 80, 139, 142, 143, 144, 146, 148, 149,
150, 151, 152, 153, 156, 157, 158, 159, 160, 161, 162,
163, 165, 171

PUBLIC » 101, 102, 104, 105, 162, 174, 175

Q

<qualified Java field name> « 25, 52, 67, 112

— R —
READS « 77, 143, 146, 148, 149, 153, 162
REAL ¢ 150, 151
REF « 176
<referenced class> « 32
REFERENCES » 109, 111, 114, 116
RELATIVE « 18, 29, 81, 186, 187
REMOVE « 97, 162, 175
<reserved word> ¢ 23

Index 191

1 SO/l EC 9075-13:2003 (E)

<resolution jar> ¢ 32, 85, 93

RESTRICT » 85, 157, 158, 162, 175

RESULT « 17, 38, 51, 58, 75, 148, 149, 153, 162, 170,
171,172,173, 174, 175, 178, 182, 183

RETURN « 13

RETURNS « 52, 65, 143, 150, 151, 152, 153, 154, 155,
156, 162, 170, 171, 172,173, 174, 175, 178, 179, 180,
181, 182, 183

REVOKE - 139, 142, 160, 161, 162, 174, 175
ROLLBACK « 157
ROW -« 49

— S —
Feature S201, “SQL routines on arrays” « 54
SCHEMA « 110
SCHEMA_NAME - 101, 104, 105
SCOPE « 176
SCOPE_CATALOG - 107
SCOPE_NAME ¢ 107
SCOPE_SCHEMA -« 107

SELECT » 101, 102, 104, 105, 107, 108, 109, 114, 116,
117, 143, 144, 145, 147, 153, 154, 155, 156, 160, 177,
179, 181, 182, 183, 184, 185, 186

SELF-+17,58,66,170,171,172,173,174,175, 178, 182,
183

SERIALIZABLE - 16, 17, 19, 20, 36, 37, 40, 41, 45, 46,
47, 48, 49, 63, 64, 65, 66, 68, 69, 70, 71, 118, 123, 127,
181, 182

SET « 38, 141, 177,179, 182, 183, 185

SETS « 51, 148, 149, 153, 162

SMALLINT « 151

SPECIFIC « 65

SPECIFIC_NAME « 101, 104, 107, 114

SQL 76, 77

<SQL Java path> « 32, 33, 93, 109, 110, 127

SQLDATA « 16, 17, 19, 20, 23, 36, 37, 40, 41, 45, 47, 48,
49, 65, 66, 68, 70, 71, 118, 123, 127

SQLSTATE « x, 14, 121, 159, 160

STATE - 18, 29, 140, 160, 186

STATIC 17,18, 38,57,65,170,172,173,174, 175, 180,
181

<static field method spec>+ 16, 18, 52, 56, 57, 58, 65, 66,
67, 68, 112, 129

<static method returns clause> « 65

STYLE » 34, 41, 67, 76, 77, 143, 146, 148, 149, 150, 151,
153, 154, 155, 156, 162, 178, 180

SUBSTRING « 179

successful completion ¢ 46, 47

SYSTEM « 88, 176

192 Routinesand Types Using Java (SQL/JRT)

—T—

TABLE » 101, 102, 104, 105, 109, 111, 114, 116, 140, 158,
175, 176, 177

THEN « 155, 184, 185

TIME « 151

TIMESTAMP « 151

TO » 101, 102, 104, 105, 162, 174, 175

TRIM « 87, 89, 91, 93

TRUE « 6, 97, 163

TYPE « 139, 142, 159, 165, 170, 171, 172, 173, 174, 175,
176, 180, 181, 182, 186

— U —
UNDER » 170, 173, 175
UNION « 117, 186
unknown name ¢ 159
unresolved class name ¢ 33, 122
UPDATE » 140, 141, 143, 177, 179, 182, 183, 185
USAGE « 21, 77, 84, 85, 88, 92, 93, 98, 139, 165, 166,

174,175

<user-defined type body> « 52, 65
USER_DEFINED_TYPE_CATALOG « 105, 107, 108, 116
USER_DEFINED_TYPE_NAME « 105, 107, 108, 116
USER_DEFINED_TYPE_SCHEMA « 105, 107, 108, 116
USING - 16, 65, 101, 104, 105, 181, 182

—V—
VALUES 176, 177, 179, 184
VARCHAR - 140

VARIABLE « 65, 170, 172, 174, 181

VARYING -« 54, 87, 89, 91, 93, 133, 146, 152, 153, 154,
155, 156, 162, 170, 171, 172, 173, 174, 175, 176, 181

VIEW « 101, 102, 104, 105, 107, 158

— W —
warning * 42, 46, 47
WHEN - 155, 184, 185

WHERE -« 101, 102, 104, 105, 141, 143, 144, 145, 147,
153, 154, 155, 157, 160, 177,178, 179, 181, 182, 183,
184, 185, 186

WITH « 13, 81, 101, 102, 104, 105, 186, 187

©ISO/IEC 2003 — All rights reserved

1 Possible problems with SQL/JRT

I observe some possible problems with SQL/JRT as defined in this document. These are noted
below. Further contributions to this list are welcome. Deletions from the list (resulting from change
proposals that correct the problems or from research indicating that the problems do not, in fact,
exist) are even more welcome. Other comments may appear in the same list.

Because of the highly dynamic nature of this list (problems being removed because they are solved,
new problems being added), it has become rather confusing to have the problem numbers automati-
cally assigned by the document production facility. In order to reduce this confusion, I have instead
assigned "fixed" numbers to each possible problem. These numbers will not change from printing to
printing, but will instead develop "gaps" between numbers as problems are solved.

Possible problems related to SQL/JRT

Significant Possible Problems:
[999] In the body of the Working Draft, I have occasionally highlighted a point that requires urgent
attention thus:

Editor’s Note

Text of the problem.

These items are indexed under "**Editor’s Note**".

Possible problems with SQL/JRT 1

Editor’s Notes for WG3:HBA-009 = H2-2003-311

Minor Problems and Wordsmithing Candidates:

2 Editor’s Notes for (ISO-ANSI working draft) Java Routines and Types (SQL/JRT)

Editor’s Notes for WG3:HBA-009 = H2-2003-311

The following Language Opportunity has been noted:

Severity: Language Opportunity

Reference: P13, SQL/JRT, No particular location
Note at: None.

Source: WG3:YYJ-041 = H2-2001-405

Language Opportunity:

Subclause 4.8.5.1, "SERIALIZABLE", should perhaps say “implements java.io.Serializableor
any Java equivalent”. This would also permit, for example, implementing Externalizable, which
can often be done with better performance and space usage than Serializable.

Proposed Solution:

None provided with comment.

Possible problems with SQL/JRT 3

