The Uni-Level Description: A Uniform
Framework for Representing Information in
Multiple Data Models*

Shawn Bowers and Lois Delcambre

OGI School of Science and Engineering at OHSU
Beaverton OR 97006, USA
{shawn, 1lmd}@cse.ogi.edu

Abstract. One advantage of having several different representation
schemes and data models is that users can select the right represen-
tation and associated tools for their particular need. However, multiple
representations introduce structural, model-based heterogeneity, making
it difficult to combine information from different sources and exploit in-
formation using generic tools (e.g., for querying or browsing). In this
work, we define a uniform representation based on a meta-data-model
called the Uni-Level Description (ULD) that can accommodate and ac-
curately store information in a broad range of data models. The ULD
defines three distinct instance-of relationships plus a relationship for
modeling conformance, which is used to connect (data) constructs to
other (schema) constructs and can be constrained to reflect the require-
ments of the data model. The ULD has been shown to enable power-
ful, generic transformation rules and simple generic browsing capability
over information represented in diverse data models and representation
schemes.

1 Introduction

This work is motivated by a simple observation—that most data models and
representation schemes use a small set of basic structures such as scalar data,
tuple, and collection constructs, composed in various ways, to store information.
The basic idea of our work is to describe the constructs of a data model using
these basic structures and then instantiate them to describe the schema and
data that is present in an information source. The goal of our work is to develop
a generic representation that:

— can enable generic tools (i.e., tools that work over multiple data models);

— can describe a variety of data models;

— includes the data, schema(s) if present, and the data model of sources;

— is flat, much like RDF, so that data model, schema, and data can be accessed
at the same time, e.g., in the same query;

* This work supported in part by NSF grants ETA-99083518 and 11S-9817492.

Relational Schema RDF Schema

Movi .
ovies literal

| mid | title| runtime |genre company|

Cast Review
| mid| actor |character| | mid| rating|

Fig. 1. Similar schemas expressed in the relational and RDF data models.

— permits various descriptions of any particular data model;

— can describe information where the schema is missing, where it is partial
(e.g., like an “open” DTD for XML), and where there are multiple levels of
schema (e.g., where the type of one topic is another topic, and the type of
that topic is yet another topic in a Topic Map);

— permits the definition and use of new, special-purpose data models.

Our representation is called the Uni-Level Description (ULD). One of the key
characteristics of the ULD is the use of three, distinct instance-of relationships
plus a conformance relationship. That is, the traditional instance-of or type
relationship is not overloaded in the ULD (unlike in knowledge representation
models such as RDF). The conformance relationship allows the configurer of a
data model to specify the connection between a data construct definition (like
the entity construct in the E-R model) with the corresponding schema construct
definition (like the entity type construct in the E-R model). More than that,
providing constraints on the conformance relation permits accurate description
of a wide range of data models.

We focus on structural heterogeneity [11] of data models, as shown in Figure 1
and schemas, as shown in Figure 2. We envision an environment where arbitrary
data sources are easily described using the ULD, permiting the use of generic,
ULD-based tools that can work over arbitrary information sources, as shown
in Figure 3. We have implemented a transformation facility [7] where powerful
transformation rules expressed in Datalog can easily convert information from
one source to another, in the presence of different schemas or data models. We
have also implemented a browser [6], supported by a navigational API against
the ULD, that permits both naive users (e.g., users that don’t know what an
XML element or attribute is) and sophisticated users (e.g., agents or crawlers)
to access information sources in a generic manner.

This paper is organized as follows. The ULD is presented in Section 2 with a
detailed description of the meta-data-model architecture and conformance and
instance-of relationships. Section 3 describes a language for representing and ac-
cessing information sources using the ULD. Related work is presented in Section
4 and conclusions and future work are presented in Section 5.

Schema 1:
<VELEMENT movie (title+,studio,genre*,actor*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT studio (#PCDATA)>
<!ELEMENT genre (#PCDATA)>
<!ELEMENT actor (#PCDATA)>
<!ATTLIST actor role CDATA #REQUIRED>
Schema 2:
<!ELEMENT movie (thriller|comedy)>
<!'ATTLIST movie name CDATA #REQUIRED>
<IELEMENT thriller (actor*,crewk)>
<!ELEMENT comedy (actor*,crewx)>
<IELEMENT actor (#PCDATA)>
<IATTLIST actor role CDATA #REQUIRED>
<!ELEMENT crew (#PCDATA)>
<V'ATTLIST crew role CDATA #REQUIRED>

Fig. 2. Heterogeneous XML DTDs that: (a) overlap, (b) are structurally different, and
(c) are schematically different.

Generic
Transformation

Language

Generic
Browser

Fig. 3. ULD-enabled environment—generic tools can access information in various data
models.

2 The Uni-Level Description Framework

The architecture used by most meta-data-model approaches [1-3,8,13,9, 14] is
shown in Figure 4. The architecture consists of four levels representing the meta-
data-model, the meta-schema (i.e., the data model), the schema, and source
data. A meta-schema represents the set of structural constructs provided by a
data model; and schemas are represented as instantiations of the meta-schema
constructs. For example, the meta-schema to describe the relational model would

Meta Data M odel " —_
(Meta Constructs) © meta construc

Meta Schema

(Constructs) class

Schema Q actor (class)

Data O "Robert De Niro" (object)

Fig. 4. The typical meta-data-model architecture.

consist of various data structures for representing relation types, their attribute
types, primary and foreign keys, and so on.

A number of architectures use E-R, entity and relationship structures to de-
fine meta-schemas and their corresponding schemas [1-3, 8,13, 14]. In this case,
meta-schema constructs are defined as patterns, or compositions of entity and
relationship types. These types are used to define entities and relationships rep-
resenting corresponding schema items. With this approach, a meta-schema for
the object-oriented data model would contain a class construct represented as
an entity type (called class) with a name attribute and relationships to other
constructs (e.g., that represent class attributes). A particular object-oriented
schema is then represented as a set of entities and relationships that instantiate
these meta-schema types. We note that in most meta-data-model architectures,
data (the bottom level of Figure 4) is not explicitly represented—data is as-
sumed to be stored outside of the system and is not directly represented in the
architecture.

Traditional database systems generally require complete schema in which all
data must satisfy all of the constraints imposed by the schema. Typical meta-
data-model approaches assume data models require complete schema, and is
reflected in the architecture of Figure 4, which assumes data follows from (only)
the schema level.

2.1 The ULD Architecture

In contrast to Figure 4, the ULD uses the three-level architecture shown in Fig-
ure 5. The ULD meta-data-model (shown as the top level) consists of construct
types (i.e., meta~constructs) that denote structural primitives. The middle level
uses the structural primitives to define both data and schema constructs as well
as possible conformance relationships among them.

The ULD architecture distinguishes three kinds of instance-of relationships.
Constructs introduced in the middle layer are necessarily an instance (ct-inst)
of a construct type in the meta-data-model. Similarly, every item introduced in

(Construct Types)
ct-inst ct-inst
Data Model Data M odel
(Schema class e----- 1] object (Data
conf
Constructs) Constructs)
c-inst c-inst
Schema ‘Robert Data
actor O«--:--- A
(Instances) Q‘d-lnst DeNiro’ | (Instances)

Fig. 5. The ULD meta-data-model architecture.

the bottom layer is necessarily an instance (c-inst) of a construct in the middle
layer. Finally, a data item in the bottom layer can be an instance (d-inst) of
another data item, as allowed by conformance relationships in the middle layer.
The ULD is able to represent a wide range of data models using the flexibility
offered by the conf and d-inst relationships. For example, in XML, conformance
between elements and element types is optional. Thus, an XML element without
a corresponding element type would not have a d-inst link to an XML element
type as part of a partial or optional schema.

The ULD represents an information source as a configuration, which contains
the construct types of the meta-data-model, the constructs of a data model, the
instances (both schema and data) of a source, and the associated instance-of re-
lationships. Thus, a configuration can be viewed as an instantiation of Figure 5.
Each configuration uses a finite set of identifiers for denoting construct types,
constructs, and instances as well as a finite set of ct-inst, c-inst, conf, and d-inst
relationships. Together, the use of identifiers with explicit instance-of relation-
ships allows all three levels of Figure 5 to be stored in a single configuration
(i.e., as a single level)—enabling direct and uniform access to all information in
a source.

In a configuration, all construct and instance identifiers have exactly one as-
sociated value, where a value is a particular instantiation of a structure (e.g., a
tuple or collection value). Primitive values such as strings, integers, and Booleans
are treated as subsets of the data-item identifiers in a configuration.® The prim-
itive structures defined in the ULD meta-data-model include tuples (lists of
name-value pairs), collections (set, list, and bag), atomics (for primitive val-
ues like strings and integers), and unions (for representing union types, i.e.,
a non-structural, generalization relationship among types). The construct type
identifiers are denoted set-ct, list-ct, bag-ct, struct-ct, atomic-ct, and union-ct
representing collection, tuple, atomic, and union structures, respectively.

! This choice is primarily for enabling a more concise representation—primitive values
could also be represented as distinct sets, disjoint from identifiers.

3 The ULD Representation Language

3.1 Representing Data Models in the ULD

Figures 6, 7, and 8 use the language of the ULD to describe the relational, XML,
and RDF data models, respectively. Note that there are potentially many ways
to describe a data model in the ULD, and these examples show only one choice
of representation. As shown, a construct definition can take one of the following
forms.

construct ¢ = {a1->c¢1,a2->c2,...,a,->¢,} conf(domain=x,range=y):c
This expression defines a tuple-construct ¢ as a ct-inst of construct type
struct-ct, where a; to a, are unique strings, n > 1, and ¢; to ¢, and ¢ are
construct identifiers. Each expression a; = ¢; is called a component of the
construct ¢ where a; is called the component selector. If the conf expression
is present, instances of ¢ may conform (i.e., be connected by a d-inst relation-
ship) to instances of ¢’ according to the domain and range constraints on the
expression. If the conformance expression is not present, conformance is not
permitted for the construct (i.e., there cannot be a d-inst relationship be-
tween the construct instances). The cardinality constraints on conformance
(z and y above) restrict the participation of associated instances in d-inst
relationships to either exactly one (denoted as 1), zero or one (denoted as
?), zero or more (denoted as *), or one or more (denoted as +) for both the
domain and range of the relationship.

construct ¢ = set of c; conf (domain=x,range=y) s
This expression defines a set-construct c as a ct-inst of construct type set-
ct. The definition restricts instances of ¢ to sets whose members must be
instances of construct c;. In addition, for instances of ¢, each member must
have a unique identifier. Bag types and list types are defined similarly. These
constructs can also contain conformance definitions.

construct c =c1 | e | ... | ¢,
This expression defines a union-construct ¢ as a ct-inst of construct type
union-ct, where ¢; to ¢, are distinct construct identifiers for n > 2 such that
for all ¢ from 1 to n, ¢ # ¢;. All instances of ¢; to ¢, are considered instances
of ¢, however, we do not allow instances of only ¢ directly. A union construct
provides a simple mechanism to group heterogeneous structures (e.g., atom-
ics and structs) into a single, union type, as opposed to isa relationships,
which offer inheritence semantics, and group like structures (e.g., class-like
structures).

construct ¢ = atomic conf(domain=z,range=y) el
This expression defines an atomic type c as a ct-inst of construct type atomic-
ct. These constructs can also contain a conformance definition.

As shown in Figure 6, tables and relation types are one-to-one such that each
table conforms to exactly one relation type. Each tuple in a table must conform
(as shown by the range restriction 1) to the table’s associated relation type. We
assume each relation type can have at most one primary key.

% schema constructs

construct relation {relname->string, atts->attlist}

construct attlist list of attribute

construct attribute = {aname->string, attof->relation, domain->valuetype}
construct pkey {pkeyof->relation, keyatts->attlist}

construct fkey {fkeyof->relation, ref->relation, srcatts->attlist}
% instance constructs

construct table = bag of tuple conf(domain=1,range=1):relation
construct tuple = list of value conf(domain=+,range=1):relation

Fig. 6. Description of the relational data model in the ULD.

% schema constructs

construct pcdata = atomic

construct cdata = atomic

construct elemtype = {name->string, atts->attdefset, cmodel->contentdef}
construct attdefset = set of attdef

construct attdef = {name->string, attof->elemtype}

construct contentdef = set of elemtype
% data constructs

construct element = {tag->string, atts->attset, children->content}
conf (domain=+*,range=7) :elemtype

construct attset = list of attribute

construct attribute = {name->string, attof->element, val->cdata}
conf (domain=+,range=7) :attdef

construct content = list of node

construct node = element | pcdata

Fig. 7. Simplifed ULD description of the XML/DTD data model.

The XML data model shown in Figure 7 includes constructs for element
types, attribute types, elements, attributes, content models, and content, where
element types contain attribute types and content specifications, elements can
optionally conform to element types, and attributes can optionally conform to
attribute types. We simplify content models to sets of element types for which a
conforming element must have at least one subelement (for each corresponding
type).

Finally, Figure 8 shows the RDF(S) data model expressed in the ULD,
and includes constructs for classes, properties, resources, and triples. In RDF,
rdf:type, rdf:subClass0f, and rdf:subProperty0f are considered special
RDF properties for denoting instance and specialization relationships. However,
we model these properties using conformance and explicit constructs (i.e., with
subclass and subprop). Therefore, RDF properties in the ULD represent regular
relationships; we do not overload them for type and subclass/subproperty def-

construct literal = atomic

construct resource = {val->uri} conf (domain=*,range=%):class

construct class = {rid->resource, label->string}

construct prop = {rid->resource, label->string, domain->class,
range->rangeval}

construct rangeval = class | valuetype

construct subclass = {super->class, sub->class}

construct subprop = {super->prop, sub->prop}

construct triple = {pred->resource, subj->resource, obj->objval}
conf (domain=+,range=*) : prop

construct objval = resource | literal

Fig. 8. (Simplified ULD description of the RDF(S) data model.

initions. This approach does not limit the definition of RDF; partial, optional,
and multiple levels of schema are still supported.

ULD configurations are populated with default constructs representing typi-
cal primitive value types, such as string, Boolean, integer, url, etc., as instances
of atomic-ct. The valuetype and value constructs are special constructs that work
together to provide a mechanism for data models to permit user-defined prim-
itive types (e.g., to support XML Schema basic types or relational domains).
The walue construct is defined as the union (i.e., a union construct) of all de-
fined atomic-ct constructs. Thus, when a new atomic-ct construct is created,
it is automatically added to wvalue’s definition. The wvaluetype construct has an
instance with the same name (represented as a string value) as each construct of
value. To add a new primitive type (e.g., a date type), we create a new construct
(with the identifier date), add it as a member of value (recall value is a union
construct), and create a new valuetype instance ‘date,” connected by c-inst.

3.2 Representing Instances in the ULD

Examples of schema and data expressed in the ULD for XML and RDF are
shown in Figures 9 and 10, respectively. Figure 9 gives (a portion of) the first
XML DTD of Figure 2 and Figure 10 gives (a portion of) the RDF schema
of Figure 1. As shown, expressions for defining instances take the form: i = ¢
v d-inst:iy,is3,...,1;, where ¢ is a construct, v is a valid value for construct
¢, and 71 to i; are instance identifiers for [> 0. The expression defines i as a
construct instance (c-inst) of ¢ with value v. Further, i is a data instance (d-
inst) of 41 to i;, which must be instances of the construct(s) ¢ conforms to. The
d-inst expression is not present if ¢ is not a data instance of another instance
(i.e, 1 =0).

Given the construct ¢, we say ¢ € ct-inst(ct) is true if and only if ¢ is defined as
an instance (ct-inst) of construct type ct. Similarly, the expressions i € c-inst(c)
and i € d-inst(i’) are true if and only if ¢ is defined as an instance (c-inst) of
construct ¢ and a data instance (d-inst) of ’. Finally, the relation conf (¢, ¢, x,y)

is true if and only if a conformance relationship is defined from ¢ to ¢ (i.e.,
instances of ¢ are allowed to be data instances of ¢’). The domain constraint of
the conformance relationship is x, and the range constraint is y. An instance is
valid for a configuration if it is both well-formed and satisfies the constraints
of its associated construct. We note that each data-level identifier can only be
defined once in a configuration, and must have exactly one associated construct
(i.e., must be a c-inst of exactly one construct). The following constraints are
imposed by constructs on their instances.

Value Definition. If i is an instance of construct ¢ (i.e., i € c-inst(c)) and ¢ is
a struct-ct construct (i.e., ¢ € ct-inst(struct-ct)) then the value of i must
contain the same number of components as ¢, each component selector of 4
must be a selector of ¢, and each component value of ¢ must be an instance
of the associated component construct value for c. Alternatively, if ¢ is a
collection construct, then the value of ¢ must be a collection whose members
are instances of the construct that ¢ is a collection of, and if ¢ is a set, i’s
elements must have unique identifiers.

Conformance Definition. If 4 is an instance of construct ¢ (i.e., i € c-inst(c)),
i is an instance of construct ¢’ (i.e., ¢’ € c-inst(c’)), and ¢ can conform to
c (ie., conf(c,d,x,y) is true for some x, y), then 7 is allowed to be a data

instance (d-inst) of i’. Further, domain and range cardinality constraints on

conformance can restrict allowable data-instance relationships. Namely, if
the domain constraint on the conformance relationship is + (i.e., x =+), @
must participate in at least one data-instance relationship (i.e., there must
exist an ¢’ where ¢ € d-inst(i’)). For a domain constraint of 1, ¢ must be

a data instance of exactly one #’'. Similarly, if the range constraint on the

conformance relationship is + (i.e., y =+), every ¢’ must have at least one

associated 7 (i.e., for each i’ there must exist an ¢ where i € d-inst(i’)). For

a range constraint of 1, exactly one ¢ must be a data instance of 7’.

3.3 Querying ULD Configurations

Information can be accessed in the ULD through queries against configurations.
A query is expressed as a range-restricted Datalog program (i.e., a set of Datalog
rules). A rule body consists of a set of conjoined ULD expressions possibly con-
taining variables. For example, the following query finds all available class names
within an RDF configuration. (Note that upper-case terms denote variables and
lower-case terms denote constants.)

classes(X) « C € c-inst(class), C.label=X.

The following formulas are allowed in the body of ULD rules. The membership
operator € is used to access items in the sets ct-inst, c-inst, or d-inst. For
example, the expression C € c-inst(class) above finds RDF class identifiers C
in the given configuration. In addition, the membership operator can access
elements in collection structures, where an expression of the form v € x is true if

movie = elemtype {name:‘movie’, atts:nilad, cmodel:moviecm}
nilad = attdefset []

moviecm = contentdef [title, studio, genre, actor]

title = elemtype {name:‘title’, atts:nilad, cmodel:nilcm}

nilecm = contentdef []

genre = elemtype {name: ‘genre’, atts:nilad, cmodel:nilcm}

actor = elemtype {name:‘actor’, atts:actorat, cmodel:nilcm}

actorat = attdefset [rolel

role = attdef {name:‘role’, attof:actor}

el = element {tag:‘movie’, atts:nilas, children:elcnt} d-inst:movie
nilas = attset []

elcnt = content [e2,e3,ed]

e2 = element {tag:‘title’, atts:nilas, children:e2cnt} d-inst:title
e2cnt = content [‘Usual Suspects’]

e3 = element {tag:‘genre’, atts:nilas, children:e3cnt} d-inst:genre
e3cnt = content [‘thriller’]

ed = element {tag:‘actor’, atts:edas, children=e4cnt} d-inst:actor
edas = attset [al]

edcnt = content [‘Kevin Spacey’]

al = attribute {name:‘role’, attof:e4, val:‘supporting’} d-inst:role

Fig. 9. Sample XML data and schema (DTD) expressed in the ULD.

film = resource {val: ‘#film’}

title = resource {val:‘#title’}

comedy = resource {val: ‘#comedy’}

filmc = class {rid:film, label:‘film’}

titlep = prop {rid:title, label: ‘title’, domain:filmc, range:‘literal’}
comedyc = class {rid:comedy, label:‘comedy’}

fc = subclass {super:filmc, sub:comedyc}

f1 = resource {val:‘http://.../review.html’} d-inst:comedyc,filmc

tl = triple {pred:title, subj:f1, obj:‘Meet the Parents’} d-inst:titlep

Fig. 10. Sample RDF(S) data expressed in the ULD.

v is a member of z’s value and z is an instance of a set, list, or bag construct. Both
v and 2 can be variables (bound or unbound) or constants. Finally, the expression
x.y = v (alternatively, x — y = v) can be used to access data components
(component definitions), where z is a data identifier (construct identifier), y is a
component selector of 2 (component selector definition of x), and v is the value
of the component (construct of the component definition). The terms z, y, and
v can be either variables or constants.

elemtypes(X) «— E € c-inst(elemtype), E.name=X.

atttypes(X,Y) < A € c-inst(attdef), A.name=Y, A.attof=E, E.name=X.
movies(X) — AT € c-inst(attdef), AT.name="title’, A € d-inst(AT), A.val=X.
atts(X) — A € c-inst(attribute), A.name=X.

attvals(X) — A € c-inst(attribute), A.name="‘title’, A.val=X.

A e

Fig. 11. Example XML queries for schema directly, data through schema, and data
directly.

The following query returns the property names of all classes in an RDF
configuration. Note that this query, like the previous one, is expressed solely
against the schema of the source.

properties(X,Y) < C € c-inst(class), P € c-inst(prop), P.domain=C, C.label=X,

P.label=Y.

After finding the available classes and properties of the schema, we can then use
this information to find data instances. That is, a user could issue the previ-
ous query, see that the source contains title properties, and then construct the
following query that returns all film titles in the configuration.

films(X) « P € c-inst(prop), P.label="title’, T € d-inst(P), T.obj=X.

ULD queries can access information at various levels of abstraction within
an information source, including direct access to data (i.e., accessing data items
without first accessing schema), direct access to schema (as shown in the previous
queries), and direct access to data-model constructs. For example, the following
query is expressed directly against data, and returns the uri of all resources used
as a property in at least one triple (note that the resource may or may not be
associated with schema).

allprops(X) « T € c-inst(triple), T.pred=R, R.val=X.

Once this query is issued, a user may wish to find additional information about
a particular resource. For example, the following query returns all values of a
resource used as a title property of a triple.

propvals(X) « T € c-inst(triple), T.pred=‘#title’, T.obj=X.

Figure 11 shows a similar set of queries as those presented here, but for XML
sources. The first query finds all available element types in the source, the second
finds all available attribute types, the third finds the set of movie titles, the fourth
finds the set of attributes (as a data query), and the last query finds the set of
values for title attributes in the configuration.

Finally, a query can be posed against a data-model directly to determine
the available constructs in a source. For example, the following query returns
all constructs that serve as struct-ct schema constructs and their component
selectors. (Note that conformance relationships are accessed through the conf
relation defined previously.)

schemastructs(SC,P) <« SC € inst-ct(struct-ct), conf (DC,SC,X,Y), SC—-P=C.

3.4 Specifying Additional Rules for Conformance

The ability to query the ULD is not only important for providing uniform access
to information sources, but can also be used to specify additional constraints
on configurations (i.e., axioms). Here, we consider the use of queries for further
defining conformance relationships, beyond cardinality restrictions.

A conformance definition consists of a restricted set of rules. Namely, the head
of a conformance-definition is always of the form: X € d-inst(Y'), which specifies
that X can be a data-instance of Y when the conditions specified in the body
of the rule are true. For example, according to the definition in Figure 6, tables
can conform to relation types, however, the conformance specification given does
not provide the necessary conditions to determine when conformance can occur
(it states that tables and tuples must conform to relation types). The following
two rules elaborate the conformance definitions for the relational model.

X € d-inst(Y) «— X € c-inst(table), Y € c-inst(relation),
forallrex (T € d-inst(Y)).

X € d-inst(Y) « X € c-inst(tuple), Y € c-inst(relation), Y.atts=AS,
length(X,L), length(AS,L),
forally ¢ x (memberAt(V,X,I), memberAt(A,AS,I),
A.domain=D, d-inst(V,D)).

The first rule states that for a table to conform to a relation type, each tuple
in the table must be a data instance of the relation type. Note that we use
the shorthand notation forall to simulate a universal quantifier in Datalog. The
expression can be replaced to create a Datalog rule by using the standard tech-
nique of introducing an intensional predicate and double negation.? The second
rule states that for a tuple to conform to a relation type it must have the same
number of values as attributes in the relation type, and each value must be a
data instance of the corresponding attribute’s domain

Conformance constraints can be used to determine whether the result of
transforming one source into another creates a valid (target) configuration. We
are interested in investigating how conformance constraints can be further ex-
ploited within the ULD and in identifying a general set of concise constraints
(much like in description logics) for specifying additional conformance defini-
tions.

4 Related Work

Most approaches for resolving structural heterogeneity focus on schema and
assume a common data model (e.g., [4,5,10]). Here, we discuss alternative tech-
niques that consider disparate data models and we discuss their limitations.

2 For example, we can rewrite the first rule as:
X e d-inst(Y) «— X € c-inst(table), Y € c-inst(relation), - not-conf(X,Y).
not-conf(X,Y) — T € X, = T € d-inst(Y).

A self-describing data model [12] describes its own structure to integrate the
representation of data, schema, and meta-schema (i.e., a description of the pos-
sible schema structurings). Self-describing data models use their own structuring
capability to represent meta-schema and schema information. To access multiple
data models, users must still use distinct languages and interfaces for each source.
Self-describing data models require conventions to distinguish meta-schema from
schema, and schema from data.

Atzeni and Torlone’s MDM [1,2,14] uses primitives similar to E-R entity
and relationship types and data-model constructs are defined as compositions
of these structures. Schemas in MDM are instantiations of these data-model
structures and MDM does not consider source data.

In YAT [9], a meta-data-model is used to define XML tree patterns, which
are DTDs that permit variables. A tree pattern describes a meta-schema, a
partially instantiated tree pattern denotes a schema, and a fully instantiated
tree pattern represents the content of an information source. YAT’s meta-data-
model has limited structuring capabilities for representing data-model constructs
and schemas, and instead, defines simple conventions to represent source data
as hierarchies.

Gangopadhyay and Barsalou use metatypes, which are similar to MDM prim-
itive structures, to define data models. A data model is represented as a collec-
tion of specialized metatypes, each serving as a specific data model construct. A
schema instantiates the associated data-model metatypes, and a database in the
federation is assumed to contain instances of the corresponding schema types
(metatypes are considered second-order).

5 Conclusions and Future Work

The ULD extends existing meta-data-model approaches by providing richer mod-
eling capabilities for defining data models. In particular, the ULD permits both
data and schema constructs with their conformance relationships. The ULD also
provides explicit instance-of relationships, which allow uniform representation of
data-model constructs, schema, and data, making each level directly accessible
and explicitly connected. The framework enables (accurate) representation of a
broader range of data models than previous approaches by permitting zero, one,
or more levels of schema. In addition, the ULD enables a transformation lan-
guage [7], which can specify and mix data, schema, and data-model mappings.
The transformation language is an extension of the query language presented in
this paper. We also have a generic navigation language on top of the ULD to uni-
formly browse information represented in diverse data models and representation
schemes [6].

Our current implementation of the ULD provides converters for RDF(S),
XML, and relational sources into the ULD (i.e., into a Prolog knowledge base),
where queries and transformations can be executed (via rules expressed in Pro-
log). We are also developing a Java-based API for the ULD that contains function

calls for accessing the various ULD predicates (ct-inst, c-inst, d-inst, and so on)
to leave data “in place” (i.e., un-materialized).

References

1.

10.

11.

12.

13.

14.

P. Atzeni and R. Torlone. Schema translation between heterogeneous data models
in a lattice framework. In Proceedings of the 6th IFIP TC-2 Working Conference
on Data Semantics (DS-6), pages 345-364. Chapman and Hall, 1995.

P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. In Proceedings of the 5th International Conference on FExtending
Database Technology (EDBT’96), volume 1057 of Lecture Notes in Computer Sci-
ence, pages 79-95. Springer, 1996.

T. Barsalou and D. Gangopadhyay. M(DM): An open framework for interoperation
of multimodel multidatabase systems. In Proceedings of the 8th International Con-
ference on Data Engineering (ICDE’92), pages 218-227. IEEE Computer Society,
1992.

C. Batini, M. Lenzerini, and S.B. Navathe. A comparative analysis of method-
ologies for database schema integration. ACM Computing Surveys, 18(4):323-364,
1986.

P.A. Bernstein, A.Y. Halevy, and R. Pottinger. A vision of management of complex
models. SIGMOD Record, 29(4):55-63, December 2000.

S. Bowers and L. Delcambre. JustBrowsing: A generic API for exploring infor-
mation. In Demo Session at the 21st International Conference on Conceptual
Modeling (ER’02), 2002.

S. Bowers and L. Delcambre. On modeling conformance for flexible transformation
over data models. In Proceedings of the ECAI Workshop on Knowledge Transfor-
mation for the Semantic Web, pages 19-26, 2002.

K. Clapool and E. Rudensteiner. Sangam: A framework for modeling heterogeneous
database transformations. In Proceedings of the 5th International Conference on
Enterprise Information Systems, 2003. To Appear.

S. Cluet, C. Delobel, Jérome Siméon, and K. Smaga. Your mediators need data
conversion! In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, pages 177-188. ACM, 1998.

S. B. Davidson and A. Kosky. WOL: A language for database transformations
and constraints. In Proceedings of the 13th International Conference on Data
Engineering (ICDE’98), pages 55-65. IEEE Computer Society, 1997.

J. Hammer and D. McLeod. On the resolution of representational diversity in mul-
tidatabase systems. In Management of Heterogeneous and Autonomous Database
Systems, pages 91-118. Morgan Kaufmann, 1998.

L. Mark and N. Roussopoulos. Integration of data, schema and meta-schema
in the context of self-documenting data models. In Proceedings of the 3rd In-
ternational Conference on Entity-Relationship Approach (ER’83), pages 585—602.
North-Holland, 1983.

OMG. Meta Object Facility (MOF) Specification, Sept. 1997. OMG Document
ad/97-08-14.

R. Torlone and P. Atzeni. A unified framework for data translation over the web.
In Proceedings of the 2nd International Conference on Web Information Systems
Engineering (WISE’01), IEEE Computer Society, pages 350-358, 2001.

