
Chapter 5 

COVERS FOR FUNCTIONAL 
DEPENDENCIES 

In this chapter we shall explore methods to represent sets of FDs succinctly. 
For example, any FD implied by the set F = {A - B, B - C, A - C, A B - 
C, A -) B C } is also implied by the set G = {A - B, B - C }, since all the 
FDs in F can be derived from FDs in G. 

Why do we want shorter representations? We have already seen two algo- 
rithms, SATISFIES in Section 4.1 and MEMBER in Section 4.6, whose run- 
ning times depend on the size of the set of FDs used as input. A smaller set of 
FDs guarantees faster execution. We shall see other algorithms with running 
times dependent upon the number of FDs in the input. FDs are used in 
database systems to help ensure consistency and correctness. Fewer FDs 
mean less storage space used and fewer tests to make when the database is 
modified. 

5.1 COVERS AND EQUIVALENCE 

Definition 5.1 Two sets of FDs F and G over scheme R are equivalent, writ- 
tenF = G, ifF+ = G+. IfF = G, thenFisacoverforG. 

The definition of cover makes no mention of the relative sizes of F and G. 
However, we shall soon consider restricted types of covers where F will be no 
larger than G in numbers of FDs. 

IfF= G,thenforeveryFDX- YinG+,FkX- Y,sinceF+=G+. 
In particular, F L X - Y for every FD X - Yin G. We extend our notation 
for implication to sets of FDs and write this last condition as F e G. Since 
the definition of equivalent is symmetric in F and G, F = G also implies 
G I= F. 

IfF k G, thenG c F+, since I;+ includes every FD X - Y such that F I= 
X- Y, Taking the closure of both sides of the inequality, we get G+ E 
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(F+)+ = F+ (see Exercises 4.6 and 4.16). Similarly, G K F implies Gf 2 
F+ . We have proved the following result. 

Lemma 5.1 Given sets of FDs F and G over scheme R, F = G if and only if 
F I= G and G I= F. 

Examples.1 ThesetsF=(A-BCA-D,CD-B}andG={A- 
B C E, A - A B D, C D - E 1 are equivalent. F is not equivalent to the set G ’ 
= {A - BCDE}sinceG’g CD -E. 

Lemma 5.1 provides a simple means to test equivalence for two sets of 
FDs. The function DERIVES in Algorithm 5.1 tests whether F I= G. 

Algorithm 5.1 DERIVES 
Input: Two sets of FDS F and G. 
Output: true if F k G, false otherwise. 
DERIVES(F, G) 

begin 
v := true; 
for each FD X - Y in G do 

Y := v aud MEMBER(F, X - Y); 
return(v) 
end. 

The function EQUIV in Algorithm 5.2 tests the equivalence of two sets of 
FDS. 

Algorithm 5.2 EQUIV 
Input: Two sets of FDs F and G. 
Output: true if F = G, fake otherwise. 
EQUIV(F, G) 

b&l 
v := DERIVES(F, G) and DERIVES(G, F); 
=-(v) 
end. 

5.2 NONREDUNDANT COVERS 

Definition 5.2 A set F of FDs is nonredundant if there is no proper subset 
F’ of F with F’ = F. If such an F ’ exists, F is redundant. F is a nonredun- 
dant cover for G if F is a cover for G and F is nonredundant. 
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Example52 LetG=(AE-CA-B,B-CA-C}.F=(AB-C, 
A-BB,B - C} is equivalent to G but redundant, since F’ = (A - B, B - 
C) is also a cover for G. F’ is a nonredundant cover for G. 

An alternative characterization of nonredundancy is that I; is nonredun- 
dantifthereisnoFDX- YinFsuchthatF- {X- Y} t=X- Y(seeEx- 
ercise 5.3). Call an FD X - YinFredunduntinFifF- {X- Y} k=X- 
Y. This alternative characterization provides the basis for the redundancy 
test for F given in Algorithm 5.3. 

Algorithm 5.3 REDUNDANT 
Input: A set of FDs F. 
Output: true if F is redundant, false otherwise. 
REDUNDANT(F) 

begin 
v : = false; 
for each FD X - Y in F do 

if MEMBER(F - (X - Y}, X - Y) then v := true; 
return(v) 
end. 

For any set of FDs G, there is some subset F of G such that F is a nonre- 
dundant cover for G. If G is nonredundant, F = G. If G is redundant, then 
there is an FD X - Yin G that is redundant in G. Let G ’ = G - {X - Y}, 
and note (G ‘)+ = G+. If G’ is redundant, there is an FD W - Z that is 
redundant in G’. Let G” = G’ - {W-t Z); (G”)+ = (G’)+ = Gf. This 
process of removing redundant FDs must terminate eventually. The result is 
a nonredundant cover F for G. This process is the basis for the algorithm 
NONREDUN, Algorithm 5.4, which computes a nonredundant cover for a 
set of FDs. 

Algorithm 5.4 NONREDUN 
Input: A set G of FDs. 
Output: A nonredundant cover for G. 
NONREDUN( G) 

begin 
F:= G; 
for each FD X - Y in G do 

if MEMBER(F - {X - Y}, X - Y) then 
F:=F-{(X- Y]; 

return(F) 
end. 
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Example 5.3 Let G = {A - B, B - A, B - C, A - C }. The result of 
NONREDUN(G) is {A - B. B - A, A - C }. If G is presented in the order 
{A-gA-Cd-A,B- C ), the resutt of NONREDUN(G) is {A - B, 
B -A, B - C}. 

Example 5.3 shows that a set G of FDs can contain more than one nonre- 
dundant cover. There can also be nonredundant covers for G that are not 
contained in G. P = (A - B, B - A, A B - C} is a nonredundant cover for 
the set G in Example 5.3. 

5.3 EXTRANEOUS ATTRIBUTES 

If F is a nonredundant set of FDs, there are no “extra” FDs in F, and in this 
sense F cannot be made smaller by removing FDs. Removing any FD from F 
would give a set of FDs that was not equivalent to F. However, it may be 
possible to reduce the size of F by removing attributes from FDs in F. 

Definition 5.3 Let F be a set of FDs over scheme R and let X - Y be an FD 
in F. Attribute A in R is extraneous in X - Y with respect to F if 

1. X = A 2, X f Z, and (I: - {X - Y}) U {Z - Y} = F, or 
2. Y = A W, Y # W, and (F - (X - Y)) U {X - W} = F. 

The definition says that A is extraneous in X - Y if A can be removed from 
the left side or right side of X - Y without changing the closure of F, 

Example 5.4 Let G = {A - B C, B - C, A B - D }. Attribute C is ex- 
traneous in the right side of A - B C and attribute B is extraneous in the left 
side of A B - D. 

Definition 5.4 Let F be a set of FDs over scheme R and let X - Y be in F. 
X- Y is left-reduced if X contains no attribute A extraneous in X - Y. 
X- Y is n&it-reduced if Y contains no attribute A extraneous in X - Y. 
X- Y is reduced if it is left-reduced and right-reduced, and Y # 8. A left- 
reduced FD is also called a full FD. 

Definition 5.5 A set F of FDs is left-reduced (right-reduced, reduced) if 
every FD in F is left-reduced (respectively, right-reduced, reduced). 

Example 5.5 The set G = (A - B C, B - C, A B - D } is neither left- 
reduced nor right-reduced. G1 = {A - B C, B - C, A - D } is left-reduced 
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but not right-reduced, while G2 = (A - B. B - C, A B - D} is right- 
reduced but not left-reduced. The set G3 = {A - B, B - C, A - D} is left- 
and right-reduced, hence reduced, since no right side is 8. 

We might imagine that we can compute reduced covers for a set G in a 
manner similar to NONREDUN: look for extraneous attributes and remove 
them. However, whether we reduce left sides or right sides of FDs first makes 
a difference. Reducing right sides first will not work. The set of FDs G = 
{B-AA, D -A, BA - D } is right-reduced. Removing extraneous attri- 
butes from left sides yields the set P = {B - A, D - A, B - D }, which is 
not right-reduced. Therefore, we will reduce left sides before right sides. 

There is a problem, however, if G contains a redundant FD, say X - Y. 
Every attribute in Y is extraneous, and eliminating them all leaves X - 8. It 
might seem we could save ourselves work if we first eliminate all redundant 
FDs from G before removing extraneous attributes. Unfortunately, even if 
we start with a nonredundant cover, we can run into the problem just 
described (see Exercise 5.7). Hence, as the last step in producing a reduced 
cover, we must remove any FD of the form X - 8. 

Before we write an algorithm to find reduced covers, let us show that if we 
first remove all extraneous attributes from left sides of FDs and then from 
right sides of FDs, we are left with no extraneous attributes anywhere, as 
long as we discard FDs of the form X - 8. 

Suppose we start with a nonredundant set of FDs G and produce an equiv- 
alent set of FDs F by removing extraneous attributes, first from left sides and 
then from the right sides of FDs in G. If F is not reduced, it can only be 
because there is an FD X - Y in F with Y # 8 that is not left reduced. 
Assume A is an extraneous attribute in X. Let G ’ be G at the point immedi- 
ately after all extraneous attributes were removed from left sides of FDs in 
the formation of F. Assume X - Y comes from X - Y 2 in G ‘. Let X ’ = 
X-A.SinceAisextraneousinXinF,F-{X-Y}U{X’-Y}=F,so 
Fi=X’- Y. Let H be an F-based DDAG for X’ - Y. If X - Y is not in 
U(W), then X - Y is redundant in F and, specifically, X - Y is not right- 
reduced, since Y # 8. Therefore X - Y is in U(H) and F = X’ ‘- X, by 
Lemma 4.3, Hence, G’ I= X’ - X, since F = G ‘. Clearly, X ’ - X can be 
derived from G ’ without using X - Y 2. It follows that G ’ - {X - Y 2 ) U 
(X’ - Y 2) = G ’ and that G ’ was not left-reduced, a contradiction. We 
see that I; is reduced if FDs of the form X - @ are excluded. 

Notice that (X - Y} i== X A - Y, for any FD X A - Y. Whenever we 
remove an attribute from a left side in a set of FDs, the result is always a 
stronger set of FDs. That is, let G = F U (XA - Y} and G’ = F U {X - ‘. 
Y}. G’ always implies G. To test G’ = G, we need only test G I= G ‘, which 
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reduces to testing G I= X - Y. The algorithm LEFTRED in Algorithm 5.5 
uses this method to detect extraneous attributes on the left sides of FDs. If G 
is nonredundant, this test can be simplified to G I= X - X A or just G != 
X - A. (Why?) 

Algorithm 5.5 LEFTRED 
Input: A set of IDS G. 
Output: A left-reduced cover for G. 
LEFTRED( G) 

ha 
F:= G; 
for each FD X - Y in G do 

for each attribute A in X do 
if MEMBER(F, (X - A) - Y) then 

remove A from X in X - Y in F; 
return(F) 
end. 

For removing extraneous attributes from the right sides of FDs, we note 
thatifG=FU {X- YA } and G ’ = F U {X - Y}, then G always implies 
G ‘. To test G ’ = G, we only need to test G ’ E G, which reduces to testing 
G’t=X- YA. SinceX - Y E G ‘, this test further reduces to G ’ I= X - A. 
The algorithm for right-reduction is given as Algorithm 5.6. 

Algorithm 5.6 RIGHTRED 
Input: A set of FDs G. 
Output: A right-reduced cover for G. 
RIGHTRED 

h@ 
F:= G; 
for each FD X - Y in G do 

for each attribute A in Y do 
if MEMBER(F - {X - Y} U {X - (Y - A)}, X - A) then 

remove A from Y in X - Y in F, 
return(F) 
end. 

We can now easily obtain the algorithm for reduced covers shown as Algo- 
rithm 5.7. 
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Algorithm 5.7 REDUCE 
Input: A set G of FDs. 
Output: A reduced cover for G. 
REDUCE(G) 

begIn 
F : = RIGHTRED(LEFTRED( G)); 
remove all FDs of the form X - 8 from R 
=-WI 
end. 

Examples.6 LetG’=(A-CAB-DE,AB-CD&AC-J}. 
LEFTRED(G ‘) yields G” = (A - CAB-DE,AB-CD&A-JJ)and 
IUGHTRED(G”) yieldsF = {A - C. A B - E, A B - Dl, A - J>, which is 
reduced. 

Lemma 5.2 The time complexity of REDUCE is O(n*) for inputs of length it. 

Proof Left to the reader (see Exercise 5.8). 

5.4 CANONICAL COVERS 

Definition 5.6 A set of FDs F is canonical if every FD in F is of the form 
X - A and F is left-reduced and nonredundant. 

Since a canonical set of FDs is nonredundant and every FD has a single at- 
tribute on the right side, it is right-reduced. Since it is also left-reduced, it is 
reduced, 

Example 5.7 The set F = {A - B, A - C, A - D, A - E, B I - J} is a 
canonical cover for G = {A - B C E, A B - D E, B I - J>. 

The following lemma relates reduced and canonical covers. 

Lemma 5.3 Let F be a reduced cover. Form G by taking each FD X - Al 
A2 ... A,,, and splitting it into X - Al, X - AZ, . . ., X - A,. G is a 
canonical cover. Conversely, if G is a canonical cover, it is a reduced cover. If 
we form F by combining all FDs with equal left sides into a single FD, then F 
is also a reduced cover. In both cases, F and G are equivalent. 

Proof Let G be derived from F by splitting FDs. If X - A; is redundant, 
then A i is extraneous in X - A I A2 - - . A,. If X - A; has an extraneous at- 
tribute B on the left side, then G k (X - B) - Ai, which means that G I= 
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(X - B) - X, since X - A i is nonredundant. (See the discussion preceding 
LEFTRED.) It follows that F I= (X - B) - X and hence B is extraneous in 
theleftsideofx-A1A2-.-A,inF. 

The remainder of the proof is left to the reader (see Exercise 5.9). 

5.5 THE STRUCTURE OF NONREDUNDANT COVERS 

What can be said about two nonredundant covers F and I;’ for a set G of 
FDs, other than I; = F’? The following definition and lemma will point us 
toward some similarities in structure between F and F’. 

Definition 5.7 Two sets of attributes X and Y are equivalent under a set F 
ofFDs,writtenX* Y,ifP~=x- YandFk Y-X. 

Lemma 5.4 Let F and G be equivalent, nonredundant sets of FDs over 
scheme R. Let X - YbeanFDinF.ThereisanFDV- WinGwithX- 
V under I; (hence u&ler G). 

Proof Consider a G-based DDAG H for X - Y. Look at the FDs in U(H). 
Each has an F-based DDAG. Some FD V - W in U(H) must have an 
F-based DDAG J that uses X - Y. If not, there is an (F - {X - Y})-based 
DDAGforX- YandsoX- Y is redundant in F (see Exercise 4.19). Since 
JusesX - Y,byLemma4.3,FcS V-X.SinceHusesV-wG!=X-V, 
hence F I= X - V. 

We may restate Lemma 5.4 as follows. Given equivalent, nonredundant 
covers F and G, for every left side X of an FD in F, there is an equivalent left 
side V of an FD in G. 

Example 5.8 Let F = {A -BC,B-A,AD-E}andG={A-ABC, 
B -AA.BD - E}. F and G are nonredundant and equivalent to each 
other. Note that A wA,BoB,andADoBD. I 

For a set of FDs F over scheme R and a set X C R, let EF(X) be the set of 
FDs in F with left sides equivalent to X. Let EF be the set 

{EF(X)IX C R andEF(X) f 81. 

EF(X) is empty when no left side of any FD in F is equivalent to X. zF is 
always a partition of F. 

Given equivalent, nonredundant sets F and G, Lemma 5.4 implies that 
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EF(X) is non-empty exactly when E&X) is. Therefore, the number of sets in 
,?F is the same as the number in &. 

Example 5.9 Let F and G be as in Example 5.8. Then zF is 

EF(A)={A-BC,B-A} 
E&A D) = {AD - E}, 

and EG is 

E&A)={A-ABC,B-A] 
E&AD) = {BD 4 E}. 

5.6 MINIMUM COVERS 

A nonredundant cover of a set G of FDs does not necessarily have as few FDs 
as any cover for G (see Exercise 5.15). This fact prompts the following 
definition. 

Definition 5.8 A set of FDs I; is minimum if F has as few FDs as any equiv- 
alent set of FDs. 

A minimum set of FDs can have no redundant FDs (why?), so it is also 
nonredundant. 

Example 5.10 The set G = (A -BC,B-A,AD-E,BD-I}isnon- 
redundant but not minimum, since F = {A - B C, B - A, A D - E I> is 
equivalent to G but has fewer FDs. F is a minimum cover for G. 

5.6.1 Direct Determination 

Unlike nonredundant covers, the definition of minimum covers provides no 
guide for finding minimum covers or even for testing minimality. In this sec- 
tion we introduce a restricted form of functional determination that gives us 
the means to compute minimum covers. 

Definition 5.9 Given a set of FDs G, X directly determines Y under G, writ- 
tenX i Y, if there is a nonredundant cover F for G with an F-based DDAG 
HforX - Y such that U(H) f7 EF(X) = 8. 

In other words, we can find a nonredundant cover F for G in which X - Y 
can be derived using only FDs in F - EF(X). Observe that X 4 X always 
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holds, that X A Y implies X - Y, and that EF(X) can be empty. Also note 
that A 2 B only when A = B. 

Example5.11 LetG=F=(A-CCD,AB--,B--,DI--J).Then 
ABA J under G, as the DDAG H in Figure 5.1 shows. 

-CO,B-I,DI--JI 

Figure 5.1 

As the definition stands, it is not very useful. In order to test direct deter- 
mination, we might have to find every nonredundant cover of G, which can 
be a lengthy task (see Exercise 5.11). The following lemma shows that life is 
not so hard. 

Lemma 5.5 X 2 Y under a set of FDs G if and only if for every nonredun- 
dant cover F for G there is an F-based DDAG H for X - Y with U(H) n 
EAX) = a. 

Proof The if direction is trivial. We prove the only if direction. Let F be a 
nonredundant cover for G where there is an F-based DDAG H for X - Y us- 
ing no FDs from EAX). Let F’ be any other nonredundant cover for G. For 
each FD W - Z in U(H), we shall construct an F’-based DDAG using no 
FDs from EF4X). We shall then splice these DDAGs together to get an 
F ‘-based DDAG for X - Y using no FDs in E&X), using Lemma 4.2. 

If w - Z is in U(H), then F != X - W by Lemma 4.3. Suppose some 
F’-based DDAG for W - Z uses FD U - V from Er;,(X). Again using 
Lemma 4.3, F’ t= W - U, hence F t= W - U. But U * X under F’ and F, 
hence W ++ X under F, so W - Z is in EF(X), contradicting the nature of H. 
Therefore every FD W - Z in U(H) has an F ‘-based DDAG using no FDs 
from E&X) (see Exercise 5.19 for a slightly stronger version of Lemma 5.5). 
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Lemma 5.6 If X - Y, X A Y, and Y A Z under a set of G of FDs, then 
Xa Z under G. 

Proof Left to the reader (see Exercise 5.20). 

Definition 5.10 Let F be a set of FDs over scheme R. The set of all left sides 
in EF(X) is denoted by edX). 

Lemma 5.7 Let F be a nonredundant set of FDs. Pick X, a left side of some 
FD in F, and any Y such that X - Y under F. There exists a Z in eF(X) such 
that Y * Z. 

Proof If Y is in eF(X), then Y j Y and we are done. Otherwise, since 
Y - Z for every Z in eF(X), there is an F-based DDAG for Y - Z for every Z 
in eF(X). Choose the 2 in edX> which has a DDAG for Y - Z with the 
smallest number of nodes. Call this DDAG H. Suppose U(H) contains U - 
V from EF(X). By Lemma 4.3 and its corollary, H is a DDAG for Y - U, 
and furthermore, there is a node in H labeled by some attribute in V that can 
be removed from H and still leave a DDAG for Y - U. Let N ’ be H with this 
node removed. H’ has fewer nodes than H. Since U is in eF(X), the 
minimality of H is contradicted. There cannot be any FDs from EF(X) in 
U(H), so Y i 2. 

Example 5.12 Let F = {A - BC,BC-AA,AD-E,AD--EEBB). 
BCD * A D, and Figure 5.2 shows an F-based DDAG for B C D - A D 
that uses no FDs from EF(A II). 

6 
Et= 

A 

C 

U(H) = IB c 111) Al 

0 D 

Figure 5.2 
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Lemma 5.8 Let F be a minimum set of FDs. There are no distinct FDs 
Y- UandZ - V in any EF(X) such that Y A Z. 

Proof We shall show that if such FDs exist, we can find a set F’ equivalent 
to F but with fewer FDs. Let H be an F-based DDAG for Y - Z that uses no 
FDs in EF(X) and let F’ be F with Y - U and Z - V replaced by Z - U V. 
Clearly, F’ i= Z - V. Since H is also an F’-based DDAG for Y - Z (it does 
notuseY- UorZ- V), F’ != Y - Z and hence F’ I= Y - U. Every other 
FD in F is in P ‘, so F ’ I= F. It is not difficult to show that I; I= I;’ and hence 
F = F’. The minimality of I: is contradicted. 

Lemmas 5.7 and 5.8 are used to show the following result. 

Theorem 5.1 Let F and G be equivalent, minimum sets of FDs. Then for 
any X, IWX>) = IWX)l. 

Theorem 5.1 is stronger than Lemma 5.4. Not only does IEFj = @dl for 
minimum sets of FDs, but the sixes of corresponding equivalence classes are 
the same. 

Proof Assume EF(X) and E&X) are composed as follows, for m less than n. 

EFW J%(X) - 
Xl -x1 Yl - i;l 

. . . 

x, - x, Y, - Fn 

Not all the Yj’S are the same as some Xi or else two Yj’s would be equal, con- 
tradicting Lemma 5.8. Thus there existsj such that Yj z Xi, 1 5 i I m. By 
Lemma 5.7, there is a k such that Yj L X,. Renumber the FDs in EF(X) and 
EG(X) so that 5 is Y1 and Xk is X1. In EG(X), replace Y1 - Yr by X1 - yr. 
Since Y1 *, x1, Yl - Y, can still be derived in the modified G and the closure 
of G is unchanged. If 5, = Yj for somej other than 1, combine X1 - y1 and 
Yj - Fj to get X1 - Yyl c, which is a contradiction to the minimality of G. 

Otherwise, X1 # Yj for allj greater than 1, but the number of left sides in 
et(X) that match left sides in eF(X) has increased by one. (We removed Y1 
and added X1 .) There must still be some Yi not equal to any Xi in eF(X), by 
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the remarks at the beginning of the proof. We return to the point in the proof 
where the renumbering took place. 

If we never encounter a contradiction to the minimality of G, eventually 
every left side in e&X) will be in eF(X), contradicting the observation that 
some Yj must be different from every Xi. The assumption that m was less 
than II must be incorrect, and, in fact, m = n. 

The correspondence between EF(X) and E&X) goes further than there 
simply being the same number of FDs in each. Consider EF(X) and E&X) 
again : 

EF(-u EGG-) - - 
Xl - Xl Yl - Yl 

- 
x2 - x2 y2 - y2 

. . 

. . 

Choose any Xi in e&X). There is some j such that Xi 2 yj, by Lemma 5.7. 
Also by Lemma 5.7, there must be a k such that Yj + X,. If i # k, then 
Xi A X, by Lemma 5.6, which is a contradiction to Lemma 5.8. Thus, i = k. 
We see that if Xi j q, then Yj i Xi. 

Suppose Xi A Yj and Xi L Y,, wherej # h. By what we have just noted, 

5 i Xi, and by Lemma 5.6, yj + Y, , again contradicting Lemma 5.8. We 
see there is a one-to-one correspondence between e&X) and e&X) induced 
by A. By the proof of Theorem 5.1, we see that Xi can be substituted for its 
corresponding Yj in E&X) without changing the closure of G. 

Example 5.13 It is about time we got away from the As and Bs and got 
back to an example that resembles real life. Consider a relation violu- 
tions(CAR-SERIAL# LICENSE# OWNER DATE TIME TICKET# OF- 
FENSE) that holds a list of motor vehicle violations. One minimum cover for 
the set of FDs on this relation is I; = 

1. CAR-SERIAL# - LICENSE# OWNER 
2. LICENSE# - CAR-SERIAL# 
3. TICKET# - LICENSE# DATE TIME OFFENSE 
4. LICENSE# DATE TIME - TICKET# OFFENSE. 

An equivalent minimum set of FDs is 

1. CAR-SERIAL# - LICENSE# 
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2. LICENSE# - CAR-SERIAL/# OWNER 
3. TICKET# - CAR-SERIAL# OWNER DATE TIME 
4. CAR-SERIAL# DATE TIME - TICKET# OFFENSE. 

EI;(LICENSE#) and Eo(LICENSE#) are composed of the first two FDs in 
each set, while EdTICKET#) and E&TICKET/#) are composed of the last 
two FDs in each set. The FDs are arranged so that the left sides of same- 
numbered FDs directly determine each other. We can substitute CAR- 
SERIAL# DATE TIME for the left side of FD 4 in F without changing the 
closure of F. If we try to substitute where there is equivalence but not direct 
determination, such as LICENSE# for the left side of FD 1 in F, we change 
the closure. 

The observations before the example indicate a means to combine 
equivalent minimum sets F and G to get an equivalent set of FDs with 
possibly fewer attribute symbols. Take E&X) and E&X) for some X and 
pair up the left sides using the correspondence induced by A. For each Yin 
eF(X) and the corresponding Z in e&X), replace Y by Z if Z has fewer at- 
tributes than Y. If we can make such a substitution, the modified set P will 
have fewer attribute symbols than the original. 

5.6.2 Computing Miuiium Covers 

The following Theorem will be our tool in developing an algorithm for mini- 
mum covers. 

Theorem 5.2 Let G be a‘nonredundant set of FDs that is not minimum. 
There is some E&X) containing distinct FDs Y - U and Z - V such that 
Y z. -: 

This theorem is almost the converse of Lemma 5.8. 

Proof Let F be a minimum cover for G. There must be some X such that 
IEF(X)L < IE&C)l, _by Theorem 5.1. Let EF(X) have_ FDs X1 -- x1, 
x,-x,, . . ..x. - X, and let E&X) have FDs Y1 - Yi, Y2 - Yz, . . . , 
y?i - Y,. For each Yj in e&X) there is an Xi in eF(X) with Yj a Xi, by 
Lemma 5.7. Since m is less than ~1, there must be an i, j, and k such that Yj + Xi 
and Yk a Xi, with j # k. In turn, Xi + Y, for some Yh in e&X). Either 
h #jorh # k. Ifh #j, thenbyLemma5.6, Yj 2 Y,. Likewise, ifh f k, 
Y, 4 Y*. 



Minimum Covers 85 

Theorem 5.2 says that if we have a nonredundant set G that is not 
minimum, we can find Y - U and 2 - V in G with Y - 2 and Y 4 Z under 
G. Once we find these two FDs, we can replace them both by the single FD 
Z- U V, as in the proof of Lemma 5.8. The result is an equivalent set with 
fewer FDs. 

Algorithm 5.8 uses Theorem 5.2 in the manner just described and assumes a 
function DDERIVES that tests direct determination (see Exercise 5.18). 

Algorithm 5.8 MINIMIZE 
Input: A set of FDs G. 
Output: A minimum cover for G. 
MINIMIZE(G) 

begin 
F : = NONREDUN(G); 
Find the sets of EFi 
for each EF(X) in EF do 

for each Y - U in EF(X) do 
for each Z - V # Y - U in EF(X) do 

if DDERIVES(I;: Y - Z) then 
replace Y - U and Z - V by Z - U V in P, 

return(F) 
end. 

Theorem 5.3 MINIMIZE can be implemented to have time complexity 
O(np) on inputs of length n with p FDs. 

Proof Finding F takes O(np) time (see Exercise 5.8). Finding the sets in ,?F 
might seem to require O(np*) time, but this much time is not necessary. We 
can use a modified version of LINCLOSURE to mark, for a given X, every 
FD Y - Z in F such that F = X - Y. (The marked FDs are those with 
COUNT = 0.) In O(np) time we can run this modified algorithm on the left 
side of every FD in I; to produce a p by p Boolean matrix M with rows and 
columns indexed by FDs in F. The entry M[X - Y, W - Z] is true if F I= 
X- W and false otherwise. From M it is possible to find all the sets in J!?~ in 
O(p*) time (see Exercise 5.23). 

Now, for each EF(X) in gF, look at each FD Y - U in turn. Run the 
modified version of LINCLOSURE on Y and F - EF(X), but keep track of 
COUNT[Z - r] for each Z - V in EF(X). If the count reaches 0 for some 
Z- V when the algorithm finishes, we know Y i 2 and we make the proper 
substitution of FDs. The modified LINCLOSURE algorithm is run once for 
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each FD in F, giving O(np) time complexity for this stage. Hence, the entire 
algorithm takes O(np) time. 

Corollary A reduced minimum cover can be found for a set of FDs G in 
O(n*) time for inputs of length n. 

Proof Apply REDUCE to the output of MINIMIZE(G) (see Exercise 5.8). 

5.7 OPTIMAL COVERS 

We have been measuring our covers in terms of the number of FDs they con- 
tain. We can also measure them by the number of attribute symbols required 
to express them. For example, (A B - C, CD - E, A C - IJ> has size 10 
under this measure. 

Defiition 5.11 A set of FDs F is optimal if there is no equivalent set of FDs 
with fewer attribute symbols than F. 

Example 5.14 The set F = {E: C - D, A B - E, E - A B ) is an optimal 
coverforG=(ABC-D,AB - E, E - A B }. Notice that G is reduced 
and minimum, but not optimal. 

Lemma 5.9 If F is an optimal set of FDs, then F is reduced and minimum. 

Proof If F has an extraneous attribute, it is clearly not optimal. MINIMIZE 
always decreases the number of attribute symbols in a cover whenever it 
makes a change. Thus MINIMIZE(F) must return F and hence F is 
minimum. 

Unfortunately, there is probably no polynomial time algorithm for finding 
an optimal cover for a set of FDs. This problem belongs to the class of NP- 
complete problems, for which no one has yet found any polynomial time 
algorithms. Another NP-complete problem concerning covers is, what is the 
smallest set I; contained in G that is a cover for G? Size in this case is 
measured in FDs. 
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5.8 ANNULAR COVERS AND COMPOUND FUNCTIONAL 
DEPENDENCIES 
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We have seen that FDs in a set F can be partitioned on the basis of equivalent 
left sides. It is possible to represent the information in an equivalence class 
by a single, generalized FD. 

Definition 5.12 A compound functional dependency (CFD) has the form 
(Xl, X2, . . . , X,) - Y, where X1, X2, . . . , X, are all distinct subsets of a 
scheme R and Y is also a subset of R. A relation r(R) satisfies the CFD 
(Xl, x2, . . ..X.)- YifitsatisfiestheFDsXi-XjandX;-Y,lsi,jrk. 
In this CFD, (Xi, X2, . . . , X,) is the left side, X1, X2, . . . , Xk are the Zeft 
sets and Y is the tight side. 

A CID is nothing more than a shorthand way of writing a set of FDs with 
equivalent left sides. We do make one slight departure from our conventions 
in allowing Y = 8. In this case we write the CFD as (X,, X2, . . . , X,). 

Definition 5.13 Let G be a set of CFDs over R and let F be a set of FDs or 
CFDs over R. G is equivalent to F, written G = F, if every relation r(R) that 
satisfies G satisfies F and vice versa. 

This definition is consistent with equivalence for sets of FDs. 

Definition 5.14 F is a cover for G if F = G, where F and G may be either 
sets of FDs, sets of CFDs, or one set of each. 

Example 5.15 The set of CFDs G = {(A, B), (A C, B C) - DE} is equiva- 
lent to the set of FDs F = {A - B, B - A, A C - D, B C - E 3. 

Definition 5.15 A set of FDs F is a characteristic set for the CFD 
(Xl 9 x2, . . ..X.)- Y, ifF = {(X1,X2, . . .,X,) - Y}. IfFuseseach left set 
in the CFD as the left side of an FD exactly once (that is, F looks like {X1 - 
Yl, x2 - Y,, . . . , x, - Y, }), then F is a natural characteristic set for the 
CFD. 

The definition of CFD gives us one characteristic set for (Xi ,X2, . . . ,X,) - Y, 
but the set is not natural. Another characteristic set is {Xi - X2, X2 - X3, 
. . . , x,-, - x,, x, - X1 Y}. This characteristic set is natural, and is 
the source of the term annular. The left sets in the CFD can be visualized in a 
ring, as shown in Figure 5.3. 
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\ x3 

Figure 5.3 

A set of CFDs can be treated as the union of characteristic sets for all the 
CFDs in the set. Treated as such, almost all the terminology from sets of FDs 
is applicable to sets of CFDs. In some cases we shall redefine our terms 
slightly for CFDs; when we do not, we use the corresponding definition for 
FDs. The only concept that does not carry over well is the closure of a set of 
CFDs. We shall interpret closure as the closure of an equivalent set of FDs. 

Definition 5.16 A set F of CFDs is annular if there are no left sets X and 2 
in different left sides with X * Z under F. 

Algorithm LINCLOSURE can be modified to run on sets of CFDs. Rather 
than keeping counts and lists for FDs, we keep them for left sets. When the 
count of some left set Xi in (Xi, Xz, . . . , X,) - Y reaches 0, we can add all 
the attributes in X1, Xz, . . . , X,, and Y, to NEWDEP (see Exercise 5.24). 
MEMBER can therefore be modified to run on CFDs. DERIVES and 
EQUIV can be modified to work for a set of FDs and a set of CFDs or for two 
sets of CFDs by choosing characteristic sets for all the CFDs. The time com- 
plexity for all these algorithms remains the same (see Exercise 5.25). 

Given a set of FDs G, it is possible to find an annular cover for G with no 
more than lEFl CFDs, where F is a nonredundant cover for G. We combine 
all the FDs in one EF(X) into a single CFD. Every left side in eF(X) is a left 
set in the CFD, and the right side of the CFD is the union of all the right sides 
of FDs in EF(X). 

Example5.16 L&G =F= {A -BC,B-AD,AE-I,BE-JJI}.An 
annular cover for G is the set G ’ = {(A, B) - A B C D, (A E, B E) - IJ}. 
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The reverse process does not always work. If we have a nonredundant 
cover F for a set of FDs G and an annular cover G ’ for G with lEFj CFDs, 
taking the union of natural characteristic sets for aI the CFDs in G’ does not 
necessarily yield a nonredundant cover for G. 

Example 5.17 G ’ = ((A, AB, B) - C D, (A E) - IJ} is an annular cover 
for the set G in Example 5.16. When we form F’ by combining natural 
characteristic sets, we can get F’ = {A - A B, A B - B, B - A C D, A E 
- IJ}. A B - B is redundant in F’. 

Definition 5.17 Let G be a set of CFDs containing (XI, X2, . . . , X,) - Y. 
Let Xi be one of the left sets and let A be an attribute in Xi. Attribute A is 
shiftable if A can be moved from Xi to Y while preserving equivalence. A left 
set Xi is shiftable if all the attributes in Xi are simultaneously shiftable. 

Example 5.18 Let G ’ be as in Example 5.17, A B in (A, A B. B) - C D is 
shiftable. The result of shifting it is G” = {(A, B) - A B CD, (A E) - IJ}. 
Note that A in (A, AB, B) - CD is not shiftable. 

Definition 5.18 An annular set G is nonredundant if no CFDs can be 
removed from G without altering equivalence and no CFD in G contains a 
shiftable left set. Otherwise, G is redundant. 

Example 5.19 The set G ’ in Example 5.17 is redundant, while G” in Ex- 
ample 5.18 is nonredundant. 

Lemma 5.10 Let G be a nonredundant annular set of CFDs. The union of 
natural characteristic sets for all the CFDs in G yields a nonredundant set of 
FDs equivalent to G. The proof is left to the reader (see Exercise 5.26). 

We can also define the notions of reduced and minimum for annular 
covers. 

Definition 5.19 Let G be a nonredundant annular set. A CFD (XI, X2, . . . , 
Xd - Y in G is reduced if no left set contains any shiftable attributes and 
the right side contains no extraneous attributes. The set G is reduced if every 
CFD in G is reduced. 

Definition 5.20 Let G be a nonredundant annular set. G is minimum if it 
contains as few left sets as any equivalent annular set. 
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Example 5.20 G = {(A, B) - C D, (A E) - IJ} is a reduced, minimum 
annular cover for the set G ’ in Example 5.16, 

LEFTRED and RIGHTRED can be modified to get a version of REDUCE 
for CFDs that runs in O(n2) time on input of length IZ. To aid in reduction, 
we can use the observation that (XI U X2 U . - - U Xk) n Y = @for any 
reduced CFD(X1, X2, . . . , X,) - Y (see Exercise 5.27). 

To find a minimum annular cover for a set G of FDs, we first find a 
minimum cover F for G. We then combine FDs with equivalent left sides into 
single CFDs. The question arises, is a reduced, minimum annular set really 
the same as a reduced minimum set of FDs? That is, can we get a reduced, 
minimum annular set by combining FDs from a reduced, minimum set of 
FDs? The answer is no, as the next example shows. 

Example 5.21 Consider the set of FDs F = (II1 B2 - A, D1 02 - B1 B2, 
B1-CC1,B2-C2,D1-A,D2-A,AB1C2-D2,ABzC1-D*}.Fis 
minimum and reduced. The only equivalent left sides are B1 B2 and D1 D2. 
Let us combine FDs into CFDs to get G = ((B, Bz, D1 Dz) - A, (B,) - Cl, 
(B2) - c2, WI) - A, (02) - A, (A B1 C,) - D2, (A B, Cl) - D1 }. We 
have left B1 B2 off the right side of the first CFD by the observation above 
that left sets and the right side should not intersect. Even so, the A on the 
right side of the first CFD is extraneous. It is not extraneous in B1 B2 - A in 
F, since it is needed to prove B, B2 - D1 D2 (see Exercise 5.28). 

We see that after converting from a reduced, minimum set of FDs to a 
minimum annular set, it is still necessary to perform a reduction step to get a 
reduced, minimum annular set. 

We shall use annular covers again in Chapter 6, where we use them for 
synthesizing database schemes, 

5.9 EXERCISES 

5.1 Find a nonredundant cover for the set G = {A - C, A B - C. 
C -DI,CD-+l,EC-AB,EI-CC). 

5.2 Show how DERIVES (Algorithm 5.1) can be modified to run 
more quickly in some cases. 

5.3 Show that a set of FDs I: is redundant if and only if there is an FD 
x- YinFsuchthatF- {X- Y} EX- Y. 

5.4 Consider the following alternative to the algorithm NONREDUN 
(Algorithm 5.4). 
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5.5 

5.6 

5.7 

5.8 

5.9 
5.10 

REPUGNANT(G) 
mi@ 
F:= Q); 
foreachFDX- YinGdo 

if MEMBER (G - {X - Y}, X - Y) then 
F:=FU {X- Y}; 

retum(G - F) 
end. 

Does REPUGNANT correctly compute a nonredundant cover for 
G? 
Give an example of a set of FDs that contains an FD X - Y with 
every attribute in X and Y extraneous. 
Find sets of FDs F and G such that F is a nonredundant cover for 
G, but G has fewer FDs than F, 
Show that starting with a nonredundant set of FDs, removing ex- 
traneous attributes from the left sides of FDs can yield a redun- 
dant set of FDs. 
Prove that the algorithm NONREDUN (Algorithm 5.4) has time 
complexity O(np) for inputs of length IZ with p FDs. Use this 
result to prove that the algorithm REDUCE (Algorithm 5.7) has 
time complexity 0 (n*) on input of length n. 
Complete the proof of Lemma 5.3. 
Let F be the set of all possible FDs over a relation scheme R = Al 
A2 -+a A,, except those of the form 8 - Y. Find a nonredun- 
dant cover for F. 

5.11” What is the maximum number of nonredundant covers a set of n 
FDs may contain? 

5.12 Show that an FD X - Y is redundant in 1; if and only if there is 
an F-based DDAG H for X - Y with X - Y not in U(H). 

5.13 Show that Lemma 5.4 can fail if F is redundant. 
5.14 Show that for equivaient nonredundant sets of FDs F and G, it is 

possible that for some X, EF(X) has a different number of FDs 
than E&X). 

5.15 Find two equivalent nonredundant sets of FDs with different 
numbers of FDs. 

5.16 Give a set of FDs G and sets of attributes X and Y such that X j Y 
does not hold under G, but X - Y does. 

5.17 Show that in a minimum set of FDs there cannot be two distinct 
FDsX- YandX-Z. 

5.18* Find an algorithm to test direct determination. 
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5.19 Prove: If X i Y under G, then for any cover F for G there is an 
F-based DDAG H for X - Y with U(H) fl EF(X) = @. 

5.20 Prove Lemma 5.6. 
5.21 Give an example of a set of FDs where some FD has two ex- 

traneous attributes, but only one can be removed if equivalence is 
to be preserved. 

5.22 Prove that Theorem 5.1 does not hold if F and G are only 
nonredundant. 

5.23 Given the p by p Boolean matrix M in the proof of Theorem 5.3, 
show how to find the sets of EF in Ob2) time. 

5.24 Let WI, x2, * * -, x,1 - Y be a CFD and let S = X1 U X2 U . . - 
UXkUY.ShowthatP={Xi-&X2-S ,..., Xk-S)isa 
natural characteristic set for the CFD. 

5.25 Show that for any set of CFDs there is an equivalent set of FDs 
that uses no more than twice the number of attribute symbols. 

5.26 Prove Lemma 5.10. 
5.27 Show that in a reduced CFD (Xi, X2, . . ., X,) - Y, (Xi U X2 U 

--* UX,) n Y= (23. 
5.28 Let F be the set of FDs in Example 5.21. Show that A is not ex- 

traneous in B 1 B2 - A. 
5.29 Find a reduced, minimum annular cover for the set G in Exercise 

5.1. 
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