
Chapter 7 

MULTIVALUED DEPENDENCIES, 
JOIN DEPENDENCIES AND 
FURTHER NORMAL FORMS 

We saw in Chapter 6 that the presence of certain functional dependencies in 
a relation scheme means that the scheme can be decomposed to eliminate 
redundancy while preserving information. However, it is not necessary that 
an FD hold before such a decomposition may take place. Consider the in- 
stance of relation service in Table 7.1. 

Table 7.1 The relation sewice. 

sentice (FLIGHT DAY-OF-WEEK PLANE-TYPE) 

106 Monday 747 
106 Thursday 747 
106 Monday 1011 
106 Thursday 1011 
204 Wednesday 707 
204 Wednesday 727 

A tuple <f d p > in relation service means that flight numberf flies on day d 
and can use plane type p on that day. There is no functional dependency 
FLIGHT -+ DAY-OF-WEEK or FLIGHT + PLANE-TYPE in service, yet 
service decomposes losslessly onto FLIGHT DAY-OF-WEEK and FLIGHT 
PLANE-TYPE, as shown in Table 7.2. 

Table 7.2 The relation service decomposes losslessly into the 
relations servday and sewtype. 

sewday(FLIGHT DAY OF WEEK) servtype(FLIGHT PLANE-TYPE) 

106 Monday 106 747 
106 Thursday 106 1011 
204 Wednesday 204 707 

204 727 

. 
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Now consider another instance of the relation Sewice, as given in Table 7.3. 

Table 7.3 A second instance of the relation service. 

service(FLIGHT DAY-OF-WEEK PLANE-TYPE) 

106 Monday 747 
106 Thursday 747 
106 Thursday 1011 
204 Wednesday 707 
204 Wednesday 727 

If we decompose this instance of service onto FLIGHT DAY-OF-WEEK and 
FLIGHT PLANE-TYPE, we also get the projections shown in Table 7.2. 
Therefore, when we join the two projections, we do not get back our original 
relation. 

7.1 MULTIVALUED DEPENDENCIES 

What property of the first instance of service that the second instance lacks 
allows the Jossless decomposition? In the first instance, if a certain plane type 
can be used for a flight on one day it flies, that plane type can be used on any 
day the flight flies. This property fails for the second instance of service, since 
flight 106 can use a 1011 on Thursday but not on Monday. The first instance 
of service should be decomposed, since once we know a flight number, DAY- 
OF-WEEK gives us no information about PLANE-TYPE, and vice versa. 

We can state this property another way. If we have tuples {f d p > and 
(f d ’ p ’ > in relation service, then we must also have tuple (f d ’ p ) . We de- 
fine this concept formally. 

Definition 7.1 Let R be a relation scheme, let X and Y be disjoint subsets of 
R, and let Z = R - (X Y). A reIation r(R) satisfies the multivalued 
dependency (MVD) X - Y if, for any two tuples t1 and t2 in r with f,(X) = 
t2(X), there exists a tuple t3 in I with t3(X) = t,(X), t3( Y) = tl(Y), and 
h(Z) = t2w. 

The symmetry of tl and t2 in this definition implies there is also a tuple t4 
in Y with t4(X) = t,(X), t4( Y) = t2( Y) and tq(Z) = t,(Z). 

Example 7.1 The MVD FLIGHT - DAY-OF-WEEK holds on the in- 
stance of service in Table 7.1, but not on the instance in Table 7.3. The in- 
stance in Table 7.1 also satisfies the MVD FLIGHT --t, PLANE-TYPE. 
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It is not a coincidence that the instance of service in Table 7.1 satisfies two 
MVDs, as the following lemma shows. 

Lemma 7.1 If relation r on scheme R satisfies the MVD X --H Y and 2 = 
R - (X Y), then Y satisfies X - Z. 

Proof: Left to the reader (see Exercise 7.2). 

The definition of MVD requires that X and Y be disjoint in X -Y. Sup- 
pose we remove this condition from the definition. Let relation r(R) satisfy 
X -++ Y under the modified definition and let Y’ = Y - X. Under either 
definition, r satisfies X - Y’: Let Z = R - (X Y) = R - (X Y’). Let tl 
and t2 be tuples in r with t,(X) = t2(X). Since X - Y, there must be a tuple 
t3 in r with t3(X) = t,(X), t3( Y) = ti( Y), and &J(Z) = t,(Z). If ts( Y) = ti( Y), 
then t3( Y’) = ti( Y ‘), since Y’ c Y. So r satisfies X - Y’. 

Now suppose that X and Y are disjoint and relation r(R) satisfiesx --H Y. If 
X ’ C X, then X ++ YX ’ under the modified definition of MVD: If tuples ti 
and t2 are in I, and t,(X) = tZ(X), then there is a tuple t3 in T with t3(X) = 
t,(X), tJ(Y) = ti( Y), and t3(Z) = t,(Z). It follows that t3(Y X’) = 
t1(YX’). 

We adopt the modified definition in place of the original. 

Example 7.2 The relation Y shown below satisfies the MVD A B --H B C, 
hence it satisfies the MVD A B - C. 

r(A B C LI) 

a b c d 
a b c’ d’ 
a b c d’ 
a b c’ d 
a b’ c’ d 
a’ b c d’ 

Let us investigate the meaning of the special cases 8 --t* Y andX * @for a 
relation r(R). Recall our assumption that t(@) = h for any tuple t. Consider 
@- Y.L&Z=R - Y. For any tuples t1 and t2 in T, t,(@) = t2(@)..If r 
satisfies @ ++ Y, there must be a tuple t3 E I with t3( Y) = tl( Y) and t3(Z) = 
tz(Z). Therefore, r must be the cross product of the projections xr(r) and 
?Tz(r). 

The MVD X - a> is trivially satisfied by any relation on a scheme con- 
taining X. 
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7.2 PROPERTIES OF MULTIVALUED DEPENDENCIES 

We have formalized the property that distinguishes the instances of the rela- 
tion service in Tables 7.1 and 7.3. Let us see how MVDs are related to lossless 
decomposition. 

Theorem 7.1 Let t be a relation on scheme R, and let X, Y, and Z be subsets 
of R such that Z = R - (X Y). Relation Y satisfies the MVD X --H Y if the 
only if r decomposes losslessly onto the relation schemes RI = X Y and 
R2=XZ. 

Pro& Suppose the MVD holds. Let r1 = xR1(r) and r2 = Q(T). Let t be 
a tuple in ri W r2. There must be a tuple t1 E rl and a tuple t2 E r2 such that 
03 = tt(X> = t*(X), t(Y) = tt( Y), and t(Z) = t2(Z). Since rt and r2 are 
projections of r, there must be tuples ti’ and ti in T with tl(X Y) = t {(X Y) 
and t,(X Z) = tJXZ). The MVD X - Y implies that t must be in r, since r 
must contain a tupfe t3 with t3(X) = t,‘(X), t3(Y) = t{(Y), and t3(Z) = 
t;(Z), which is a description off. 

Suppose now that P decomposes losslessly onto RI and RZ. Let t1 and t2 be 
tuples in r such that t,(X) = tz(X). Let rl and r2 be defined as before. Rela- 
tion rl contains a tuple t 1’ = t,(X Y) and relation r2 contains a tuple ti = 
t,(XZ). Since r = rl W r2, I contains a tuple t such that t(X I’) = t&X Y) 
and t(XZ) = tz(XZ). Tuple t is the result of joining t; and ti. Hence tl and 
t2 cannot be used in a counterexample to X - Y, hence r satisfies X - Y. 

Theorem 7.1 gives us a method to test if a relation r(R) satisfies the MVD 
X - Y. We project r onto X Y and X(R - XY), join the two projections, 
and test if the result is r. There is another method to test MVDs that does not 
require project and join, only some sorting and counting. 

LetZ=R- (XY),R, =XY,andR*=XZ.If 

rt = KR, (r) and r2 = r& (r), 

then r-1 w r2 always contains r. For a given X-value x, suppose there are cl 
tuples in ri with X-value x and c2 tuples in r-2 with X-value x. Let c be the 
number of tuples in r with X-value x. If c = ci - ~2, for any X-value x, then 
r = rl w r2 (see Exercise 7.4). 

We define a function to assist us with our counting. The function 
cw[X = x] maps relations to non-negative integers as follows: 

cw[X = xl (r) = I ~w(UX=~ (r)) I 
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Example 7.3 The value of cD[A B = a b](r) is 2 for the relation r in Exam- 
ple 7.2. 

The function c&X = x] counts the number of different W-values 
associated with a given X-value in a relation. The condition for the MVD 
X --H Y we just discussed can be stated as 

For any X-value x in r, cR[X = xl(r) = q&X = x](r) - c&X = x](r)- 

Since c wx[X = x] = c ,1X = x] , we can simplify this condition to 

For any X-value x in r, cR[X = xl(r) = c,[X = x](r) . cz[X = x](r). 

Example 7.4 For the relation r in Example 7.2, and the MVD A B --H C, 
* 

cABCD[A B = a b](r) = 4, 
cc[A B = a b](r) = 2, and 
cD[A B = a b](r) = 2. 

We see the condition is satisfied for the (A B)-value u b. 

To test a relation r(R) against the MVD X - Y, first let Z = R - (X Y). 
Next, sort the relation to bring equal X-values together. For each X-value, we 
count the number of tuples with the value, the number of different Y-values 
associated with the X-value, and the number of different Z-values associated 
with the X-value. Finally, we test if the first number is the product of the 
other two. 

This test provides another definition of MVD (see Exercise 7.6). 

Definition 7.2 Let I be a relation on scheme R, let X and Y be subsets of R, 
and let Z = R - (X Y). Relation r satisfies the multivalued dependency 
X - Y if for every X-value x and Y-value y in I, such that xy appears in r, 

cz[X = xl (r) = cz[X y = x y] (t'), 

7.3 MULTIVALUED DEPENDENCIES AND FUNCTIONAL 
DEPENDENCIES 

From Theorem 7.1 we can derive the following corollary. 

CorolIary Let r be a relation on scheme R and let X and Y be subsets of R. 
If r satisfies the FD X + Y, then r satisfies the MVD X - Y. 
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Proof From Exercise 6.4, we know that X -+ Y implies r decomposes loss- 
lessly onto X Y and X (R - (X Y)). This result also follows directly from the 
counting definition of MVD. 

Suppose we have a relation scheme R and a set of FDs I; over R. We want 
to know which MVDs must hold in a relation r(R) that satisfies F. From the 
last corollary, we know that if X + Y is in F+, then Y satisfies X --H Y, and, 
by Lemma 7.1, it follows that r satisfies X --t, R - (X Y). Are there any 
MVDs that will always hold on r that do not correspond directly to FDs? The 
answer is no. 

Theo-m 7.2 Let F be a set of FDs over R. Let X, Y, and Z be subsets of R, 
with Z = R - (X Y). Let X+ be the closure of X under F. If Y SC X+ and 
Z $L X+, then there is a relation r(R) that satisfies F and does not satisfy the 
MVDX-Y. 

Proof The proof is similar to that of Theorem 4.1 on the completeness of 
the inference axioms for FDs. Assume R = Al A2 - * - A,. We construct a 
relation r(R) containing only two tuples, t, and t2. Tuple tl is defined as 

and tuple t2 is defined as 

t2 (Ai) = ai ifAiCX+ 
I bi otherwise, 1SiSrz. 

By the proof of Theorem 4.1, Y satisfies all the FDs in F. Since Y 9C X+ 
and Z SE X+, Y must contain an attribute Br not in X+, and 2 must contain 
an attribute B2 not in X+. Thus, t#ll) = bj and t#l2) = bk for somej 
and k. 

Since X C X+ , t,(X) = t,(X). If T satisfiesX - Y, r must contain a tuple 
t3 with t,(X) = t,(X), ts(Y) = tl(Y), and t3(Z) = Q(Z). However, I has 
only two tuples, so t3 = tl or t3 = t2. Suppose t3 = tl. Then t3(B2) = 
tt(B2) # ~032)~ since t#?$ is bk and tl is all a’s, so ts(Z) # tz(Z); a 
contradiction, 

Similarly, we get a contradiction if we assume t3 = t2. Since t2 (Bt) = bj 
and tl is all a’s, t@l) = t#?l) # t&B1), so t3(Yl z t&Y). We must con- 
clude that r does not satisfy the MVD X - Y, 
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From Theorem 7.2 we see that the only MVDs implied by a set of FDs are 
thoseoftheformX* Y,whereYcX+orR -(XY) EX+. 

Example7.5 L&R =ABCDEIandletF= (A -rBC, C+D). ThenF 
implies A tf B C D and A - C, but F does not imply A --H D E. 

7.4 INFERENCE AXIOMS FOR MULTIVALUED DEPENDENCIES 

We have just seen exactly which MVDs are implied by a set of FDs. We now 
consider what MVDs are implied by a set of MVDs and what MVDs and FDs 
are implied by a set of MVDs and FDs. 

7.4.1 Multivalued Dependencies Alone 

The first six inference axioms below are analogs to the FD axioms with the 
same names, although only the first three have exactly the same statement. 
Axiom M7 has no FD counterpart. 

Let r be a relation on scheme R and let W, X, Y, Z be subsets of R. 

Ml. Reflexivity 
Relation r satisfies X -++ X. 

M2. Augmentation 
If r satisfies X --H Y, then r satisfies X Z -H Y. 

M3. Additivity 
If t satisfies X - Y and X - Z, then r satisfies X * Y Z. 

M4. Projectivity 
If r satisfies X - Y and X - Z, then r satisfies X -H Y fl 2 and 
X-Y-Z. 

M5. Transitivity 
If r satisfies X * Y and Y - Z, then r satisfies Y - Z - Y. 

M6. Pseudotrausitivity 
If r satisfies X - Y and Y W - Z, then r satisfies X W - 2 - (Y W). 
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M7. Complementation 
If r satisfies X --H Y and Z = R - (X Y), then r satisfies X --t) Z. 

Axioms Ml and M2 follow immediately from the first definition of MVD 
(see Exercise 7.8). Let us demonstrate the correctness of axiom M3. Let r 
contain tuples tl and t2, with t,(X) = t*(X). We must prove that r contains a 
tuple t such that 

t(X) = t,(x), t(YZ) = t1(YZ), and t(U) = t&U), 

where U = R - (X Y Z). Since r satisfies X --t, Y, it must contain a tuple tg 
such that 

t3W) = t,(x), t3(Y) = tdr>, and t3(V) = tl(V), 

where V = R - (X Y). Since T satisfies X -++ Z, it must contain a tuple t4 
such that 

t4w = t,(-n td(Z) = t,(Z), and tq( W) = t3( w), 

where W = R - (X Z). 

We claim t = t4. Clearly t(X) = t4(X). 

Also 

t4(Z) = t,(Z) = t(Z), and 
t4(Yfl W) = t3CY n W) = t1(Y n W) = t(Y II W), ,so 
t4(YZ) = t(Yz). 

Since U E W fl V. 

f4(U) = t3(U) = tz(U) = t(U). 

We have shown t4 = t, since R = X YZ U. 
We know axiom M7 is correct from Lemma 7.1. We can use axioms M3 

and M7 to prove the correctness of axiom M4. If r satisfies X --H Y and 
X + Z, then, by axiom M3, T satisfies X -++ Y Z. By axiom M7, T must also 
satisfy X --H V, where V = R - (X YZ). Using M3 again, we know T satis- 
fies X --t, VZ. A final application of M7 yields X --H R - (X V Z). 
Substituting and simplifying gives us 
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- (X VZ) = 
:: - (X{R - (X YZ)}Z) = 
R - (X{R - Y)Z) = 
Y - (XZ) = 
(Y - Z) - x. 

Therefore, r satisfies X - (Y - Z) - X, which implies X - Y - Z by the 
discussion in Section 7.1. 

FromX - Ywe getX - W by axiom M7, where W = R - (X I’). 
Combining this with X - Y - Z using axiom M3 yields X --t+ W( Y - Z). 
One more application of axiom M7 gives us X - R - (X W(Y - Z)). 
Substituting, we get 

R - (WX(Y - Z)> = 
R - (X{R - (XY))(Y-Zz)) = 
R - (X{R - Y}(Y - 2)) = 
Y - (X(Y - Z)) = 
(Yf-lZ)--x. 

Thus r satisfies X --H (Y fI Z) - X and hence r satisfies X - Y fI Z. 
To prove the correctness of axiom MS, we first show that X - Y and 

Y-wZimplyX * YZ. Let W = R - (X YZ). We must show that if there 
are tuples tl and t2 in T, with t,(X) = Q(X), then r contains a tuple t such 
that 

t(X) = tm, 
t(YZ) = tI(YZ), and 
t(W) = t2( W). 

From X ++ Y, we get a tuple t3 such that 

t3m = t,(X), t3(Y) = I, and t3(V) = Q(V), 

where V = R - (X Y). Using Y - Z we get a tuple t4 such that 

t4(Y) = tdr), t&3 = t,(Z), and t4(W = t3fU), 

where U = R - (YZ). 
We know td(X) = t,(X), since there is only one possible value for each at- 

tribute A C X. Clearly t4( Y Z) = tl( YZ), Since W E U - X c V, t4( W) = 
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tz( W). Hence, t4 is the tuple t we seek. We have shown r satisfies X -++ Y Z. 
Using axiom M4 and X -++ Y, we finally get X +-+ Z - Y. 

Axiom M6 follows from the other axioms and is left as an exercise.(see Ex- 
ercise 7.10). 

Example7.6 LetR =ABCDEandletF={A++BC,DE+C}. 
FromA ++ B CwegetA - D E by complementation. Transitivity then 
gives us A - C. Using augmentation we get A D - C. Finally, applying 
complementation again yields A D ++ B E. Therefore P != A D + B E. 
Below is a relation r(A B C D E) that satisfies all of these MVDs. 

r(A B C D E) 

a b c d e 
a’ b’ C’ d e 
a’ 6’ c d e 
a b c’ d e 
a” b’ C’ d’ e 

7.4.2 Functional and Multivalued Dependencies 

We now turn our attention to the implications we can make when we have 
FDs and MVDs together. There are only two axioms for FDs and MVDs 
combined. 

Let r be a relation on R and let W, X, Y, Z be subsets of R. 

Cl. Replication 
If r satisfies X -+ Y, then r satisfies X --H Y. 

C2. Coalescence 
IfrsatisfiesX-t,YandZ+W,whereWE YandYflZ= Q),thenr 
satisfies X + W. 

Axiom Cl is a consequence of the corollary to Theorem 7.1. We prove the 
correctness of axiom C2. Let tl and t2 be tuples in Y with ti(X) = t2(X). Since 
t satisfies X + Y, there must be a tuple t in z such that 

t(X> = trm, t(Y) = tl(Yl, and t(v) = t2(V), 

where V = R - (X Y). Since Y n Z = 8, Z G X V, hence t(Z) = t&Z). 
The FD Z + W means that t(W) = t2(W). However, W G Y, so tl(W) = 
t(W) = tz( W), hence r satisfies X + W. 
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Example 7.7 Let R = A B CD E and let F = {A - BC, D -+ C}. Axiom 
C2 implies F e A + C. Below is a relation r(A B C D E) that satisfies these 
FDs and MVDs. 

r(A B C D E) 

a b c’ d e 
a b’ c’ d’ e’ 
a b’ c’ d e 
a b c’ d’ e’ 

7.4.3 Completeness of the Axioms and Computing Implications 

We shall only state the completeness results for inference axioms involving 
MVDs; we shah not prove them here. 

Theorem 7.3 Inference axioms Ml-M7 are complete for sets of MVDs. 

Theorem 7.4 Inference axioms Fl-F6, Ml-M7, and Cl and C2 are com- 
plete for sets of FDs and MVDs. 

As a consequence of Theorem 7.4, we see that a set of MVDs alone implies 
no FDs other than trivial ones; that is, FDs of the form X -+ Y, where X con- 
tains Y. This observation follows from the form of the inference axioms. 
Fl-F6 can only derive trivial FDs from trivial FDs; Ml-M7 and Cl cannot 
derive any FDs; axiom C2 does not apply when the FD involved is trivial. 

Axioms Cl and C2 are necessary. Without axiom Cl, MVDs could not be 
derived from a set of only FDs. It is left as an exercise to find an example 
where axiom C2 derives an FD that could not be derived from axioms Fl-F6 
alone from a given set of FDs and MVDs (see Exercise 7.12). 

We shall not develop a membership algorithm for MVDs or FDs and 
MVDs, although polynomial-time algorithms exist in both cases. We shall, 
however, discuss some of the concepts used in these algorithms, since these 
concepts help give a better picture of the dependency structure implied by a 
set of MVDs. 

Defiuitiou 7.3 Given a collection of sets S = { Sl, S2, . . . , S, ), where U = 
s1 u sz u - * - U S,,, the minimal disjoint set basis of S (mdsb(S)) is the 
partition Tl, T2, . . . , T4 of U such that: 

1. Every Si is a union of some of the Tj’S. 
2. No partition of U with fewer cells has the fist property. 
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The reader should take a moment to convince himself or herself that the 
m&b(S) is unique as defined. The m&b(S) is formed by grouping together 
elements in U that are contained in exactly the same set of Sis. 

Example 7.8 Let S =(ABCD,CDE,AEj.WehaveU=ABCDE 
and m&b(S) = A, B, CD, E. 

Let F be a set of MVDs over R and let X E R. Define G as 
G={Y(F!=X- Y>. 

We claim m&b(G) is a subset of G. If there is a set Y1 in G such that Y1 
contains attributes both in and out of some other set Y, in G, then, by axiom 
M4, there are sets Y, = Y, - Y, and Y, = Y1 n Y, in G. Mdsb(G) con- 
sists exactly of those nonempty sets of G that contain no other set of G as a 
subset. Note that if X = Al A2 p . l A,,, then Al, AZ, . . . , A, are all in 
mdsb(G). 

Definition 7.4 Let F, X, and G be as defied above. The dependency basis 
of X with respect to F is mdsb(G) and is denoted DEP(X). If X = 
AI A2 . . - A, and DEP(X) = (A,, A2, . . . , A,, Yl, Y2, . . . , Y, }, we write 
x - Y,lY,l--.IY,. 

Example 7.9 Let F = {A - BC, DE - C) be a set of MVDs over 
ABCDE. If X = A, then G = {A, BC, DE, C, BDE, B, BCDE, CDE) and 
DEP(A) = mdsb(G) = (A,B,C,DE}. 

We can recover all MVDs implied by P with X as the left side from 
DEP(X). F i= X - Y if and only if Y is the union of some sets in DEP(X). 
Y must be in G, so Y is the union of some sets in DEP(X). In the other direc- 
tion, by axiom M3, if Y,, Y2, . . . , Yk are in DEP(X), then F E X + Yl Y, 
. . . Yk- 

The membership algorithm for MVDs tests if a set of MVDs implies an 
MVD X - Y by first computing DEP(X) with respect to F and then check- 
ing if Y can be formed from sets in DEP(X). The procedure for computing 
the dependency basis of X has three stages. 

1. Find the set G of all sets Y such that the MVD X -++ Y follows from F 
by augmentation of complementation. That is, for any MVD X ’ --w 
Y’inFwhereX’cX,addY’andR-(X’Y’)toG.AlsoaddAto 
G for every A E X. 

2. Let DEP(X) = mdsb(G). 
3. Look for an MVD W - Z that can be used to refine DEP(X) with 



Fourth Normd Form 135 

transitivity. That is, let Yi, Yz, . . . , Y, be sets in DEP(X) such that 
w c_ Yl Y, - - * Yk* Let Y = Yl Y2 *** Y,. By augmentation, since 
W C Y, F = Y - Z. By transitivity, X - Z - Y. If Z - Y is the 
union of some sets in DEP(X), we cannot refine DEP(X). If not, let 
DEP(X) = mdsb(DEP(X) U {Z - Y}). If no MVD in P can be 
used to change DEP(X), stop. 

Example 7.10 Let F = (A -BC,DE-C)beasetofMVDsover 
A B CD E. To compute DEP(A), we first find G = {BC, DE, A }. We then 
set DEP(A) = (B C, D E. A }. We then use transitivity on D E --t) C to get 
A-CandrefineDEP(A)tomdsb((BC,DE,A}UC)={B,C,I)E,A}. 
We can make no further refinement to DEP(X). 

We shall not attempt to prove the correctness of the procedure for com- 
puting DEP(X). Observe, however, that the time complexity of the pro- 
cedure is bounded by a polynomial in the size of F. D&?(X) can contain at 
most IR 1 sets, thus DEP(X) can be refined at most [R - Xl - 1 times in 
step 3. (Any attribute in X is in DEP(X) as a singleton set from the start.) 

Computing directly which FDs and MVDs are implied by a set P of FDs 
and MVDs requires redefining X+ and DEP(X) to take account of the ef- 
fects of axioms Cl and C2. For these redefinitions, there exists a polynomial- 
time algorithm to compute Xf and DEP(X), from which F K X -+ Y or P I= 
X --H Y can be decided. In Chapter 8 we shall develop another method to 
test if an FD or MVD follows from F. 

7.5 FOURTH NORMAL FORM 

We know that any relation r(R) that satisfies the MVD X --H Y decomposes 
losslessly onto the relation schemes X Y and X Z, where Z = R - (X Y). 
However, if X --H Y is the only dependency on R, then R is in 3NF. 
Therefore, 3NF is not guaranteed to find ail possible decompositions. 

Definition 7.5 An MVD X --H Y is trivial if for any relation scheme R with 
X Y s R, any relation r(R) satisfies X --++ Y. 

It is left to the reader to show that the trivial MVDs on a relation r(R) are 
exactly those of the form X ++ Y where Y c X or X Y = R (see Exercise 
7.14). If X - Y is trivial, and we attempt to decompose a relation r(R) us- 
ing it, one of the projected relations will be all of r. There is no benefit in such 
a decomposition. 
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Definition 7.6 An MVD X tf Y applies to a relation scheme R if X Y c R. 

Definition 7.7 Let F be a set of FDs and MVDs over U. A relation scheme 
R E U is in fourth normal form (4NF) with respect to F if for every MVD 
X + Y implied by P that applies to R either the MVD is trivial or X is a 
superkey for R. A database scheme R is in fourth normal form with respect 
to F if every relation scheme R in R is in fourth normal form with respect 
to F. 

Example 7.11 Let relation scheme R = FLIGHT DAY-OF-WEEK PLANE- 
TYPE and let F = { FLIGHT +-+ DAY-OF-WEEK}. R is not in 4NF with 
respect to F. The data-base scheme R = FLIGHT DAY-OF-WEEK, 
FLIGHT PLANE-TYPE is in 4NF with respect to F. Any relation r(R) that 
satisfies F decomposes losslessly onto the relation schemes in R. 

Let us consider the case where we have the MVD X --t) Y holding on rela- 
tion scheme R, but X is a key of R. For any relation r(R > the projections 

rl = n&r) and r2 = q&r), 

where Z = R - (X Y), both have the same number of tuples as r. There are 
no duplicate X-values in r, so there are as many X-values as tuples. Any pro- 
jection containing the attributes in X must contain all the different X-values. 

There is never anything to be gained by such a decomposition. X Y-values 
and X Z-values are not duplicated in r, so no redundancy is removed by the 
decomposition. No space is saved either. Assuming that each entry in a rela- 
tion takes one unit of storage space, the relation r takes 1 r 1 - 1 R 1 units 
(where ) r ] is the number of tuples in r). The relations t-1 and r-2 together take 
Irl - (JR11 + lR2lh 

Example 7.12 Let F = (A -+ B C, C --H D E} be a set of dependencies 
over the relation scheme R = A B C D E. R is not in 4NF with respect to F 
because of the MVD C --H D E. The database scheme R consisting of the two 
relation schemes 

R1=ABC and R2=CDE 

is in 4NF with respect to F, even though the MVD A --H B is implied by F 
and applies to RI. A -+-+ B is not trivial, but A is a key for RI. 
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We can construct 4NF database schemes from a relation scheme R and a 
set I; of FDs and MVDs by decomposition in much the same way we con- 
structed 3NF database schemes. We start with relation R and look for a non- 
trivial MVD X - Y implied by F, where X is not a key for R. We split R 
into the two relation schemes 

RI =XY and R2 =XZ, 

whereZ =R - (X Y). The MVD X - Y is now trivial on RI and does not 
apply to Rz. If either of RI or Rz is not in 4NF with respect to F, we repeat the 
decomposition process on the offending scheme. Since the MVDs we are us- 
ing are not trivial, both newly formed relation schemes have fewer attributes 
than the original relation scheme. Therefore, the decomposition process 
eventually halts. 

Let R be a 4NF database scheme obtained by decomposition from a rela- 
tion scheme R and let F be a set of FDs and MVDs. Any relation r(R) that 
satisfies F decomposes losslessly onto the relation schemes in R (see Exercise 
7.15). 

Example 7.13 Let F = {A --t, B C D, B --) A C, C --, 01 be a set of 
dependencies over the relation scheme R = A B C D E I. Since A - B C D 
is a nontrivial MVD and A is not a key for R, we decompose R into the rela- 
tion schemes 

R1=ABCD and RZ=AEI. 

R2 is in 4NF with respect to F. F implies the MVD B --+-) A C on R, but this 
MVD is not a candidate for use in decomposition because B is a key for RI, 
since C --* D. However, C --) D implies the MVD C --w D, which we can use 
to decompose RI. The result is the relation schemes 

Rll=ABC and R12=CD. 

Both of these schemes are in 4NF with respect to F. The database scheme 
R = {RI,, R,z, R2} is thus in 4NF with respect to F. 

7.6 FOURTH NORMAL FORM AND ENFORCEABILITY OF 
DEPENDENCIES 

We now ask if, for a set of FDs and MVDs F, we can always find a database 
scheme in 4NF with respect to F upon which F is enforceable. The first prob- 
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lem is that the question is not quite well-posed. The definition of enforce- 
ability we use for FDs does not make sense for MVDs. 

A set of FDs F is enforceable on a database scheme R if there is a set of 
FDs G equivalent to F such that G applies to R. This definition is a 
reasonable one for IDS for the following reason. Suppose R is a database 
scheme over U and d is a database on R that is the projection of a single rela- 
tion r(U). If we can find the actual functional relationship for each FD 
X + Y in G (that is, the corresponding Y-value for each X-value) from d, 
and G I= V -+ W, then we can recover the actual functional relationship for 
V --t W from d. The relationship can be reconstructed following the inference 
axioms as they are applied to derive V -+ W from G (see Exercise 7.16). 

The same property is almost true for MVDs. The problem is the com- 
plementation axiom, M7. Consider the data base scheme R = {RI, R2 1, 
where RI =ABandRz==C,andthesetI;={A*B}.Supposedisa 
database on R obtained by projecting a relation r(A B C). We can recover the 
multivalued relationship for A - B in r from d. However, F I= A --t) C, but 
we cannot reconstruct the multivalued relationship for A - C from d. Any 
definition of enforceability for MVDs must deal with the problem of 
complementation. 

Even if we can arrive at an appropriate definition of enforceability for 
MVDs, we still are not assured of having 4NF and enforceability, as the next 
result shows. (Recall that in Example 6.26 we saw a set of FDs that was not 
enforceable on any BCNF scheme.) 

Lemma 7.2 If a relation scheme R is in 4NF with respect to a set F of FDs 
and MVDs, then R is in BCNF with respect to the set of FDs implied by F. 

Proof Suppose R is not in BCNF. Then we must have subsets K, Y, and A of 
RsuchthatKisakeyforR,AgKYandK *Y, Y%KandY*Aunder 
F. The FD Y -+ A implies the MVD Y - A. Y is not a key for R, since 
Y +K. Y - A is not trivial, since A is not contained in Y and YA Z R, be- 
cause there must be some attribute B in K that is not in Y. Therefore, R is 
not in 4NF with respect to F. 

There have been attempts at finding a synthetic approach to constructing 
4NF database schemes from a set of MVDs and FDs. So far, these attempts 
have not met with as much success as the synthesis schemes for FDs alone. 
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7.7 JOIN DEPENDEMXES 

MVDs are an attempt to detect lossless decompositions that will work for all 
relations on a given relation scheme. However, MVDs are not completely 
adequate in this regard. A relation can have a nontrivial lossless decomposi- 
tion onto three schemes, but have no such decomposition onto any pair of 
schemes (see Exercise 6.7). By Theorem 7.1, such a relation satisfies only 
trivial MVDs (see Exercise 7.17). 

Example 7.14 The relation ~$4 B C) in Figure 7.1 decomposes losslessly 

r(A I3 C) 

a1 bl Cl 

al bz ~2 

a3 b3 c3 

a4 b3 ~4 

a5 bs cs 

a6 k, Cs 

Figure 7.1 

onto the relation schemes A B, A C, and B C. The projections are shown in 
Figure 7.2. However, r satisfies no nontrivial MVDs, so it has no Iossless 

rAB(r)=A B 

a1 bl 
al b2 

~3 b3 

a4 b3 

a5 b5 

a6 b6 

rAC(r)=A C 

Ql Cl 

al ~2 

a3 c3 

a4 ~4 

a5 ~5 

a6 cS 

Figure 7.2 

r~~c(r)=B C 

bl Cl 

bz ~2 

b3 ~3 

b3 ~4 

b5 ~5 

b6 cS 

decomposition onto any pair of relation schemes R 1 and R2 such that RI # 
ABCandR2 #ABC. 

Definition 7.8 Jkt R = (RI, RZ, , . . , R, ) be a set of relation schemes over 
U. A relation r(U) satisfies thejoin dependency (JD) *[RI, RZ, . . ., RJ if T 
decomposes losslessly onto RI, R2, . . . , R,. That is, 
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We also write *[RI, R2, . . . , RP] as *[RI. 

Example 7.15 Relation I in Figure 7.1 satisfies the JD *[A B, A C, B Cl. 

A necessary condition for a relation r(U) to satisfy the ID *[RI, R2, . . . , 
RP] is that U = RI R2 . - . R,. We also see from the definition that an MVD 
is a special case of a ID. A relation r(R) satisfies the MVD X -++ Y if and 
only if T decomposes losslessly onto X Y and X 2, where 2 = R - (X Y). 
This condition is just the JD *[X Y, X Z]. Looking from the other direction, 
the join dependency *[R 1, R2] is the same as the MVD RI f-I Rz - RI. 

We can also define IDS in a manner similar to the definition of MVDs. Let 
r satisfy *[RI, Rz, . . ., RJ. If r contains tuples tr, t2, . . . , tP such that 

ti (Ri f~ Rj) = tj (Ri fl Rj) 

for all i and j, then r must contain a tuple t such that t(Rj) = ti(Ri), 
1 lisp. 

Example 7.16 Suppose relation r(A B C D E) satisfies the JD *[ABC, BD, 
CDE] and contains the three tuples shown below. Using our 

r(A B C D E) 

t1 a b c d e 
t2 a’ b c’ d’ err 
t3 u” b’ c d’ e’ 

alternative characterization of IDS, we see that Y must also contain the tuple 
t =(abcd’e’). 

We shall not present inference axioms for JDs. In Chapter 8 we shall see 
a method for testing if a set of FDs and IDS (including MVDs) implies a 
given JD. 

7.8 PROJECT-JOIN NORMAL FORM 

The point of seeking lossless decomposition is to remove redundancy from 
relations. We have seen lossless decompositions that do not correspond to 
MVDs, hence 4NF is not the ultimate in terms of finding lossless decomposi- 
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tions. We shall fist define project-join normal form with only decomposition 
in mind. We then modify the definition slightly to meet another criterion. 

Definition 7.9 A JD *[RI, Rz, . . . , RP] over R is trivial if it is satisfied by 
every relation r(R). 

We leave it to the reader to show that the trivial JDs over R are JDs of the 
form “[R,, R2, . . . , RJ where R = Rj for some i (see Exercise 7.22). 

Definition 7.10 A JD *[RI, Rz, . . ., Rp] applies to a relation scheme R if 
R = RIRz -e-R,. 

Definition 7.11 Let R be a relation scheme and let &’ be a set of FDs and 
JDs over R. R is in project-join normal form (PJNF) with respect to F if for 
every JD *[R,, Rz, . . ., RP] implied by F that applies to R, the JD is trivial or 
every Ri is a superkey for R. A database scheme R is in project-join normal 
form with respect to I; if every relation scheme R in R is in project-join nor- 
mal form with respect to F. 

Example 7.17 Let F = (*[A B C D, C D E, B D I], *[A B, B C D, A Dl, 
A --f B C D E, B C --, A I} be a set of dependencies over the relation scheme 
R = A B C D E I. R is not in PJNF with respect to F because of the JD 
*[A B C D, C D E, B D I]. The database scheme R = { R1, RZ, R3), where 
R, = A B CD, R2 = CD E, and R3 = B D I, is in PJNF with respect to F. 
The JD *[A B, B CD, A D] is implied by lc and applies to R1, but each set of 
attributes is a superkey for R1. The MVDs implied by the FDs are either 
trivial or have keys as left sides. 

The reason for allowing a JD *[R,, R2, . . . , R,,] to apply to a reiation 
scheme R and not violate PJNF when every Ri is a superkey is the same as for 
4NF. If every Ri is a key, then all projections of a relation r(R) onto the Ris 
will have the same number of tuples as T and no redundancy will be removed. 

The definition of PJNF above is a weaker condition than the original 
definition of PJNF as given by Fagin. Besides eliminating redundancy, the 
original definition ensures enforceability of dependencies by satisfying keys. 

Definition 7.12 (revised) Let R be a relation scheme and let F be a set of 
FDs and JDs. R is in projection-join normalform (PJNF) with respect to F if 
for every JD * [RI, Rz, . . ., RP] implied by F that applies to R, *[RI, Rz, 
. . a, RP] is implied by the key FDs of R. 
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We leave it to the reader to show that the revised definition is stronger than 
the first one given (see Exercise 7.24). The following example shows it is 
strictly stronger. 

Exampk7.18 LetR =ABCandletF=(A+BC, C*AB,*[AB, 
B C] }. Since A B and B C are superkeys of R, R satisfies the fist definition of 
PJNF. However, R does not satisfy the revised definition (see Exercise 7.2Sa). 

PJNF implies 4NF, so PJNF and enforceability of dependencies are not 
always compatible (see Exercise 7.23). PJNF schemes can be constructed by 
decomposition of a relation scheme using the JDs that cause PJNF violations 
as guides. We shall see in Chapter 8 how to test when a set of FDs implies a ID. 

7.9 EMBEDDED JOIN DEPENDENCIES 

Given a relation r(R) and an FD X --) Y, if X + Y holds on ns(r), for X Y C 
S C R, then X -+ Y holds on all of r, The same is not true for IDS, as the next 
example shows. 

Example 7.19 Consider the relation r(A B C D) shown in Figure 7.3. The 
projection TA B &P) satisfies the MVD A --H B, but t itself does not. 

rtA B C II) 

a b c d 
a b’ c d 
a b C’ d’ 
a b’ c’ d 
a’ b’ c’ d’ 

Figure 7.3 

Definition 7.13 Relation r(R) satisfies the embedded join dependency 
W-W *[RI, R2, . . . , RP] if rs(r) satisfies *[RI, R2, . . . , RP] as a regular JD, 
where S = RI R2 - - - R,. We allow R = S. That is, every JD is an EJD. We 
also write the embedded multivalued dependency (EMVD) *[X Y, X Z] as 
X - Y (Z) (read ‘X multivalued determines Yin the context of Z”). 

Example 7.20 The relation r in Figure 7.3 satisfies the EMVD A - B (C). 

No complete axiomatizations are known for EJDs although complete proof 
procedures exist for classes of dependencies containing ‘Ends. 
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7.10 EXERCISES 

7.1 Modify the relation t below to satisfy the MVDs A --t+ B C and C D 
--H B E by adding rows. 

r(A B C D El 

a b c d e 
a b’ c d’ e 
a’ b c d e’ 

7.2 Prove Lemma 7.1. 
7.3 Prove that if the relation T(R) satisfies the MVDs X + Yr, X --w Yz, 

. . ., X ---H Y,, where R = X YI Yz - - . Yk, then r decomposes loss- 
lessly onto the relation schemes X Yr , X Yz, . . . , X Yk. 

7.4 Let r(R) be a relation where RI S R, R2 E R and R = RI R2. Prove 
that r = I, w Q&T) if and only if cRIX=x](r) = 
c~,[X=x](r) - cR2[X=x](r) for every X-value x in T. 

7.5 Prove that if a retation r(R) satisfies X -H Y and Z = R - (X Y), 
then 

7li(ux=,(r)) = ?T&~y=&)) 

7.6 
7.7 
7.8 
7.9 

7.10 

7.11 

7.12 

7.13 

7.14 

7.15 

for every X Y-value x y in r. 
Prove the equivalence of the two definitions of MVDs. 
Characterize the set of MVDs implied by the single FD X + Y. 
Prove the correctness of inference axioms Ml and M2. 
Let I be a relation on scheme R and let W, X, Y, 2 be subsets of R. 
Show that if t satisfies X -H Y and Z C W, then I satisfies 
xw- YZ. 
Prove the correctness of inference axiom M6 using axioms Ml-MS 
and M7. 
Let r be a relation on scheme R and let X, Y, Z be subsets of R. Show 
that if f satisfies X - Y and X Y + Z, then r satisfies X + Z - Y. 
Give a set of FDs and MVDs from which an FD can be derived using 
axiom C2 that cannot be derived using axioms Fl-F6. 
Eid DEP(A C) under the set F = (A ++ E I, C - A B ) of MVDs 
over the relation scheme R = A B C D E I. 
Show that an MVD X --t, Y over R is trivial if and only if X 2 Y or 
XY=R. 
Let R be a 4NF database scheme obtained by decomposition from a 
relation scheme R and a set F of FDs and MVDs. Show that any rela- 
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tion r(R) that satisfies F decomposes losslessly onto the relation 
schemes in R. 

7.16 Let R = (RI, RZ, . . ., R, ) be a database scheme over U and let d = 
C r1, f-2, - * *, rP > be a database over R that is the projection of a single 
relation r(U). That is, ri = rRi (r), 1 5 i 5 p. Show that if the FDs 
X + Y and Y + 2 apply to R, then it is possible to recover the actual 
functional relationship for X -+ Z in r from d. 

7.17 Show that a relation r(R) has no lossless decompositions onto any pair 
of relation schemes R1 and R2, where RI # R and R2 # R, if and only 
if r satisfies only trivial MVDs. 

7.18 Give an example of a relation r(A B C D E) that satisfies the .lD 
*[A B C, B D E, A C E] but satisfies no nontrivial MVD. 

7.19 What does it mean for a relation r to satisfy a JD *[RI, R2, . . ., RJ 
where all the Ri’s are disjoint? 

7.20 Let relation r satisfy *[RI, R2, . . . , Rp]. If tl, t2, . . . , t, are tuples in r 
such that ti(Ri f~ Rj) = tj(Ri n Rj) for all i and j, show that t{, ti, 
. . ., td are joinable, where ti= ti(Ri). 

7.21 Let “[RI, R2, . . . . R,]and*[S,,Sz, . . . . S,] be JDs such that for each 
Ri, 1 5 i I p, there exists an Sj such that Ri 1 Sj. Show that *[S,, Sz, 
. . ., S4] implies *[RI, R2, . . . , RJ. 

7.22 Show that a JD *[RI, R2, . . . , RP] over R is trivial if and only if R = 
Ri for some i. 

7.23 Show that I?TNF implies 4NF. 
7.24 Show that the revised definition of PJNF implies the first definition 

given. 
7.25 Refer to Example 7.18. 

(a) Give a relation over R with keys A and C that violates *[A B, B C]. 
(b) Show that decomposing a relation over R that satisfies I; onto 

(A B, B C} requires more space than the original relation. 
7.26 Show that the JD *[A B C, B D E, A E I] over A B CD E 1 implies the 

EJD *[A B, B E, A El, but not the EJD *[B C, B 0, A I]. 
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class of dependencies is undecidable. There is no contradiction here, since 
the proof procedure is for finite and infinite relations. An implication state- 
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