Chapter 8

PROJECT-JOIN MAPPINGS,
TABLEAUX, AND THE CHASE

We did not present a set of inference axioms for JDs in Chapter 7. Instead, in
this chapter we present a method for deciding if a given FD or JD is implied
by a set of FDs and IDs.

8.1 PROJECT-JOIN MAPPINGS

The criterion for a relation r(R) decomposing losslessly onto a database
scheme R = {Ry, R,, ..., R,} is that r = mp,(r) D<I 7p,(r) D1 -+ P
wg,(r). The right side of this equation is rather cumbersome, so we give a
shorter notation for it.

Definition 8.1 Let R = {R;, R;, ..., R,} be a set of relation schemes,
where R = RR; --- R,. The project-join mapping defined by R, written
mg, is a function on relations over R defined by

mg(r) = mg,(r) D wy(r) D - - - DA wg (7).
Example 8.1 Let R = ABCDE and let R = {ABD, BC, ADE}. Consider
the relation r(R) in Figure 8.1. The result of applying mpg to 7 is the relation

s(R) shown in Figure 8.2, Applying mpg to s gives back relation s.

rA B C D F)
a b ¢ d e

a b' ¢ d e

a b' ¢ d' e’

a b ¢ d e’
Figure 8.1

146

Project-Join Mappings 147

sA B C D E)
a b ¢ d e
a b’ ¢ d e
a b' ¢ d' e’
a b ¢ d e’
a b ¢ d e

Figure 8.2

Saying that a relation r(R) satisfies the JD *[R] is the same as saying
mg(r) =r.

Definition 8.2 LetR = {Ry, R,, ..., R}, where R = RyR; -+ R,. Rela-
tion r(R) is a fixed-point of the mapping myg if mg(r) = r. The set of all
fixed-points of mpg is denoted FIX(R).

Example 8.2 If R = {ABD, BC, ADE}, then the relation r in Figure 8.1 is
not in FIX(R), while the relation s in Figure 8.2 is in FIX(R).

We present some other properties of project-join mappings.

Lemma 8.1 LetR = {R;, R;, ..., R,} be a set of relation schemes whete
R = R\R; --+ R, and let r and s be relations over R. The project-join map-
ping my has the following properties:

1. r € mg(r);
2. if r € s, then mg(r) S mg(s) (monotonicity);
3. mgr(r) = mgr(mg(r)) (idempotence).

Proof The proof of part 1 is left to the reader (see Exercise 8.2). Part 2
follows from the observation that r & s implies wg(r) S 7x,(s), 1 =i =< p.
Let r' = mg(r); part 3 follows from the property that wg,(r), wg,(r),
..., mR,(r) join completely (see Exercise 2.16), hence wg(r) = mg(r’), 1 =<
i <p.

We would like to know when relations on a relation scheme R can be

represented as databases on a database scheme R such that

1. there is no loss of information, and
2. redundancy is removed.

In practice, we are not interested in all possible relations on scheme R, only
some subset. Call it P. The first point above corresponds to saying that for

148 Project-Join Mappings, Tableaux, and the Chase

every telation r in P, mg(r) = r. That is, P & FIX(R). The second point
seems to require that if we project a relation r in P into the schemes in R,
some of the projections have fewer tuples than r.

The set P will usually be infinite, hence it cannot be described by enumera-
tion. Rather, P will frequently be specified by a set of constraints (such as
FDs or JDs) on relations ot R.

Definition 8.3 Let C be a set of constraints on a relation scheme R.
SATR(C) is the set of all relations r on R that satisfy all the constraints in C.
We write SAT(C) for SATy (C) when R is understood, and we write SAT»(c)
for SATR({c}), where c is a single constraint.

We can now state precisely the notion of implication we have been using
informally in our discussions of MVDs and IDs.

Definition 8.4 Let C be a set of constraints over relation scheme R. C im-
plies ¢, written C &= ¢, if SATR(C) € SATR(c).

If P = SAT(C) for some set of constraints C, then our condition requiring
no loss of information for databases on database scheme R can be stated as

SAT(C) < FIX(R) or
C = *(R]

In subsequent sections we shall develop a test for this condition, when C is
composed of JDs and FDs.

8.2 TABLEAUX

In this section we present a tabular means of representing project-join map-
pings; a tableau. A tableau is similar to a relation, except, in place of values,
a tableau has variables chosen from a set V. V is the union of two sets, Vj,
and V,. V, is the set of distinguished variables, denoted by subscripted a's,
and V, is the set of nondistinguished variables, denoted by subscripted b’s.
(We shall use variable and symbol synonymously in this context.) A tableau,
T, is shown in Figure 8.3. The set of attributes labeling columns in the
tableau, in this case A; A, A3 Ay, is the scheme of the tableau. What would
be tuples in a relation are referred to as rows of the tableau.

Tableaux 149

TA, A, A; Ay
a by a3 by
b3 a; 4ajz b4
a b5 as ay

Figure 8.3

We restrict the variables in a tableau to appear in only one column. We
make the further restriction that at most one distinguished variable may ap-
pear in any column. By convention, if the scheme of atableauisA; 4, --- A4,
then the distinguished variable appearing in the A;-column will be a;.

A tableau T with scheme R can be viewed as a pattern or template for a
relation on scheme R. We get a relation from the tableau by substituting do-
main values for variables. Assume R = A; A, --- A, and let

D= U?:‘l dom(Ai).

A valuation for tableau T is a mapping p from V to D such that p(v) is in
dom(A;) when v is a variable appearing in the A,-column. We extend the
valuation from variables to rows and thence to the entire tableau, If w =
{v(vy -++ v,) is a row in a tableau, we let p(w) = (p(v)) p(v2) -+ p(v,)).
We then let

o(T) = {p(w) | wisarowin T},

Example 8.3 Let p be the valuation listed in Figure 8.4. The result of apply-
ing p to tableau T in Figure 8.3 is the relation 7 in Figure 8.5.

pla)) =1 p(b) =4
plaz) =3 (b)) =8
plaz) =35 plb3) =2
plap =7 olby) =7

plbs) =4

Figure 8.4

r(Ay, Ay Az Ag)

1 4 S5 8
2 3 5 7
1 4 5 7

Figure 8.5

150 Project-Join Mappings, Tableaux, and the Chase

8.2.1 Tableaux as Mappings

We can interpret a tableau T with scheme R as a function on relations with
scheme R. Let w; be the row of all distinguished variables. That is, if R =
Ay - A, wy = Lajay - a,). (Row wy is not necessarily in 7.) if ris a
refation on scheme R, we let

T(r) = {p(wy) | p(T) S r}.
This definition says that if we find a valuation p that takes every row in Tto a

tuple in r, then p(w,) is in T(r).

Example 8.4 Let r be the relation shown in Figure 8.6 and let T be the
tableau in Figure 8.3. The valuation p in Figure 8.4 shows us that the tuple
(13 57) must be in T(r). The valuation p ' in Figure 8.7 puts (2435 7) in
T(r). All of T(r) is given as relation s in Figure 8.8.

r(A, A2 A3 A4)

1 4 5 8
2 3 s 7
i 4 S5 7
2 3 6 7
Figure 8.6

p(a)=2 p'(by) =3
pla) =4 p'(by)=7
p'(az) =95 p'(bs) =1
p'lag) =7 p'(by) =8

p'(bs) =3

Figure 8.7
T(r)=s(A; Ay A3 Ag

N L
W W h i b
NN L n
~N N N0

Figure 8.8

Tableaux 151

When evaluating 7'(r), if the A;-column in T has no distinguished variable
in it, then there is no restriction on the value of p(a;). If p(T) < r, then p '(T)
c r, for any p’ that agrees with p on V except on g;. Thus, if dom(A4;) is infi-
nite, T(r) can have infinitely many tuples and hence will not be a relation.
Whenever we want to consider a tableau 7 as a function from relations to
relations, we require that T have a distinguished symbol in every column (see
Exercise 8.5).

8.2.2 Representing Project-Join Mappings as Tableaux

It is always possible to find a tableau T that represents the same function as
any project-join mapping mg. Let R = {Ry, R, ..., R, } be a set of relation
schemes, where R = R(R; --- R,. The tableau for R, Ty, is defined as
follows: The scheme for T'g is R. Tx has p rows, wy, wy, ..., w,. Assume
R = A; A, --- A,. Row w; has the distinguished variable a; in the A;-column
exactly when 4; € R;. The rest of w; is unique nondistinguished sym-
bols—nondistinguished symbols that appear in no other rows of Tg.

Example 8.5 Let R = {A4,A4,, A;A;, A3A,}. The tableau Ty is shown in
Figure 8.9,

Tr(A; Ay A3 Ay)
aq a bl b2
b3 a, as b4
b5 b6 as ay

Figure 8.9

Lemma 8.2 LetR = {Ry, Ry, ..., R, } be a set of relation schemes, where
R = RR; --- R,. The project-join mapping myg and the tableau Ty define
the same function between relations over R.

Proof Left to the reader (see Exercise 8.7).

Example 8.6 If R = {A4,4,, A»A3, A3A,} and r is the relation shown in
Figure 8.10, then mg(r) = Tgr(r) = s, where s is the relation in Figure 8.11.

r(A, A, A3 Ay

1 3 5 7
1 4 5 7
2 3 6 8

Figure 8.10

152 Project-Join Mappings, Tableaux, and the Chase

s(A; A; Aj ,24/41)

1 3 5 v
1 3 6 8
1 4 5 7
2 3 5 7
2 3 6 8
Figure 8.11

8.3 TABLEAUX EQUIVALENCE AND SCHEME EQUIVALENCE

Definition 8.5 Let 7, and T, be tableaux over scheme R. We write T, 2 T,
if T1(r) 2 T5(r) for all relations r(R). Tableaux T; and T, are equivalent,
written 7'y = Tz, lfT1 = Tzande 3 Ty. That is, T, = Tzile(r) = Tz(r)
for every relation r(R).

Example 8.7 Let T, and T, be the tableaux in Figures 8.12 and 8.13,
respectively. Ty 2 T,. For example, if r is the relation in Figure 8.10, T'((r) is
the relation s in Figure 8.11, while T)(r) = r.

Ti(A; A, A; Ay

ay a by b,
b3 5] as b4
bs b6 das ay

Figure 8.12

Ty A, A, A; Ay)

a, a, a3 b

b2 b3 [2%] [7

Figure 8.13

Definition 8.6 IetR = {R|,R;, ...,R,}and S = {8, 8,, ..., §,} be
sets of relation schemes, where RiR; --- R, = §182 --- S, = R. Rcovers S,
written R = 8, if for every scheme §; in S, there exists an R; in R such that R;
2 §;. We say R and S are equivalent, written R = S, if R = § and
S=R

Example 8.8 If R = {A4,4,, A,A;, A3A,} and S = {414,443, A3A,4},
then R < S.

Tableaux Equivalence and Scheme Equivalence 153

Theorem 8.1 LetR = {R{, Ry, ...,R,}and S = {§,, 5, ..., 5, } be sets
of relation schemes, where R(R; --- R, = 8183 -+ §; = R. The following
are equivalent:

1. mg(r) 2 mg(r) for all relations r(R).
2. TR 2 Ts.

3. FIX(R) € FIX(S).

4. R = S.

Proof By Lemma 8.2, 1 and 2 are equivalent. We next show 1 and 3 are
equivalent.

Suppose mgr(r) 2 mg(r) for all relations r(R). Let s be in FIX(R). Since
mg(s) = 5, s 2 ms(s). But, by Lemma 8.1, s S mg(s). Therefore s = mg(s)
and s € FIX(S). Thus we conclude FIX(R) © FIX(S).

Now suppose FIX(R) < FIX(S). By idempotence, for any relation (R),

my(r) = myp(mg(r)).
Hence mg(r) is in FIX(R) and FIX(S):
mg(mg(r)) = mg(r).
From Lemma 8.1 we know mg(#) 2 r, so by monotonicity
mg(mg(r)) 2 mg(r),
hence
mg{r) 2 mg(r).
Last, we show that 1 and 4 are equivalent.
Suppose mg(r) 2 mg(r) for all relations r(R). We assume for each attribute
A in R, dom(A) has at least two values, which we shall call 0 and 1. We con-
struct a relation s(R) as follows: Relation s has g tuples, #,, ¢, ..., #,. The tu-

ple t; is defined as

0 ifAes,;
1 otherwise,

t:(A) = i

<i=gqg.

Let ¢y be the tuple of all 0's. It is not hard to see that ¢y, must be in mg(s).
Therefore, ¢4 is in mg(s). By the nature of mpg, for each relation scheme R; in

154 Project-Join Mappings, Tableaux, and the Chase

R, there has to be a tuple ¢; in s such that ¢; (R;) = to (R;). Thus, R; € §;and
R = S.

Now suppose R < S. Let r(R) be an arbitrary relation and let ¢ be any tuple
in mg(r). There must be tuples t;, ¢, ..., ¢, in r such that t(S;) =
¢(5;), 1 =i < p. For any R; such that R; < §;, £,(R;) = t(R}). Since R =< §,
for any R; in R there is a tuple ¢; " in r such that ;" (R;) = ¢(R;). We see that ¢
is in mg(r) and hence mg(r) 2 mg(r).

Example 8.9 Let R = {44, AA;, A3A4} and S = {A4,4,A43, A3A,}, as
in Example 8.8. We see that tableau T, in Figure 8.12 is T and that
Tableau T, in Figure 8.13 is T's. Since R < S, by Theorem 8.1, Tg 2 Tg. For
example, if r is the relation in Figure 8.14, then Ty (r) is given in Figure 8.15
and T(r) is given in Figure 8.16. Evidently, Tgr(r) 2 Tg(r).

r(A, Ay A; Ay)

1 4 6 8
2 4 7 9
3 5§ 7 10

Figure 8.14

TR(r)(Al Az A3 A4)

1 4 o 8
1 4 7 9
1 4 7 10
2 4 6 8
2 4 7 9
2 4 7 10
3 5 7 9
3 5 7 10
Figure 8.15

Ts(r)(A1 A2 A3 A4)

1 4 6 8
2 4 7 9
2 4 7 10
3 5§ 7 9
3 5 7 10

Figure 8.16

Tableaux Equivalence and Scheme Equivalence 155

Corollary LetR = {Ry, Ry, ..., R,}and S = {§, 55, ..., §,} be sets of
relation schemes, where RiR; -+ R, = §{§, --- §; = R. The following are
equivalent.

1. mgr = Mg

2. TR = Ts

3. FIX(R) = FIX(S)
4. R =S5

Condition 1 means mg(r) = mg(r) for all relations r(R). Note that condi-
tions 2 and 4 use equivalence rather than equality. Equivalence can hold
without equality.

Example 8.10 Iet R = {A1A2A3, A1A4, A1A3A4} and § = {A1A2A3,
AzA4, A1A3A L} be sets of relation schemes. R = Sand S = R, soR = S. By
the corollary to Theorem 8.1, Tg = Ts. But as we see from Figures 8.17 and
8.18, Ty # Tsg, even if we rename nondistinguished variables.

Tr(A; A; A; Ay

ap a; a3 b
aq b2 b3 as
ai b4 ajz aj

Figure 8.17

Ts(Ay Ay A; Ay)

a a; a3 b,
bz b3 as a4
a; b4 as ay

Figure 8.18

Although we can have T = T's without T = T, if Tg = T's, then T and
T will exhibit a certain similarity.

Definition 8.7 Let w; and w, be rows in a tableau T with scheme R. If for
every attribute A in R, w,(A) is a distinguished variable implies w;(A4) is a
distinguished vartable, then w is said to subsume w;.

Example 8.11 In Figure 8.17, the third row subsumes the second row. In
Figure 8.18, the third row also subsumes the second row.

156 Project-Join Mappings, Tableaux, and the Chase

Definition 8.8 Let T be a tableau. T reduced by subsumption, denoted
SUB(T), is the tableau consisting of the set of rows in 7 that are not sub-
sumed by any other row of T

Example 8.12 SUB(Tyg) is given in Figure 8.19, for the tableau T in
Figure 8.17.
SUB(TR)(A; A, A; Ay

a; a as b]
a; by ay ay

Figure 8.19

Theorem 8.2 LetR = {R;, R, ...,R,}and 8 = {§,, S5, ..., §,} be sets
of relation schemes where RyR; -+ R, = §15, -+ Sy =R.Tg = Tsif and
only if SUB(Ty) is identical to SUB(Ts), except for possibly a one-to-one
renaming of the nondistinguished symbols.

Proof Left to the reader (see Exercise 8.13).

Example 8.13 Let R = {A1A2A3, A1A4, A1A3A4} and § = {A1A2A3,
A3Ay, A1A3A L} be sets of relation schemes, as in Example 8.10. SUB(TR),
shown in Figure 8.19, is identical to SUB(Ts).

Corollaryy SUB(TR) = Tkg.

8.4 CONTAINMENT MAPPINGS

As we see from Theorem 8.2, there is a simple test for equivalence of
tableaux that come from sets of schemes, namely, identity of subsumption-
reduced versions. Any tableau where no nondistinguished variable occurs
more than once comes from some set of schemes. Unfortunately, Theorem
8.2 does not hold for tableaux where some nondistinguished variables are
duplicated.

Example 8.14 Consider the tableau 7T in Figure 8.20 and its subsumption-
reduction SUB(T) in Figure 8.21. Let r be the relation in Figure 8.22. Cer-
tainly SUB(T} is identical to SUB(SUB(T)). However, T(r} = r, whereas
SUB(T)(r) = r', where r’ is the relation given in Figure 8.23.

Containment Mappings 157

T(A, A, A; A,)
ay ay; by b
b3 a, az a,
b4 a az bz

SUB(T)YA;, A; A Ay)

a, as bl b2
b3 a, as a,

Figure 8.21

r(A; A, A; Ay

1 3 4 6
2 3 5 7
Figure 8.22

r'(A;, A, A; Ay

1 3 4 6
1 3 5 7
2 3 4 6
2 3 5 7
Figure 8.23

We want to formulate a condition for equivalence of arbitrary tableaux. To
do so we introduce containment mappings of tableaux. A containment map-
ping is quite similar to a valuation, but instead of mapping tableau variables
to domain values, it maps them to variables in a second tableau, in such a
way that rows are mapped to rows.

Definition 8.9 Let T and 7' be tableaux on scheme R, with variable sets V
and V'. A mapping ¥: V = V' is a containment mapping from T to T' if the
following conditions hold:

1. If variable v is in the A-column of T then ¥(v) is in the A-column
of T'. .

2. If variable v is distinguished, then y(v) is distinguished. (By our
naming convention, y(v) = v.)

158 Project-Join Mappings, Tableaux, and the Chase

3. {(T') < T’. That is, when y is extended to rows of T" and thence to T
itself, it maps every row of T to a row in T'.

Example 8.15 Let T and T' be the tableaux in Figures 8.24 and 8.25.
There is a containment mapping from T to T', namely ¢, where

¥(a;) = a;, 1l=i=<4
U(by) = a;
v(by) = by
¥U(b3) = a;
¢(b4) = bz
l[/(bs) = aj.

The first two rows of T are mapped to the first row of T'' by y; ¥ maps the
third row of T to the second row of T''. There is no containment mapping
from T’ to T, since, for example, the first row of 7" would have to map to a
row with at least the distinguished variables e, a; and a;.

T(A; A, Az Ay

a ay by b
b; a, a3 b;
b4 bs aiy Qg

Figure 8.24

T'(A; A4, A3 Ay)

ay ay a3 by
b2 a, a3 au

Figure 8.25

Theorem 8.3 ILet 7 and T’ be tableaux over scheme R. T 2 T’ if and only
if there is a containment mapping from 7T to T'.

Proof (if) Let ¢ be a containment mapping from 7T to T'. Take any rela-
tion r(R) and look at T(r) and T'(r). If p is a valuation for T’ such that
p(T’) € r, then p = is a valuation for T such that p - ¥ (T) < r. The inclu-
sion follows from Y(7) < T’ by applying p to both sides. If w, is the row
of all distinguished variables, since Y(wy) = wy, p Y(wy) = p(wy), so
T(r) 2 T'().

Containment Mappings 159

(only if) Suppose T = T'. Consider T' also as a relation. We have
T(T') 2 T'(T"). Consider the valuation p' that is the identity on the
variables V' of T'. Clearly p ' (T'Y = T' € T',s0p'(wy) = wy; € T'(T").
There must be a valuation p for T such that p(T) € T and p(w;) = wy. We
see that p can also be construed as a containment mapping from T to T'.

Example 8.16 We see that T = T, where T and T’ are the tableaux in
Figures 8.24 and 8.25. For example, if # is the relation in Figure 8.26, then
T(r) = r’, where r’ is given in Figure 8.27, while T'(#) = r,s0 IT(r) 2 T '(r).

r(A; A, A; Ay

1 4 6 8

2 4 7 8

3 5 7 9
Figure 8.26

r'(d; A, A; Ay)

W W NN
nunbd bbb

R A B e B I)
O 00 O 00 O

7
Figure 8.27

Example 8.17 Let T" be the tableau in Figure 8.28. There is a containment
mapping from T" to T (What is it?), so T” = T. For the relation r in Figure
8.26, T"(r) = r", where r" is given in Figure 8.29. We see T"(r) 2 T(r).

T"(A; A, Az Ag)

a; ap bl bz
b3 a as b4
b5 b6 aj as

Figure 8.28

160 Project-Join Mappings, Tableaux, and the Chase

r'(A; A; A; Ay

1 4 6 8
1t 4 7 8
1 4 7 9
2 4 6 8
2 4 7 8
2 4 7 9
3 5 7 8
3 5 7 9
Figure 8.29

Corollary Let T and T' be tableaux over scheme R. T = T’ if and only if
there is a containment mapping from T to T’ and a containment mapping
from T’ to T.

Example 8.18 Let T be the tableau consisting of only the row w, of all
distinguished variables. Let 7' be any tableau that contains wy;. T = T,
The containment mapping from T to T' maps w, to w,. The containment
mapping from 7’ to T maps every row to wy.

8.5 EQUIVALENCE WITH CONSTRAINTS

We are trying to characterize when a relation can be faithfully represented by
its projections. From the corollary to Theorem 8.1 and Theorem 8.2, we see
that if R = {R,, R,, ..., R, } is a database scheme over R, then FIX(R) is
the set of all relations over R only if R; = R for some i. If R; = R, there is no
need for the other relation schemes in R, so R ends up being a single relation
scheme. Thus, in general, the answer to the question, “When can relations
over R be represented faithfully as database over a nontrivial database
scheme R?” is never.

We seldom deal in the most general case. We usually want to represent a
set of relations over scheme R where some set of constraints is imposed. We
can use those constraints to find nontrivial database schemes on which to
represent the relations.

Definition 8.10 Let P be a set of relations over scheme R. If T, and T, are
tableaux over R, then T, contains T, on P, written T, 2 p T, if T(r) 2
T5(r) for every relation r in P. T, and T, are equivalent on P, written T; =p
Tz, ile QPTzande ;IPTI'

Equivalence with Constraints 161

The set P will most often be expressed as P = SAT(C) for some set of con-
straints C. We abbreviate = 551 a8 =¢. Recall that we are interested in
when SAT(C) € FIX(R) for a database scheme R. That is, for a given
database scheme R, can every relation in SAT(C) be losslessly decomposed
onto R? In terms of constraints, we are asking whether C = *[R]. ¥ T;is a
tableau for the identity mapping (7; contains the row of all distinguished
variables), then we want to know if T behaves as 7, on SAT(C). That is, is
Tg =¢ T,? Theorem 8.3 gives a test for =; we need a test for = ¢.

For the next lemma, we need to view a tableau as a relation. We have
already used this device in the proof of Theorem 8.3. We must be more
precise now, since we want to know when tableau T, considered as a relation,
is in set P. What we mean by this condition is that for any valuation p,
p(T) € P. For an arbitrary set of relations P, this conditions is hard to test.
However, when P = SAT(C), where C consists of FDs and JDs, if for some
one-to-one valuation p, o(T) € P, then for. any other valuation o', p'(T) € P
(see Exercise 8.20).

Lemma 8.3 Let T and T, be tableaux over scheme R and let P be a set of
relations over R. Let T{ and T be tableaux such that

1. T, =pT{and T, =p T,, and
2. T{ and T, considered as relations are both in P.

Then 7, Sp T, if and only if 7] = T3.

Proof The if direction is immediate. Clearly 7{ & T, implies T{ & p T, so
T/ =Ty, T)=pT{,and T, =p T, imply T| S p T,. For the only if direction,
T)Sp T, Ty =pT{and T, =p T, imply T{ S p T5. We now show that
T{=pT,implies T{ & T,.

Consider T{(T7). (We are treating T simultaneously as a tableau and as a
relation.) Since T, as a relation, is in P, T{{T) € T,(T}). Let w; be the row
of all distinguished variables and let p be the identity valuation for T{. Ob-
viously, p(T{) € T}, so p{wy) = wy is in T{(Ty) and hence in T5(T;). There
must be a valuation n for T'; such that »(7,;) < T/ and 9(w;) = w,. The
valuation 7 can be viewed as a containment mapping from T, to T{. Hence,
by Theorem 8.3, T{ E T3.

Corollary For the hypotheses of Lemma 8.3, T =p T ifand only if '/ = T.

Let us take stock. We are seeking a test for T} E ¢ T». We know how to test
T = T,. By Lemma 8.3, we could test 7| = ¢ T, if we had a way to take an

162 Project-Join Mappings, Tableaux, and the Chase

arbitrary tableau T and find a tableau 7' such that T =¢ T" and T' as a
relation is in SAT(C). We shali introduce transformation rules for tableaux.
A transformation rule for a set of constraints C is a means to modify a
tableau T to atableau T' sothat T = T'.

We have seen a limited type of transformation rule in subsumption. For a
tableau T with no duplicated nondistinguished variables, removing a sub-
sumed row preserves equivalence. We shall look at transformation rules for a
set of constraints C composed of FDs and JDs. The different transformation
rules will actually cortespond to individual FDs (F-rules) and JDs (J-rules).
Repeated application of these transformation rules will yield a tableau that,
as a relation, satisfies all the dependencies in C.

For the rest of this chapter, C will always be a set of FDs and JDs over a set
of attributes U. U will be the scheme for all relations and tableaux.

8.5.1 F-rules

For evety FD X — A in C there is an associated F-rule. The F-rule for X —» A
represents a class of transformations that can be applied to a tableau, de-
pending on which rows are chosen.

Let tableau T have rows w; and w,, where w;(X) = w,(X). Let w;(A4) = v,
and w,(A) = v, and suppose vy # v,. We apply the F-rule for X — A to T by
identifying variables v; and v,, to form a new tableau 7T''. Variables v, and v,
are identified by renaming one of them to be the other. If one of v; and v, is
distinguished, say v;, then every occurrence of v, is replaced by v,. If v, and
v, are both non-distinguished, every occurrence of the one with the larger
subscript is replaced by the one with the smaller subscript. Since a tableau is
a set of rows, some rows may be identified by renaming.

Example 8.19 Let T be the tableau in Figure 8.30 and let C = {44, — A4,,
A,A4 — Az). Applying the F-rule for A,A4 — Aj to the first and second rows
of T identifies variables a; and bj. Since a; is distinguished, it replaces b3, to
yield the tableau T’ in Figure 8.31. The F-rule for 4,4, — A4 can be applied
to the first and third rows of T’ to identify variables b, and b4. Since b, has
the lower subscript, it replaces b4. The fitst and third rows are now the same,
so the result, 7" in Figure 8.32, has only two rows.

T(Ay A, A; Ay)

ay 4a; 4aj bl
b, ay; b3 by
a; dajs b3 b4

Figure 8.30

Equivalence with Constraints 163

T'(Ay A, A; Ay)
a; a, az b
by, ay a3 by
aj a2 a3 b4

Figure 8.31

T"(Ay A; Az Al

a, a; a; b1
b, a, a3 b

Figure 8.32

Theorem 8.4 Iet T’ be the result of applying the F-rule for the FD X — A
to tableau 7. T and T' are equivalent on SAT(X — A).

Proof Left to the reader (see Exercise 8.23).

8.5.2 J-rules

Let S = {5, 55, ..., S, } be a set of relation schemes and let ¥[S] be a JD
over U. Let T be a tableau and let wy, wy, ..., w, be rows of T that are
joinable on S with result w. Applying the J-rule for ¥[S] to T allows us to form
the tableau 7' = T U {w}.

Example 8.20 Let T be the tableau in Figure 8.33 and let C = {*[A,4,A4,,
A AA Y], *¥[A 1A, AA5, A3AL)L. We can apply the J-rule for *[4,4,, 4,435,
AjA 4] to the second row and the third row of T to generate the row {a;a; byay).
The resulting tableau T’ is given in Figure 8.34. The J-rule for *[A4,4,A,,
AA3A 4] can be applied to the first and fourth rows of T’ to generate the row
{ay by b3 a,s). Tableau T" in Figure 8.35 is the result of this application.

T(A; A; Az Ay

aq bl bZ as
a; ap b3 b4
bs a) b3 ay

Figure 8.33

164 Project-Join Mappings, Tableaux, and the Chase

T'(A; Ay Az Ay)

a b] b2 a,
a, da; b3 b4
b5 a) b3 ay
a, ar b3 ay

T"(A; A, A; Ay)

Theorem 8.5 LetS = {5,, 55, ..., S,}. Let T’ be the result of applying the
J-rule for *[S] to tableaux 7. T and T' are equivalent on SAT(*{S]).

Proof We must show that T(r) = T'(r) for an arbitrary relation r €
SATC¥[S]).

Let ¢’ be any tuple in T'(r). Let p be the valuation with p(wy) = t’ (w, is
the all-distinguished row) and p(7') € r. We have p(T) € po(T’), since
T € T’ (set containment), so p(T) € r, and p{wy) = t' € T(r). Hence
T'(r) © T(r).

Now let ¢ be any tuple in T'(r) and let p be the valuation with p(w;) = ¢ and
p(T) € r. The only tuple that could possibly be in p(7') but not in p(T) is
p(w), where w is the row generated by the J-rule for *[S] from rows w;, w,,
..., wg of T. It is left to the reader to show that if w;, w», ..., w, are joinable
on S with result w, then p(wy}, p(ws), ..., p(w,) are joinable on S with resuit
p(w) (see Exercise 8.25). Since r is in SAT(*[S]), and {p(w,), p(wy), ...,
owy)} € p(T) € r, p(w) is in r. Therefore po(T') € r, and p(w,) =
t € T'(r). Hence T(r) < T'(r) and T(r) = T'(r).

8.6 THE CHASE

In this section we give a computation method, the chase, that finds, given a
tableau T and set of dependencies C, a new tableau T* such that T = 7% and

The Chase 165

T* as a relation is in SAT(C). Thus, using Lemma 8.3 and Exercise 8.18, we
shall be able to test tableaux for equivalence under C.

The chase computation is simply described. Given T and C, apply the F-
and J-rules associated with the FDs and JDs in C, as long as they make a
change. We shall prove that the order of application of the transformation
rules is immaterial. By Theorems 8.4 and 8.5, if the computation terminates,
it always yields a tableau T# =¢ T. What is harder to show is that the com-
putation always halts and that the resulting tableau, T%, is in SAT(C).

Example 8.21 Let T be the tableau in Figure 8.36 and let C = {*{ABC,
BCD],B = C,AD — C}. (Weuse A,B,C,D for A, A,, A3, A, for readabil-
ity.) Tableau T = Tk where R = {AB, BD, ACD }. Applying the F-rule for
B — Cyields tableau T in Figure 8.37. We then apply the J-rule for *[ABC,
BCD)] to get T, in Figure 8.38 and apply the F-rule for AD — Ctoget T; in
Figure 8.39. One more application of the J-rule for ¥{4ABC, BCD] yields
tableau T%* in Figure 8.40. No more transformation rules that correspond to
dependencies in C can be applied to change T*. Also, T%, as a relation, is in
SAT(C).

TA B C D)

a dajp b1 b2
b3 aj b4 ay
aq b6 as au

Figure 8.36

TA(A B C D)

a, aj bl b2
b3 aj bl aj
ay b6 ay 4y

Figure 8.37

T,(A B C D)
a; a, by by
b3 as b1 ay
a; bﬁ asz a4
a; a; by a4

Figure 8.38

166 Project-Join Mappings, Tableaux, and the Chase

TA B C D)

a; a; a3 by
b3 ay az ay
a, bg a3 a,
a; a, as as

Figure 8.39

T*(A B C D)
a; ay a3 by
b3 a, d3 a4y
ai b6 asz a4y
a a d4az au
by a; a3 b,

Definition 8.11 A generating sequence for tableau T under constraints C is
a sequence of tableaux Ty, Ty, T;, ... where T = T, and T, is obtained
from T; by applying an F- or J-rule for a dependency in C, 0 < i. We require
T; # T;y,. If the generating sequence has a last element T, such that no F-
or J-rules for C can be applied to T, to make a change, then T, is called a
chase of T under C. Chase c(T) represents all such chases.

Example 8.22 Let 7 and C be as in Example 8.21. 7, Ty, T,, T3, T* is a
generating sequence for 7 under C. Therefore, 7% € chasec(T).

We need to keep track of rows during the chase computation for some of
our subsequent proofs. Let tableau 7' be derived from tableau T by the ap-
plication of a J-rule. If w is a row in T, the row corresponding to win T isw
itself. Let T' be derived from T by an F-rule that changes variable v to
variable v’. If w is a row in T, the row corresponding to w in T' isw ', where
w' is row w with v replaced by v '. (If w does not contain v, thenw = w".)

If To, Ty, ..., T, ..., T, ... is a generating sequence, and w; is a row in
T;, we can extend the *“‘corresponds” relation transitively, and write of the
row w; in T, corresponding to w;. That is, there are rows w;i1, Wiy, ...,
w;_; where w; € T, such that w;; corresponds to w;, w;, corresponds to

J
Wit1s - .-, w; corresponds to w;_.

Example 8.23 In the generating sequence T, T, T;, T;, T* of Example
8.22, the first rows of tableaux T, T,, T3, T* all correspond to the first row
of T. Also, the fourth row of T; corresponds to the fourth row of T,.

The Chase 167

For any row w in a tableau in a generating sequence, there is always a row
corresponding to w in any later tableau in the sequence. However, w does not
necessarily correspond to some row in an earlier tableau in the sequence,
since w could have been generated by a J-rule. Distinct rows in one tableau
may correspond to the same row in a later tableau (see Exercise 8.27).

Theorem 8.6 Given a tableau T and constraints C, every generating se-
quence for T under C is finite. Thus, chasec(T) is never empty.

Proof Since tableaux are sets of rows, and no F- or J-rule introduces new
variables, there are only a finite number of tableaux that can appear in a
generating sequence for 7" under C. If we can show that no tableau appears
twice in a generating sequence, we are done.

Let 7; and T be tableaux in a generating sequence, where i < j. If at some
point in the subsequence 7, T;+y, ..., T; an F-rule was used, then T} has
some variable that T lacks, so T; # T;. If only J-rules were used in the subse-
quence, then 7; has at least one more row than T, so T; # T;.

Theorem 8.7 For any tableau T* in chasec(T), T*, as a relation, is in
SAT(C).

Proof If T* violates an FD X — A in C, there must be two rows w; and w; in
T* with w(X) = w,y(X), but w;(A4) = w,(A). The F-rule for X — A can be
applied to rows w; and w; to change 7%, which means T* cannot be the last
tableau in a generating sequence under C. Hence T* satisfies X — A. Simi-
larly, if 7* violates a JD in C, then the J-rule for that JD can be applied to T#
to make a change.

Example 8.24 The tableau T in Figure 8.41 is T for R = {AE, ADE,
BCD}. The tableau T* in Figure 8.42 is in chasec(T), where C = {AE — D,
D — C, *[AB, BCDE]}. The J-rule for the JD in C is never used. We see that
T* satisfies C.

T(A B C D E)
ay by by b;3 as
a, b4 bs as as
b6 a; Q3 ay b7

Figure 8.41

168 Project-Join Mappings, Tableaux, and the Chase

T*(A B C D E)

a; b] ay a4 as
a; b4 az d4 as
b() a a3 ag b7

Figure 8.42

Corollary Chasec(T) = { T} if and only if T, as a relation, is in SAT(C).

8.6.1 The Finite Church-Rosser Property

The chase computation is an example of a replacement system. A replace-
ment system is a pair (Q, =), where Q is a set of objects and = is an
antireflexive binary relation on Q, called the transformation relation.* In our
case, the chase computation is a replacement system for every set of con-
straints C. Q is the set of tableaux over U, and T = T’ if T’ is obtained from
T by applying an F- or J-rule corresponding to a dependency in C.

Definition 8.12 The relation % is the reflexive, transitive closure of =. We
read T X T' as “T goes to T'” or “T’ is reachable from T.”

Definition 8.13 Given the replacement system (Q, =), object p € Q is
irreducible if p % g implies p = g. That is, forno g # p doesp = gq.

Definition 8.14 The replacement system (Q, =) is finite if for every p € Q
there is a constant ¢, depending on p, such thatif p % g in 7 steps, theni < c.
That is, for any object p in Q, only a finite number of transformations can be
applied to p before reaching an irreducible object.

Using Theorem 8.6, it follows that the replacement system for a given
chase computation is finite. Chasec(T) is all the irreducible tableaux
reachable from T using F- and J-rules for C.

Definition 8.15 A finite replacement system (Q, =) is finite Church-
Rosser (FCR) if for any object p € Q,if p X g and p % g, and g, and g, are
both irreducible, then g, = g,. That is, starting with any p, no matter how
we apply transformations, we eventually end up at the same irreducible
object.

*Replacement systems also sometimes include an equivalence relation over Q. Equivalence is
then used in place of equality in the definition of Finite Church-Rosser and in Theorem 8.8.

The Chase -169

Example 8.25 Let B be the set of all well-formed Boolean expressions using
the symbols 0, 1, (,), V or A. We assume the expressions are completely pa-
renthesized. The pair (B, =) is a replacement system, where = is the rela-
tion summarized in Figure 8.43. We have T' = T whenever T is T with one
of the strings in the left column replaced by the associated string in the right
column.

string replacement

0

1

OAO
oAl
1A0
1A1
Ovo
o0vi
1voO
1vi1

bk e O O OO =O

Figure 8.43
We have, for example,

(Ovov1)AD =

O VDHDA=(OVIDHAQ=
(A0 =

ano-=

0) = 0.

The strings 0 and 1 are the only irreducible expressions in B. Every expres-
sion in B goes to exactly one of 0 or 1 under %, and does so in a finite number
of steps. Hence, (B, =) is FCR.

We shall show that the chase computation for a set of constraints C is
FCR. That result implies that chasec(7) always contains exactly one ele-
ment. To show the chase computation is FCR, we cite the following theorem,
which is a special case of a theorem due to Sethi.

Theorem 8.8 (Sethi) A replacement system (Q, =) is FCR if and only if it is
finite and, for any object p € Q, if p = gy and p = ¢,, then thereisag in Q
such that ¢; X g and g, X g. Diagramatically, we have

170 Project-Join Mappings, Tableaux, and the Chase

Example 8.26 For the replacement system (B, =) of Example 8.26,

{wovovavi) = {(0)v{v1l)and
@OWvOoOv({avi) = ({(0vovQ).

As required by the theorem

@Wvavi)y £Ov1)and
ovov)xov.

Theorem 8.9 The chase computation for a set of constraints is an FCR re-

placement system. Therefore, chasec(T) is always a singleton set.

Proof We use Theorem 8.8. We have already observed that the chase is a
finite replacement system. We must show that if we can obtain either tableau
T, or tableau T, from tableau T by a single application of a transformation
rule for C, then there is some tableau 7* that can be obtained from both T;
and T, by 0 or more applications for the rules for C. We treat three cases:

Case 1:

F-rule F-rule

T, T

The Chase 171

Case 2:
T
F-ru% \J-rule
T1 T2
Case 3:
y
J-fU% \-rule
T4 T2

Observe that J-rules leave existing rows in a tableau unchanged, and that
an F-rule cannot change one occurrence of a given variable without changing
all other occurrences. Let w; and w; be rows in tableau 7, and let »; and u,
be the rows in tableau T’ corresponding to w; and w,, where T' can be ob-
tained from T by application of F- and J-rules. By the observation, if
wi(X) = wy(X), then u(X) = uy(X). Thus, if some F-rule or J-rule is ap-
plicable to a set of rows in T, then the same rule applies to the corresponding
set of rows in T'. We now treat the cases.

Case 1 Let T, be T with variables v; and v, identified using the F-rule for
X — A. Let T, be T with variables v; and v, identified using Y — B.

If A # B, use the F-rule for X — A on T, to identify v; and v,. The result i is
T*, which is T with v, and v, identified, and v; and v, identified. 7% can also
be obtained from 7'; by using Y — B to identify v; and v,.

If A = B, the argument for A # B holds when vy, v, v3, and v, are all
distinct. If not, assume v, is a distinguished variable, or, if none of vy, v,, v;
or v, is distinguished, v, is the nondistinguished variable with lowest
subscript among the four variables. (We may have to reverse the roles of T,
and T5.) Also assume v3; = v, or vy = v,. We claim T* is T with v,, v3, and v,
replaced by v,.

If v; = v;, the argument above works again, or T; = T, = T*, if v, = v,.
If v; = v,, the argument is more involved. In Ty, v, (= v3) has been replaced
by v;. Since the F-rule for Y — B was applied to T to identify v; and v,, the
rule for Y — B also applies to T, to replace v, by v;. This replacement yields
T*. In T, v, replaced v,; or vice-versa. If v; replaced v,4, then the F-rule for

172 Project-Join Mappings, Tableaux, and the Chase

X — A can replace v3 with v in T,. If v, replaced v, the F-rule for X — A
will let v; replace v, in T. In either case, v;, v3, and v, are replaced by v,
and the result is T*.

Example 8.27 Let T be the tableau in Figure 8.44. Applying F-rules for
A — B and C — B, we get the tableaux 7', and T, respectively, shown in
Figures 8.45 and 8.46. Applying C — B to T or A — B to T, gives tableau
T* in Figure 8.47.

A B C)
a; by b
aq b3 ajz
b4 a aj

Figure 8.44

T(A B C)
ai bl b2
aj bl as
b4 a, dajs

Figure 8.45
T(A B C)
a; by by
a a 4a;
b4 a, 4ajg
Figure 8.46
™A B C)
ay 4ap b2
a; a; 4a;
b4 a, 4ajs
Figure 8.47

Proof of Theorem 8.9 continued

Case 2 Assume the F-rule replaces variable v; by variable v, in T to form T',.
Assume the J-rule creates row w to add to T to form T,. If w has no occur-
rence of v, then apply the J-rule to T to generate w. The application is

The Chase 173

possible, because the portions of the rows that went into forming w are un-
changed from T to T';. Similarly, applying the F-rule to T, replaces v; by v;,
since addition of a row cannot bar application of a rule. The result of either
rule application is tableau 7%, which is T with variable v, replaced by v and
row w added.

If row w contains v, 7% will be T with v replaced by v, and row w ' added,
where w’ is row w with v, replaced by v,. Applying the F-rule used to
transform Ty to T, still changes v, to v,, thereby changing row w to w'. The
result is T*. The J-rule used to generate w from 7 can be applied to the rows
in Ty that correspond to the rows in T" to which the rule was originally ap-
plied. The resulting row from 7T'; will be w’ and so the result of the applica-
tion is 7#. Note that some rows in T; may correspond to more than one row
inT.

Example 8.28 Let T be the tableau in Figure 8.48. Applying the F-rule for
A — B yields tableau T in Figure 8.49; applying the J-rule for *[AB, BC]
yields tableau T, in Figure 8.50. Applying the J-rule to T; or the F-rule to T,
will yield tableau 7*.

T4 B C)
ay bl b?_
by by a3
a; a; 4a;

Figure 8.48

T4 B C)
a a) b2
b3 a, a3
a, ap az

Figure 8.49

T,(A B C)
ay by b,
b3 b1 03

174 Project-Join Mappings, Tableaux, and the Chase

Proof of Theorem 8.9 continued Case 3 is left to the reader (see Exercise
8.30). Since we are able to find an appropriate T* in all three cases, the chase
computation is FCR.

Since chasec(T) is always a singleton set, we modify our notation to let
chasec(T) represent its only element.

Corollary If SAT(C) = SAT(C’), then chasec(T) = chasec(T) for any
tableau T,

Proof We prove here the special case where C' = C U {c} for any ¢ such
that C = c. Let T* = chasec(T). The same applications of rules will take us
from 7" to T* under C’, since C’' 2 C. Furthermore, Theorem 8.7 shows us
that we cannot apply any rules for C' to T*, because T™* as a relation is in
SAT(C) and hence in SAT(C). We see chasec-(T) = T*.

The proof of the general version of the corollary is left to the reader (see
Exercise 8.31). If C and C' are arbitrary equivalent sets of constraints, then
€ = ¢’ for any constraint ¢’ € C. Likewise, foranycinC,C’' = ¢. H C" =
C U C’, then SAT(C") = SAT(C) = SAT(C’). It can be shown, using the
special case, that chasec(T) = chasec{T) = chasec(T).

8.6.2 Equivalence of Tableaux under Constraints

We can now test equivalence of tableaux under constraints, which gives us a
test for cases when a project-join mapping mp is lossless on SAT(C). By the
remarks at the beginning of this section, we know T = ¢ chasec(T). Theorem
8.7 tells us chasec(T), as a relation, is in SAT(C). Using Lemma 8.3, we
have the following results.

Theorem 8.10 Let T and T, be tableaux, and let C be a set of constraints.
T, € ¢ T, if and only if chasec(T) € chasec(T>).

Corollary T, = T, if and only if chasec(T) = chasec(T>).

Example 8.29 Consider tableaux 7, and 7T, in Figures 8.51 and 8.52. T, is
the tableau for the set of schemes {AB, BC, AD}. T, is the tableau for the
set {AB, BC, CD}. Let C = {A — D, *[AB, BCD]}. Figures 8.53 and 8.54
show TT = chasec(T;) and T% = chasec(T>).

The Chase 175

T(A B C D)

THA B C D)

Since T'F contains the row of all distinguished variables, it is not hard to find
a containment mapping from T5to T}. Hence T3 © T¥and therefore T, S 7).

8.6.3 Testing Implication of Join Dependencies

We desire a means to test when all the relations in SAT(C) can be faithfully
represented by their projections onto the relation schemes in some database
scheme R. This condition, equivalently stated as C &= *[R] or myp, is the iden-
tity mapping on SAT(C). In terms of tableau equivalence, Ty =¢ T; where

176 Project-Join Mappings, Tableaux, and the Chase

T, is the tableau consisting only of w,, the row of all distinguished variables.
T, is the identity mapping on all relations. By Theorem 8.10, we can test the
equivalence above by checking if chasec(Tr) = chasec(T;). Chasec(Ty) =
T (why?), so we are checking whether chasec(Tg) = T;. The test for that
condition is simply whether or not chasec(Tg) contains w, (see Exercise 8.33).

Example 8.30 T, in Figure 8.51 is the tableau for the database scheme R =
{AB, BC, AD}. Let C = {A — D, *[AB, BCD]}. Since chasec(T;), given
in Figure 8.53, contains w,, any relation in SA7(C) decomposes losslessly
onto R. T, in Figure 8.52 is the tableau for database scheme S = {AB, BC,
CD}. Since chasec(T,), given in Figure 8.54, does not contain w,, there are
some relations in SAT(C) that have lossy decompositions onto S.

Example 8.31 As promised in Section 6.5.4, we shall now show that if Risa
database scheme over U that completely characterizes a set ¥ of FDs and
some scheme R € R is a universal key for U, then any relation in SAT(F)
decomposes lossiessly onto R.

Let G be the set of FDs expressed by the keys of the relation schemes in R.
We know G = R — U. Let T = chaseg(Tg). Let w be the row for R in Ty
and let w* be the corresponding row in Tx. We claim w* is the row of all
distinguished variables.

Let H be a G-based DDAG for R — U. There is a computation for
chase ;(Tg) that mimics the construction of H. The correspondence will be
that if Y is the set of node labels at some point in the construction of H, then
the row corresponding to w in some tableau in the generating sequence for
Tl"{ has distinguished variables in ali the Y-columns. More formally, let Hy,
H,, ..., H, = H be the successive DDAGs in the construction of H. We
shall describe a generating sequence Tg = T, T}y, ..., T, for T§.

Let w; be the row in 7T corresponding to w in T,. If ¥; is the set of node
labels for DDAG H;, we want w; to have distinguished variables in all the Y;-
columns. Initially, the desired relationship holds. Y} is just R, and wo = w is
the row for R in Tx. Suppose the relationship holds for H; and T;. Suppose
also that H;,, is derived from H,; by adding a node labeled A, using the FD
K — A from G. K must be a key for some relation scheme R; in R, where
A € R;. There is a row u for R; in Tj. Let u; be the corresponding row in T;.
Row u; has distinguished variables in the R;-columns at least (see Lemma
8.4, to follow).

Since K — A was used to extend H;, K € Y;, hence w; is distinguished in
all the K-columns. Since K S Rj, u, is distinguished in the K-columns. The
F-rule for K — A is applicable to T; on rows w; and u;, because w(K) =
u#;(K). Applying the F-rule sets wi(4) = u,;(4), which means that w;(4) is

The Chase 177

made distinguished, if it is not already. Hence in 7, w,+ is distinguished
atleaston YA = Y,4;.

As the result of our induction, we see that w,, in T, is the row of all distin-
guished variables, since H, = H has all the attributes in U as node labels.
One minor detail remains. There may be more rules for G that can be ap-
plied to T,. Let the chase computation continue until it terminates: T, 4,
Ty+2 ..., TR The row w* in T} corresponding to w, in T, is still all
distinguished.

We see that chaseg(TRr) contains the row of all distinguished variables, so
G = *[R]. Thus, any relation r in SAT(G) = SAT(F) decomposes losslessly
onto R.

8.6.4 Testing Implication of Functional Dependencies

We have a test for implication of JDs by a set C of FDs and JDs. We now turn
to a test for implication of FDs by C. To test implication of JDs, we inter-
preted tableaux as mappings from relations to relations. For the FD test, we
shall view tableaux as relations, or, more accurately, templates for relations.
Before presenting the test, we need two lemmas.

Lemma 8.4 Let T be a tableau and let C be a set of constraints. Let o be a
valuation for T such that o(T) < r, where r is chosen from SAT(C). U T =
Tos T1, Ty, ..., T, is a generating sequence for chasec(T), thenfor0 < i < n,

1. p(wg) = p(w;), where wy is any row in T and w; is the corresponding
row in 7;. Also, w; subsumes wy.

2. p(T,) Cr.

3. T,‘ 3 Ti+1i = n.

Proof Parts 1 and 2. It suffices to say that if w; is a row in T} and w; ., is the
corresponding row of 7+ then

e(w;) = p(w; 1) and
w;+1 subsumes w;;

and if w is a row in T4, that corresponds to no row in 7}, then

p(w) € r.

If T;,; is obtained by an F-rule that changes no variable in w;, or a J-rule,
then w; = w;; | and obviously p(w;) = p(w;+1) and w; | subsumes w;. Other-
wise, in going from T to T} 4, for some attribute A, w,(A) changes from v, to v,.

178 Project-Join Mappings, Tableaux, and the Chase

The change must be through the applications of an F-rule for an FD X — 4
to two rows u; and u, in T;, where u(X) = u5(X), u1(A) = vy and u,(A4)
= v,. By induction p(u,) = ¢, and p(u,) = t,, where #; and ¢, are tuples in r.
We must have £1{X) = ¢,(X). Since r is in SAT(C), t;(A) = t,(A). Now
p(v1) = p(u1(A)) = t1(A) = t,(A) = p(uy(A)) = p(vy). Hence p(w;) =
p(wj+1). Also, if one of v or v, is distinguished, it must be v,, so w;.; sub-
sumes w;.

If w is a row in T}, that corresponds to no row in T}, then w must be the
result of joining rows uy, u,, ..., u, of T; on S, where *[S] € C. By Exercise
8.25, p(uy), p(uy), ..., p(u,), which are all in r, are joinable on § with result
p{w). Since r € SAT(C), p({w) € r.

The proof of part 3 is left to the reader (see Exercise 8.36).

Suppose we have a non-trivial FD X — A, and we want to test whether
C = X — A. We construct a tableau Ty as follows. Ty has two rows, w, and
wyx. Row wy is all distinguished symbols; wx has distinguished symbols in the
X-columns and distinct nondistinguished symbols elsewhere. That is, Ty =
TrforR = {U, X}.

Example 8.32 Figure 8.55 shows Tg, for U = ABCD.

Tgc(A B C D)

a; dy 4z a4
by a; a3 b,

Figure 8.55

Theorem 8.11 C = X — A if and only if ckasec(Tx) has only distinguished
variables in the A-column.

Proof Let T* = chasec(Tx). Suppose T* has a nondistinguished symbol in
the A-column. T* considered as a relation is a counterexample toC = X — A.
By Theorem 8.7, T* satisfies C. However, every row of T* has all distin-
guished symbols in the X-columns, since chase computation does not create
new symbols. Row w, remains unchanged throughout the chase, by Lemma
8.4. Thus T* has two rows that agree on X but disagree on A: w, and the row
with a nondistinguished symbol in the A-column. Hence, T* violates X — A.

Suppose now that 7* has only a distinguished variable in the A-column,
and let r be an arbitrary relation in SAT(C). Let ¢, and #, be any pair of
tuples in r with #;(X) = #,(X). Consider the valuation p for Ty such that

The Chase 179

p(wy) = t; and p(wy) = t,. Such a valuation exists, because wy(X) =
wx(X). We just saw that w, is the row in T* corresponding to w, in T'y. Let
w3 be the row corresponding to wx. By Lemma 8.4, p(w¥) = p(wy). Since
T* has only one variable in the A-column, w¥(4) = wy(A4). Thus we see

t1(A4) = p(wa(A)) = p(w(A)) = p(wx(A)) = £2(A).

Any two tuples in r that agree on X also agree on A. Since r was arbitrary,
SAT(C) € SAT(X > A)or C = X — A.

Example 8.33 Suppose we wish totest C = BC - D.fC = {A - D},
then chasec(Tgc) = Tgc- There is a b, in the D-column, so BC — D is not
implied by C. If C' = {4 — D, *[ABC, CD]}, then chasec-(Tpgc) is the
tableau I'* in Figure 8.56. T* has only a4 in the D-column, soC’' = BC — D.

A B C D)
ay 4, dz ay
b, a; az; ay

Figure 8.56

We originally defined Xt as the closure of a set of attributes X with respect
to a set of FDs F. We can extend the definition consistently to include JDs as
well as FDs.

Definition 8.16 Let C be a set of FDs and JDs and let X be a set of at-
tributes. The closure of X with respect to C, denoted X7, is the largest set of
attributes Y such that C = X — Y. Note that if C is only FDs, the new defini-
tion reduces to the old definition.

Corollary For a given C, X1 is the set of all attributes A such that the
A-columns of chasec(Tx) has only distinguished variables.

Corollary If J is a set of JDs, thenJ = X — Y implies X 2 Y. That is, a set
of JDs implies only trivial FDs.

Proof Chase;(Ty) will have a nondistinguished variable in every column cor-
responding to an attribute in U — X, since J-rules do not identify symbols.

180 Project-Join Mappings, Tableaux, and the Chase

8.6.5 Computing a Dependency Basis

Since MVDs are a special case of JDs, we can always test C = X — Y by
testing C = *[XY, XZ], where Z = U — XY. However, the next theorem
shows an alternate way to use the chase to find all sets Y such that C = X
— Y, for a given X.

Theorem 8.12 Iet C be a set of constraints, and let Y be a set of attributes
disjoint from X+ under C. C = X — Y if and only if chasec(Ty) contains a
row uy with distinguished variables exactly in all the YX *-columns.

Proof (if) Let T} be chasec(Tx). Let uy and uy be the rows in T§ cor-
responding to wy and wy. (We know w,; = u,.) Let R be the database scheme
{XY, XZ}where Z= U — YX ™. We shall show that 7§ = chase(Tg) must
contain wy, hence C = *{ XY, XZ], which is equivalent to C = X = Y.

Let pxy and py; be the rows in Ty for relation schemes XY and XZ. Let
gxy and gxz be the corresponding rows in T§. Consider a mapping é from
variables in Ty to variables in T such that 8(w,) = gxy and 8(wx) = gxz.
The mapping & can be viewed as a valuation if T§ is considered as a relation;
d exists because pxy(X) = pxz(X), s0 gxy(X) = qxz(X). Since T as a rela-
tion is in SAT(C), by Lemma 8.4, 6(T§) c Tl";, 8(wy) = 6(uy), and d(wy) =
8(ux). Since ug(X1) = uyx(X1), gxy(Xt) = gxz(X*). We see that § maps
distinguished variables in the X *-columns of T} to distinguished variables in
the X% columns of T§.

We shall show that for row uy of T%, with distinguished symbols in exactly
the YX*-columns, 8(uy) is the row w, of all distinguished symbois in T%.
Since uy is distinguished in the X *-columns, 6(uy) is distinguished in the
X*-columns by the argument in the previous paragraph. Since gyy sub-
sumes pyy, gxy is distinguished in all the Y-columns. We know 8(w,) =
dxy, s0 & must map distinguished variables in the Y-columns of T% to
distinguished variables in the Y-columns of T§. Row uy is distinguished in
all the Y-columns, so 6(uy) is distinguished in all the Y-columns. Since gx»
subsumes pyxz, g xz is distinguished in all the Z-columns. We know 8(wyx) =
gxz, so 6 must map nondistinguished variables in the Z-columns of T} to
distinguished variables in the Z-columns of T§. Row uy is nondistinguished
in all the Z-columns, so é(uy) is distinguished in the Z-columns. U =
YX*Z, so 6(uy) is distinguished everywhere. Therefore Tx contains wy, so
Ce=X—Y.

(only if) Assume C = X = Y. Let C' = C U {¥[XY, XZ]}, where Z =
U — YX7, as before. By the corollary to Theorem 8.9, chasec(Tx) =
chasec(Tx) because SAT(C) = SAT(C’). Consider the computation for

The Chase 181

chasec(Tx) where the first step is to apply the J-rule for *¥[XY, XZ] to rows
wy and wy. The result is a row w that is distinguished exactly in the XY-
columns. During the remainder of the chase computation, any nondistin-
guished variables in the X *-columns of w will be made distinguished. Thus
the row in chasec(Ty) corresponding to w will have distinguished variables
in exactly the YX*-columns. (Why are there no distinguished variables
elsewhere?) Chasec(Tx) = chasec.(TX), so we are done.

Example 8.34 1et C = {B — C, *{ABC, CDE]}. Tableau Ty is given in
Figure 8.57 and T}; = chasec(Tp) is given in Figure 8.58. We see that Bt =
BC and that C implies the MVDs B—ADE, B~ @, B—>~A and B~ DE.

Tg(A B C D E)

a; 4 4dz dadg 4ds
bl a) bz b3 b4

Figare 8.57

T4 B C D E)
ay a; az ag das
bl a; das b3 b4
ay dp Qg b3 b4
bl a, az as ds

Figure 8.58

From chase(Ty), then, we can determine the set Q = {Y | C = XY
and Xt N Y= @}. Referring to Section 7.4.2, by replication, C = X—+—A4
for any Z € X*. Exercise 8.38 will show that C = X—Y if and only if Y can
be written as X'Y’, where X' € X+ and Y’ € Q. We can extend our defini-
tion of dependency basis to include JDs.

Definition 8.17 Let C be a set of constraints and let X be a set of attri-
butes. The dependency basis of X with respect to C, denoted DEP(X), is
mdsb({Y | C = X Y}). (Recall that mdsb is minimum disjoint set basis—
see Section 7.4.3.)

As before, C = X—Y if and only if Y is the exact union of sets in
DEP(X). DEP(X) can be calculated directly from Q and X+ as mdsb(Q) U
{A}lAext}.

182 Project-Join Mappings, Tableaux, and the Chase

Example 8.35 Let C = {B — C, *ABC, CDE]}, as in Example 8.34. We
saw in that example that B* = BC and Q = {ADE, @, A, DE}. We can
calculate DEP(B) = {A, B, C, DE}.

8.7 TABLEAUX AS TEMPLATES

In this section we shall formalize the idea of a tableau as a template for
relations. :

Definition 8.18 Let P be a set of relations, and let r be any relation. A com-
pletion of r under P is a relation s in P such that » € s and there is no relation
s’ in P such that r € s’ & 5. COMPp(r) is the set of all such completions;
COMP(r) is shorthand for COMPg 4 7c)(7)-

Completions do not always exist.

Example 8.36 Let r be the relation in Figure 8.59. f F = {4 — C}, then
COMPy(r) is empty. If J = {*[AB, BCD]}, then COMP,r) = {s}, where s
is the relation in Figure 8.60.

r(A B C D)
1 3 4 6
2 3 4 6
1 3 5§ 7
Figure 8.59
s{A B C D)
1 3 4 6
2 3 4 6
1 3 5 7
2 3 5 7
Figure 8.60

Completions are not unique, given they exist,

Example 8.37 Let r be the relation of Figure 8.59. Let P = SAT(*[AB,
BC1)). The dependency *¥[AB,BC] is an embedded JD for the given relation
scheme. COMPp(r) contains relation s in Figure 8.60, and also the relation g
in Figure 8.61. In fact, COMPp(r) contains one relation for every value in the
domain of attribute D.

Tableaux as Templates 183

qg(A B C D)
1 3 4 6
2 3 4 6
1 3 5 7
2 3 5 6
Figure 8.61

A set P of relations is closed under intersection if for every pair of relations
randsinP,r N sisin P.

Lemma 8.5 P is closed under intersection if and only if completions under P
are unique.

Proof Suppose P is closed under intersection. Let s and s’ be completions
of runder P. By closure,s Ns'isinP,ands Ns' 2 r,s05s =sNs’' =5,
For the converse, suppose completions under P are unique. Let r and s be in
P, and let ¢ = r N s. There must be some subset r' of r (perhaps r itself)
such that ' is a completion of g under P. Likewise, there is a subset s " of s
that is a completion of g. By uniqueness of completionr’' =s',sor’ = g =
s"and g is in P.

Corollary If C is a set of FDs and JDs, then completions under SAT(C) are
unique.

Proof Left to the reader (see Exercise 8.40).

Completions always exist for a set J of JDs only. Completions can be found
in a manner similar to the chase computation. However, if C contains both
FDs and JDs, completions do not always exist, even for relations that satisfy
the FDs (see Exercise 8.41). For a set of FDs F, COMPg(r) exists exactly
when r € SAT(F). In that case, COMPg(r) = r. (We use COMPp(r) to
stand for its only member when P is closed under intersection.)

We now give the set of relations a tableau represents.

Definition 8.19 Let T be a tableau and let P be a set of relations. The repre-
sentation set of T under P, denoted REPp(T), is

{r | r € COMPp(p(T)) for some valuation p }.

As usual, REP¢(T) stands for REPg 4 1c)(T).

184 Project-Join Mappings, Tableaux, and the Chase

Lemma 8.6 Let P be a set of relations closed under intersection and let T
and T, be tableaux. If T € p T5, then for every relation r in REPp(T}), there
is a relation s in REPp(T,) such thats < r.

Proof Letr € REPp(Ty), where r is COMPp(p(T,)), and let w; be the row
of all distinguished variables. T,(r) contains p,(wy), since r 2 p,(T). Since
Ty Sp Ty, pi{wy) € Ty(r). There must be a valuation p, such that p;(wy) =
p1(wq) and p2(T3) € r. Let s = COMPp(py(T,)). Relation s exists because
02(Ty) € r € P. It follows that s < r.

Example 8.38 Lemma 8.6 is quite weak when P = SAT(C), for C a set of
FDs and JDs. No matter what C is, SAT(C) contains all relations consisting
of a single tuple. Suppose we have Ty T ¢ T, andr € REP(T,). Lett be a tu-
ple in r, let s be the relation consisting only of z, and let p be the valuation
such that p(T5) = s. Since COMPc(s) = 5,5 € REPc(T,) and cleatlys < r.

However, when P = SAT(C), we can prove a fairly strong result.

Theorem 8.13 Let C be a set of constraints and let T be a tableau. If 7* =
chasec(T), then REPc(T) = REP(T*).

Proof Suppose r € REPc(T). Let p be the valuation such that r =
COMPc(p(T)). Clearly, o(T) < r. Since r € SAT(C), from Lemma 8.4 we
have

1. p(T) € p(T*) and

2. (T*) S r.
We see COMPc(p(T*)) = r, so REPc(T) € REP(T*).

Now suppose r € REP(T*). Let p be a valuation such that r =
COMP(p(T*)). Since T* as a relation is in SAT(C), p(T*) € SAT(C), so
r = p(T*). T may have more variables than 7%, but p can be consistently ex-
tended to T in such a way that (7)) < p(T*). Let w be any row in T, and let
w* be the corresponding row in T*. Set p(w) = p(w*). Let T = Ty, Ty, T,
..., T, = T* be a generating sequence for 7%. By Lemma 8.4, we know that

p(Ty) € p(T,) € -+ € p(T),).
Since SAT(C) has the intersection property,

COMP(o(Ty)) S COMPc(p(T3) S --- € COMP(o(T,)).

Tableaux as Templates 185

(Here COMPc(s) stands for a relation.) Suppose one of the containments is
proper:

COMP(o(T;)) G COMPc(T ;1)

There must be a tuple p(w) in p(T;) that is not in COMPc(o(T})), other-
wise p(T;y1) €& COMPc(p(T;)) and the two completions are equal.
Therefore, w € T;{, w € T;. Row w must have been generated by a J-rule
from rows in T, say rows wy, wy, ..., w, and the J-rule for *[S]. Now p(w;),
p(wa), ..., p(w,) are in p(T7;), hence in COMPc(p(T;)). But COMPc(p(T;))
€ SAT(C) and hence must satisfy *[S], so p(w) is in COMPc{p(T})), a con-
tradiction. None of the containments are proper, so COMPc(p(T)) =
COMPc(p(T*)) = r.

We see that REP(T) € REP(T*), and so REP(T) = REP(T*).

Corollary For a set of constraints C and tableau T,
REP(T) = {p(T*) | T* = chasec(T) and p is a valuation }.

Proof REPq(T) = REPq(T*) = {COMPc(p(T*)) | p is a valuation}. As
we saw in the proof of the theorem, COMPc(o(T*)) = o(T*).

In light of the last theorem, we might expect some connection between the
conditions Ty =¢ T; and REPc(T,) = REP:(T,). However, the first does
not imply the second (Exercise 8.42), nor does the second imply the first, as
the next example shows.

Example 8.39 Let T and T, be the tableaux in Figures 8.62 and 8.63. Let
C = {A — B}. Both the tableaux, as relations, are in SAT(C), hence they
are their own chases under C. There is no containment mapping from T, to
T,, so T; #¢ T,. However, we see that for any valuation p, for T, there is a
valuation p; for T, such that p,(T|) = p,(T,), and vice-versa. By the cor-
ollary to Theorem 8.13, REP(T;) = REP(T)).

T.(A B C)
a; 4z a3
a; ay by
b3 b4 as

Figure 8.62

186 Project-Join Mappings, Tableaux, and the Chase

Ty A B C)
a; by aj
ay bl b2
by a; a;

Figure 8.63

8.8 COMPUTATIONAL PROPERTIES OF THE CHASE
COMPUTATION

In general, the chase computation has exponential time complexity. If
tableau T has k columns and m rows, chasec(T) can have m* rows (see Exer-
cise 8.44). If we are using the chase computation to test for a lossless join, we
need not always compute the entire chase. As soon as wy, the all-
distinguished row, is encountered, there is no need to continue. If wy occurs
in any tableau in a generating sequence, it will appear in the final tableau in
the sequence. However, the problem of determining whether w, € chasec(T)
probably does not have a polynomial-time solution, because the problem of
testing C = *[8] is known to be NP-hard. There are methods, other than the
chase, that can be used to test C &= ¢ in polynomial time, where c is an FD or
MVD.

Chase(T), for a set F of FDs, never has more rows that T, since F-rules do
not create new rows. It is not suprising, then, that chase(T) can be com-
puted in polynomial time. We assume that the input to the problem is the
tableau T and the set F. For simplicity, assume that one attribute or one
tableau variable takes one unit of space to express. Let

k = |U| = the number of the columns in T.
m = the number of rows in T, and
p = the amount of space to express F.

The size of our input is
n=0(k-m + p).

We now indicate how to compute chasec(T) in O(n3) time. We shall make
repeated passes through the set of FDs. For each FD X — A, we do a bucket
sort on the rows of the tableau to bring rows with equal X-components
together. If | X| = g, the sort takes O(q -m) time. Once the rows are sorted,
in O(q -m) time again, we can find rows with equal X-components and make

Computational Properties of the Chase Computation 187

them identical in their A-columns. Over all the FDs in F, the sum of the sizes
of their left sides is no more than p. Thus, one pass through all the FDs takes
O(p-m) time.

We continue to make passes through F until we make a pass where no
changes occur. At that point, we are done. T can have at most k-m distinct
variables to begin with. Every pass except the last decreases the number of
variables by one, so we make O(k -m) passes at most. The total time spent on
the chase is O(k -p-m?2), which is no more than O(n3).

If the tableau corresponds to a database scheme, and only the relation
schemes are given as input, the procedure above requires O(n?) time, where
n is the size of the input (see Exercise 8.45). Other methods for computing
the chase exist that can bring the time complexity down to O(n?/log n).

Up to this point we have assumed all our FDs have single attributes on
their right sides, in order to make the F-rule simple to state. The F-rule can
be generalized to handle multiple attributes on the right side of an FD. If w,
and w, are rows in a tableau such that w;(X) = w,(X), and X — Y is an FD
in the set of constraints, we can identify w;(A) and w,(A) for each attribute
AinY.

There is also an extension of the J-rule that allows us to generate more than
one row at a time. If #*[S] is a JD in the set of constraints, we may apply the
project-join mapping mg to a tableau and use the result as the next tableau in
the generating sequence.

Example 8.40 Suppose T, in Figure 8.64 is a tableau in a generating se-
quence for chasec(T), where C contains ¥*[AB, BC, CD]. T, in Figure 8.65
can be the next tableau in the generating sequence.

T¢(A B C D)

bl a) b2 ay
a; ay a3 b
b4 bs as ay

Figure 8.64

The astute reader may be wondering if the subscripts on nondistinguished
variables can be dispensed with and these variables could be considered
distinct until identified with a distinguished variable. The next example
shows a tableau where nondistinguished variables must be equated to per-
form the chase.

188 Project-Join Mappings, Tableaux, and the Chase

T(A B C D)

by a; by ay
by ay a3 b;
bl a, a3 4au
a da; b2 as
ay a aj b3
dy a3 a3 au

b4 b5 as b3
b4 b5 as as
Figure 8.65

Example 8.41 Let 7T be the tableau in Figure 8.66 and let C = {4 — C,
B — C, CD — E}. In order to compute chasec(T), we must be able to iden-
tify b2, b4 and b8'

TA B C D F)
aq bl b2 a, b3
a; dadp b4 b5 b6
b7 as bg ay as
by by a3 by ay

Figure 8.66

The reader should check that the chase in Example 8.41 cannot proceed
without equating nondistinguished variables, even if the closure of the FDs is
used.

We shall briefly turn our attention to embedded join dependencies (EJDs).
Let S = {5, 82, ..., S, } be a set of relation schemes where §1.5, --- §, =
S € U. To test C = *[§], form the tableau Tg over U. Compute T’sa =
chasec(Ts). If TE contains a row that is distinguished in all the S-columns,
then C = *[S].

Example 8.42 1etS = {AD, AB, BDE},1etU=ABCDE, andletC =
{A—>C,B—C CD — E, E— B}. We form the tableau T, as shown in
Figure 8.67, and compute T§ = chasec(Ts), as shown in Figure 8.68. Since
T¥ contains a row distinguished in the ABDFE-columns, the implication
holds. Note that the C-column must be included. If Tg were formed over just
A B D E, as shown in Figure 8.69, chasec(Ts) would not contain the row of
all distinguished variables.

Exercises 189

THA B C D E)

ay a; by a4 as
ay a; by bs b
b7 a b2 a,s ay

Figure 8.68

T54A B D E)
a; bl ay b2
a, a, b3 b4
b5 a, d4 AQas

Figure 8.69

The chase computation does not generalize to include EJDs as part of C.
The J-rule for an EJID would only generate a partial row. The partial row
could be padded out with new nondistinguished variables, but then the proof
of finiteness of the chase fails (Theorem 8.6).

8.9 EXERCISES

8.1 Let R = {AB, BCD, AE}. Compute mg(r) and mg(s) for the rela-
tions r and s in Figures 8.1 and 8.2.

8.2 Prove part 1 of Lemma 8.1.

83 LetR = {Ry,R,, ..., R,} be a database scheme where R = R;R,
--+ R,. Show that for any relation r(R)

mg(r) € FIX(R).

8.4 Prove that for any tableau T with scheme R and any relation r(R),
r < T(r).

8.5 Let T be a tableau with scheme R, and let r(R) be a relation. Show
that if T has a distinguished variable in every column, then 7(r) is a
relation. That is, T(r) is a finite set of tuples.

190

8.6

8.7*

8.8

8.9

8.10

Project-Join Mappings, Tableaux, and the Chase
Apply the tableau

T4, A, A; Ay

ay a, as bl

a; b3 b4 a,

to the relation

r(A; A, A; Ay

1 3 5 7
1 3 5 8
2 4 6 8
1 4 6 7
Prove Lemma 8.2. Hint: Show that if tuples ¢y, t,, ..., ¢, are joinable

on R, then there is a valuation p for Ty that mapsw; to¢;,, 1 =i < p,
where w; is the row with distinguished variables in the R;-columns.
Show that if tableau 7' contains the row of all distinguished variables,
then T(r) = r for any relation 7.

Let R = {A1A2A3A4, A2A3A4A5} and let § = {A1A2A3, A2A3A4,
A4As}. How many sets of relation schemes Q are there such that R =
Q=18?

For the sets R and S of Exercise 8.9, show that the containment
FIX(R) 2 FIX(S) is proper.

8.11* Prove a version of Theorem 8.1 where all the containments are proper.

8.12
8.13
8.14

8.15
8.16

What is the maximum number of rows a tableau T can have subject to
the constraint SUB(T) = T?

Prove Theorem 8.2. Hint: Use the result that Ty = Ty if and only if
R = 8.

Show that for an arbitrary tableau T, SUB(T) © T.

Prove or disprove: T\ = T, implies SUB(T) & SUB(Ty).

For the tableaux

Ti(A; A, Aj)
aq a; b1
by a; aj

8.17

8.18

8.19

8.20

8.21
8.22

8.23

8.24

Exercises 191
and

T{A, Ay Aj)

a aj b;
b, a; a;
b, by by

find a relation r such that the containment
Ti(r) 2 TH(r)

is proper.

Given tableau T and rows wy and w, in T, say w; supersedes w, if w,
subsumes w, and w;(A) # w;,(A) implies w,(A4) is a nondistinguished
variable appearing nowhere else in 7. Let SUP(T) be T with all
superseded rows removed. Prove SUP(T) = T.

Iet T and T, be tableaux. Prove that if T, 2 T, as sets of rows, then
T, € T, as mappings.

Given tableaux Ty and T, give an algorithm to test if there is a contain-
ment mapping from 7| to T,. What is the time-complexity of your
algorithm?

Let 7" be a tableau and C a set of FDs and JDs. Prove: If p(7T) €
SAT(C) for some 1-1 valuation p, then p'(T) € SAT(C) for any other
valuation p ".

What equivalence preserving transformation rules exist for C = @?
Apply the F-rules for the FDs A, = A3 and A344 = A; to the tableau

TA, A, A3 Ay
ai bl ajs b2
b3 a 4z ay
aj b4 b5 ay

as many times as possible.

Prove Theorem 8.4. Hint: Show that if p is a valuation such that
o(T) € rforr € SAT(X — A) and w; and w, are rows of T where
wi(X) = wy(X), then p(w(A4)) = p(w,(A4)).

Continue applying the J-rules for C in Example 8.20 to tableau 7" un-
til no more changes can be made.

192

8.25

8.26

8.27

8.28

8.29

8.30
8.31
8.32

8.33

Project-Join Mappings, Tableaux, and the Chase

Izet S = {Sl’ S29 ..

joinable on S with result p(w).

Compute the chase of tableau

., 841 be a set of relation schemes, let T be a
tableau and let p be a valuation for 7. Show that if wy, w,, ..
rows of T joinable on S with result w, then p(w,), p(w3), ..

., W, are
., p(w,) are

T4 B C D E)
ay by a3 by as
ay b3 b4 as das
bs a,; daz Qau b6

under the set of constraints C = {4 - B, E > D, ¥{A BC D, D E]}.
Give an example of a generating sequence where two distinct rows in
one tableau have the same corresponding row in a subsequent tableau.
Let Ty, Ty, ..., T, be a generating sequence for an arbitrary chase
computation. Show that T, 2 7,3 --- 23 T,.

Consider the replacement system of Example 8.25. Show that if the
condition that parentheses explicitly express the precedence of A over
V is removed, then the system is not FCR.

Complete case 3 of the proof of Theorem 8.9.

Prove the general case of the corollary to Theorem 8.9.

Prove that the tableaux

TA B C D)
ai bl as b2
ay ay by by
bs a; a3 ay

and

T(A B C D)
a; ajp bl b2
b3 as b4 ag
bs b6 ay ay

are equivalent on SAT(C), where C = {A — B, D — C, *[AB, BC,
CD1]}.

Show that for a tableau T, if T = T, where T is the tableau with just
row wy (of all distinguished variables), then T contains w.

8.34

8.35

8.36
8.37

8.38

8.39

8.40

8.41

8.42

8.43

8.44

8.45

Exercises 193

For Example 8.30, find a relation in SAT(C) that has a lossy decom-

position onto database scheme S.

(a) Consider the database scheme R = {ABC, ADEI, BDEI,
CDEI} and the set of constraints C = {4 > D,B > E,C - I}.
Show that C = *[R}, but that for no proper subset S of R does
C = *[S].

(b)* Generalize part (a) to show that for any n = 3 thereisaset Rof n
relation schemes and a set € of functional dependencies such
that C = *[R], but for no proper subset S of R does C = *[S].

(c) Show that if R consists of two relation schemes, X and Y, and C
is only FDs,

C = *[X, Y] if and only if
CeEXNY—->XoeCEXNY->Y.

Prove part 3 of Lemma 8.4.
What is (AB) T under the set of constraints

C = {*[4ABC, BCD, DE|,B —» D}?

Let C be a set of constraints, X a set of attributesand Q = {Y | C &=
X—> Yand Xt N Y= @} Showthat C = X —> Yifandonlyif Y
can be written X' Y', with X' € Xt and Y € Q.

Find DEP(BC) under the set of constraints {*[ABD, ACEI],
*[ACDI, BCEI], B — I}.

Show that if C is a set of FDs and IDs, then SAT(C) is closed under in-
tersection, but if C also has EIDs, it is not necessarily closed under
intersection.

Show that if C contains only IDs, then COMP(r) always exists, but
that if C also contains FDs, then COMPc(r) does not necessarily ex-
ist, even if r satisfies all the FDs,

Given the set of constraints C and tableaux T, and T,, show that
T, =¢ T, does not necessarily imply REPc(T;) = REPc(T,). Note:
In light of Theorem 8.13, you may assume T, and T, as relations, are
in SAT(C).

Construct an example along the lines of Example 8.39, where C con-
sists only of JDs.

Give a general example of a tableau T with m rows and &k columns,
and a set C of constraints, such that chasec(T) has m* rows.

Show that the procedure for computing the chase given in Section 8.8
has time-complexity O(n?) if the input is given as a set of relation
schemes and a set of FDs, rather than a complete tableau and FDs.

194 Project-Yoin Mappings, Tableaux, and the Chase

8.46* Suppose we generalize the J-rule to include EJDs, as described at the
end of Section 8.8. Partial rows are padded with new nondistinguished
variables. Give a set C of constraints, which will include EJDs, such
that an infinite generating sequence T, T, T, ... exists under C.
Moreover, the generating sequence must have the property that
Tii Tivr,i 2 0.

8.10 BIBLIOGRAPHY AND COMMENTS

Most of the material from Sections 8.1-8.4 is due to Beeri, Mendelzon, et al.
[1979] and Aho, Sagiv, and Ullman [1979a, 1979b]. Tableaux and the chase
process with FDs alone are due to Aho, Beeri, and Ullman [1979], who used
it to test when a set of FDs implies a JD. The extension of the chase to IDs, its
use to solve other dependency problems, and the treatment of tableaux as
templates are by Maier, Mendelzon, and Sagiv [1979].

Theorem 8.8 is from Sethi [1974]. Graham [1980] offers another proof that
the chase is finite Church-Rosser. Liu and Demers [1978] and Downey,
Sethi, and Tarjan [1980] have offered fast algorithms for the chase computa-
tion with FDs alone. With JDs, fast algorithms probably do not exist. It is
NP-hard to test if a JD is implied by a JD and a set of FDs (Maier, Sagiv, and
Yannakakis [1981]), a JD and a set of MVDs (Beeri and Vardi [1980b]), or a
set of MVDs alone (Tsou [1980]). The first two problems have been shown to
be in NP. Kanellakis [1980] has shown intractability when doing inferences
from FDs where domain sizes are restricted.

The “if” part of Exercise 3.5¢ was first noted by Delobel and Casey [1973].
The “only if”’ part was noted by Rissanen [1977].

