
Chapter 8 

PROJECT-JOIN MAPPINGS, 
TABLEAUX, AND THE CHASE 

We did not present a set of inference axioms for IDS in Chapter 7. Instead, in 
this chapter we present a method for deciding if a given FD or JD is implied 
by a set of FDs and IDS. 

8.1 PROJECT-JOIN MAPPINGS 

The criterion for a relation r(R) decomposing losslessly onto a database 
scheme R = (Ri, RZ, . . ., RP } is that r = rRl(r) w r&r) w - -. w 
rRp(r). The right side of this equation is rather cumbersome, so we give a 
shorter notation for it. 

Definition 8.1 Let R = (RI, RZ, . , . , R, > be a set of relation schemes, 
where R = RIR, --. R,, The project-join mapping defined by R, written 
mR, is a function on relations over R defined by 

Example 8.1 Let R = ABCDE and let R = {ABD, BC, ADE}. Consider 
the relation r(R) in Figure 8.1. The result of applying mn to r is the relation 
s(R) shown in Figure 8.2. Applying mR to s gives back relation s. 

r(A B C D E) 

abcde 
a b’ c d’ e 
a b’ c d’ e’ 
a b c d’ e’ 

Figure 8.1 

146 
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s(A B C D E) 

a b c d e 
a b’ c d’ e 
a b’ c d’ e’ 
a b c d’ e’ 
a b c d’ e 

Figum 8.2 

Saying that a relation r(R) satisfies the ID *[RI is the same as saying 
m&r) = t. 

Definition 8.2 Let R = (RI, RZ, . . ., RP), where R = RIRz . - * R,. Uela- 
tion r(R) is a ftied-point of the mapping mR if mR(r) = r. The set of all 
fixed-points of mu is denoted FIX(R). 

Example 8.2 If R = { ABD, BC. ADE 1, then the relation r in Figure 8. I is 
not in FIX(R), while the relation s in Figure 8.2 is in FIX(R). 

We present some other properties of project-join mappings. 

Lemmas.1 Let R = {RI, RZ, . . ., R, } be a set of relation schemes where 
R = R,R, * - - R, and let r and s be relations over R. The project-join map- 
ping mn has the following properties: 

1. r c mR(r); 
2. if r C s, then mR(r) C mu(s) (monotonicity); 
3. m&J = mn(mn(r)) (idempotence). 

Proof The proof of part 1 is left to the reader (see Exercise 8.2). Part 2 
follows from the observation that r E s implies Q;(P) E Q;(S), 1 5 i I p. 
Let r’ = mu(r); part 3 follows from the property that am,, q&), 
. . ., xRp(r) join completely (see Exercise 2.16), hence ?T&) = xRi(r ‘), 1 s 
i 5 p. 

We would like to know when relations on a relation scheme R can be 
represented as databases on a database scheme R such that 

1. there is no loss of information, and 
2. redundancy is removed. 

In practice, we are not interested in all possible relations on scheme R, only 
some subset. Call it P. The first point above corresponds to saying that for 
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every relation r in P, mR(r) = r. That is, P E EJX(R). The second point 
seems to require that if we project a relation r in P into the schemes in R, 
some of the projections have fewer tuples than r. 

The set P will usually be infinite, hence it cannot be described by enumera- 
tion. Rather, P will frequently be specified by a set of constraints (such as 
FDs or IDS) on relations on R. 

Definition 8.3 Let C be a set of constraints on a relation scheme R. 
SATR(C) is the set of all relations r on R that satisfy all the constraints in C. 
We write SAT(C) for SATR (C) when R is understood, and we write SATR(c) 
for SATA((c }), where c is a single constraint. 

We can now state precisely the notion of implication we have been using 
informally in our discussions of MVDs and IDS. 

Definition 8.4 Let C be a set of constraints over relation scheme R. C im- 
plies c, written C E c, if SAT,(C) E SATR(c). 

If P = SAT(C) for some set of constraints C, then our condition requiring 
no loss of information for databases on database scheme R can be stated as 

SAT(C) E FE(R) or 
C k *[R] 

In subsequent sections we shall develop a test for this condition, when C is 
composed of IDS and FDs. 

8.2 TABLEAUX 

In this section we present a tabular means of representing project-join map- 
pings; a tableau. A tableau is similar to a reIation, except, in place of values, 
a tableau has variables chosen from a set V. V is the union of two sets, V, 
and V,,. V, is the set of distinguished variables, denoted by subscripted a’s, 
and V,, is the set of nondistinguished variables, denoted by subscripted b’s. 
(We shall use variable and symbol synonymously in this context.) A tableau, 
T, is shown in Figure 8.3. The set of attributes labeling columns in the 
tableau, in this case A, A2 A3 A4, is the scheme of the tableau. What would 
be tuples in a relation are referred to as roows of the tableau. 
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TM1 A2 A3 A4) 

at bl a3 b2 
b3 a2 a3 h 

a1 b5 a3 a4 

Figure 8.3 

We restrict the variables in a tableau to appear in only one column. We 
make the further restriction that at most one distinguished variable may ap- 
pear in any column, By convention, if the scheme of a tableau is A 1 A 2 - - - A,, 
then the distinguished variable appearing in the A+olumn will be ai. 

A tableau T with scheme R can be viewed as a pattern or template for a 
relation on scheme R. We get a relation from the tableau by substituting do- 
main values for variables. Assume R = Al A2 - - - A, and let 

D = U F= 1 dam (A;)+ 

A valuation for tableau T is a mapping p from V to D such that p(v) is in 
dom(Ai) when v is a variable appearing in the Ai-column. We extend the 
valuation from variables to rows and thence to the entire tableau. If w = 
(VlV2 -a- v,) is a row in a tableau, we let p(w) = (p(q) p(v2) - -- p(v,)). 
We then let 

p(T) = {p(w) ) w is a row in T}. 

Example 8.3 Let p be the valuation listed in Figure 8.4. The result of apply- 
ing p to tableau T in Figure 8.3 is the relation P in Figure 8.5. 

da11 = 1 P(bl) = 4 
da21 = 3 db2) = 8 

&3) = 5 PV3) = 2 

da4) = 7 P(b4) = 7 
Ia%) = 4 

Figure 8.4 

dA, -42 4 A41 

1 4 5 8 
2 3 5 7 
1 4 5 7 

Figure 8.5 
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8.2.1 Tableaux as Mappings 

We can interpret a tableau T with scheme R as a function on relations with 
scheme R. Let wd be the row of all distinguished variables. That is, if R = 
AlA2 - a - A,,, wd = (al a2 - l - a,). (Row wd is not necessarily in T.) If r is a 
retation on scheme R, we let 

This definition says that if we find a valuation p that takes every row in T to a 
tuple in r, then p(wd) is in T(r). 

Example 8.4 Let T be the relation shown in Figure 8.6 and let T be the 
tableau in Figure 8.3. The valuation p in Figure 8.4 shows us that the tuple 
(1 3 5 7) must be in T(r). The valuation p ’ in Figure 8.7 puts (2 4 5 7) in 
T(r). All of T(r) is given as relation s in Figure 8.8. 

r(A, A2 A3 A41 

1 4 5 8 
2 3 5 7 
1 4 5 7 
2 3 6 7 

Figure 8.6 

~‘64 = 2 P V,) = 3 
P ‘(a21 = 4 P ‘(62) = 7 
P ‘(a31 = 5 P ‘Q3) = 1 

P ‘(a41 = 7 I’ = 8 

P ‘(W = 3 

Figure 8.7 

1 4 5 8 
2 4 5 7 
1 4 5 7 
1 3 5 8 
1 3 5 7 
2 3 5 7 
2 3 6 7 

Figure 8.8 
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When evaluating T(r), if the Ai-column in T has no distinguished variable 
in it, then there is no restriction on the value of p(ai)+ If p(T) E r, then p ‘(T) 
c T, for any p ’ that agrees with p on Vexcept on ai. Thus, if dom(Ai) is infi- 
nite, T(r) can have infinitely many tuples and hence will not be a relation. 
Whenever we want to consider a tableau T as a function from relations to 
relations, we require that T have a distinguished symbol in every column (see 
Exercise 8.5). 

8.2.2 Represnting Project-Join Mappings as Tableaux 

It is always possible to find a tableau T that represents the same function as 
any project-join mapping mR. Let R = (Ri, Rz, . . . , R, } be a set of relation 
schemes, where R = R1R2 a * - R,. The tubleau for R, TR, is defined as 
follows: The scheme for TR is R. TR hasp rows, wl, ~2, . . . , wP. Assume 
R =AIAz - * * A,. Row wi has the distinguished variable uj in the Aj-column 
exactly when Aj E Rj. The rest of wi is unique nondistinguished sym- 
bols-nondistinguished symbols that appear in no other rows of TR. 

Example 8.5 Let R = (A1A2, AzA3, A3A4}. The tableau TR is shown in 
Figure 8.9. 

TR(AI A2 A3 A41 

al a2 bl b2 

b3 a2 a3 b4 

bS b6 a3 a4 

Figure 8.9 

Lemma 8.2 J-AR = {RI, RZ, . . ., R, 3 be a set of relation schemes, where 
R = RlR2 - . * R,. The project-join mapping mu and the tableau TR define 
the same function between relations over R. 

Proof Left to the reader (see Exercise 8.7). 

Example 8.6 If R = {AIA2, A2A3, A3A4 } and r is the relation shown in 
Figure 8.10, then mn(r) = TR(~) = S, where s is the relation in Figure 8.11. 

441 A2 A3 A41 

1 3 5 7 
1 4 5 7 
2 3 6 8 

Figure 8.10 
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MI A2 A3 44) 
&I- 

1 3 5 i 
1 3 6 8 
1 4 5 7 
2 3 5 7 
2 3 6 8 

Figure 8.11 

8.3 TABLEAUX EQUIVALENCE AND SCHEME EQUIVALENCE 

Definition 8.5 Let T1 and T2 be tableaux over scheme R. We write T1 2 T2 
if Tl(r) 2 Tz(r) for all relations r(R). Tableaux T1 and T2 are equivalent, 
written T1 = T2, if T1 7 T2 and T2 I T1. That is, T1 = Tz if T,(r) = Tz (r) 
for every relation r(R). 

Example 8.7 Let T1 and T2 be the tableaux in Figures 8.12 and 8.13, 
respectively. T1 2 TZ. For example, if r is the relation in Figure 8.10, Tl(r) is 
the retation s in Figure 8.11, while T2(r) = r. 

Ti(A1 A2 A3 4) 

b, b2 
zt zf a3 b4 
b5 b6 a3 a4 

Figure 8.12 

Tz(A1 A2 A3 A4) 

~1 a2 ~3 bl 
b2 b3 a3 a4 

Figure 8.13 

Definition 8.6 Let R = {RI, R2, . .., RP} and S = (S1, Sx, . . ., Sq} be 
sets of relation schemes, where R 1R2 - - - R, = SlS2 . - - S, = R. R covers S, 
written R 2 S, if for every scheme 5” in S, there exists an Rj in R such that Ri 
2 Sj. We say R and S are equivalent, written R = S, if R 1 S and 
S L R. 

Example 8.8 If R = (AIA2, A2A3, AsAd} and S = {AIA~A~, A~AJ], 
then R I S. 
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Theorem 8.1 Let R = (R 1, RI, . . . , R, } and S = { S1, Sz, , . . , S, } be sets 
of relation schemes, where RIRz - - - R, = SISz -. . S, = R. The following 
are equivalent: 

1. mu 2 ms(r) for aI1 relations r(R). 
2. TR _7 Ts. 
3. FIX(R) c FIX(S). 
4. R 5 S. 

Proof By Lemma 8.2, 1 and 2 are equivalent. We next show 1 and 3 are 
equivalent. 

Suppose mu 2 ms(r) for all relations r(R). Let s be in FIX(R). Since 
m&) = s, s 2 ms(s). But, by Lemma 8.1, s z m&). Therefore s = ms(s) 
and s E FIX(S). Thus we conclude FIX(R) C_ F’(S). 

Now suppose FIX(R) C #EC(S). By idempotence, for any relation r(R), 

%(T) = m&n&)). 

Hence EQ(T) is in FIX(R) and FIX(S): 

ms(ma(r)) = m&). 

From Lemma 8.1 we know mu(~) 1 t, so by monotonicity 

hence 

Last, we show that 1 and 4 are equivalent. 
Suppose IQ(T) 2 ms(r) for alf relations r(R). We assume for each attribute 

A in R, dam(A) has at feast two values, which we shall call 0 and 1. We con- 
struct a relation s(R) as follows: Relations has q tuples, tr, t2, . . . , t,. The tu- 
ple ti is defined as 

tiCA) = I 0 ifAcSi 
I otherwise, 

llilq. 

Let to be the tuple of all 0’s. It is not hard to see that to must be in ms(s). 
Therefore, to is in mu(~). By the nature of mR, for each relation scheme Ri in 
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R, there has to be a tuple tj in s such that tj (Ri) = to (Ri). Thus, Ri E Sj and 
R 5 S. 

Now suppose R I S. Let r(R) be an arbitrary relation and let t be any tuple 
in q(r). There must be tuples tl, t2, . . ., t, in r such that tj(Si) = 
t(S,), 1 5 i 5 p. For any Rj such that Rj E Si, ti<Rj) = t(Rj)n Since R 5 S, 
for any Rj in R there is a tuple tj ’ in t such that tj ‘(Rj) = t(Rj). We see that t 
is in mn(r) and hence mn(t) 2 m&). 

Example 8.9 Let R = {AIAZ, A2A3, A&} and S = {A1A2A3, A&), as 
in Example 8.8. We see that tableau T1 in Figure 8.12 is TR and that 
Tableau T2 in Figure 8.13 is Ts. Since R I S, by Theorem 8.1, TR 7 Ts. For 
example, if r is the relation in Figure 8.14, then TR (r) is given in Figure 8.15 
and Ts(r) is given in Figure 8.16. Evidently, T&-) 2 T&). 

1 4 6 8 
2 4 7 9 
3 5 7 10 

Figure 8.14 

TR(r)(A1 A2 A3 A4) 

146 8 
147 9 
1 4 7 10 
246 8 
247 9 
2 4 7 10 
357 9 
3 5 7 10 

Figure 8.15 

Ts(r)tA~ A2 A3 A4) 

146 8 
247 9 
2 4 7 10 
357 9 
3 5 7 10 

Figure 8.16 
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Cordary LetR={R1,Rz ,..., R,}andS=(S1,S2 ,..., S,}besetsof 
relation schemes, where R1R2 - * - R, = SISz - - - S, = R. The following are 
equivalent. 

1. mR = ms 
2. TR = Ts 
3. FIX(R) = #IX(S) 
4.R=S 

Condition 1 means m&) = m&) for all relations r(R). Note that condi- 
tions 2 and 4 use equivalence rather than equality. Equivalence can hold 
without equality. 

Example 8.10 Let R = (A1A2A3, AlAd, A1A3A4} and S = (A1A2A3, 
A3A4, A1A3A4} be sets of relation schemes. R L S and S 1 R, so R = S. By 
the corollary to Theorem 8.1, TR = Ts. But as we see from Figures 8.17 and 
8.18, TR # Ts, even if we rename nondistinguished variables. 

TRUI AZ A3 Ad 

a1 a2 a3 bl 
a1 b2 b3 a4 
al b4 a3 a4 

Fire 8.17 

Ts(A1 A2 A3 A4) 

QI ~2 ~3 bl 
b2 b3 a3 04 
al 4 a3 ~4 

Figure 8.18 

Although we can have TR = Ts without TR = Ts, if TR = Ts, then TR and 
Ts will exhibit a certain similarity. 

Definition 8.7 Let w1 and w2 be rows in a tableau T with scheme R. If for 
every attribute A in R, wz(A ) is a distinguished variable implies w,(A) is a 
distinguished variable, then w1 is said to subsume w2. 

Example 8.11 In Figure 8.17, the third row subsumes the second row. In 
Figure 8.18, the third row also subsumes the second row. 
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Definition 8.8 Let T be a tableau. T reduced by subszrmption, denoted 
SUB(T), is the tableau consisting of the set of rows in T that are not sub- 
sumed by any other row of T. 

Example 8.12 SUB(TR) is given in Figure 8.19, for the tableau TR in 
Figure 8.17. 

SUB(Td(Al A2 A3 -44) 

al a2 a3 h 

al b4 a3 a4 

Figure 8.19 

Theorem 8.2 Let R = (R 1, R2, . . . , R, } and S = { Sr, S2, . . . , S, > be sets 
of relation schemes where RlR2 + - - R, = SlS2 - - - S, = R. TR G Ts if and 
only if SUB(Tu) is identical to SUB(Ts), except for possibly a one-to-one 
renaming of the nondistinguished symbols. 

Proof Left to the reader (see Exercise 8.13). 

Example 8.13 Let R = {A1A2A3, A1A4, A1A3A4) and S = {A1A2A3, 
A3A4, A1A3A4 1 be sets of relation schemes, as in Example 8.10. SUB( TR), 
shown in Figure 8.19, is identicat to SUB(T& 

Cor~Uary SUB(TR) z TR. 

8.4 CONTAINMENT MAPPINGS 

As we see from Theorem 8.2, there is a simple test for equivalence of 
tableaux that come from sets of schemes, namely, identity of subsumption- 
reduced versions. Any tableau where no nondistinguished variable occurs 
more than once comes from some set of schemes. Unfortunately, Theorem 
8.2 does not hold for tableaux where some nondistinguished variables are 
duphcated. 

Example 8.14 Consider the tableau T in Figure 8.20 and its subsumption- 
reduction SUB(T) in Figure 8.21. Let r be the relation in Figure 8.22. Cer- 
tainly SUB(T) is identical to SUB(SUB( T)). However, T(r) = r, whereas 
SUB(T)(r) = I’, where T’ is the relation given in Figure 8.23. 
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TM1 J42 A3 4) 
ai a2 bl b2 
b3 a2 a3 a4 
b4 a2 a3 b2 

Figure 8.20 

SUB(T)(A, A2 A3 A41 

b, b2 
Et Zf a3 a4 

Figure 8.21 

41 A2 A3 -44) 

I 3 4 6 
2 3 5 7 

Figure 8.22 

r’(Al -42 A3 4) 
1 3 4 6 
1 3 5 7 
2 3 4 6 
2 3 5 7 

Figure 8.23 

We want to formulate a condition for equivalence of arbitrary tableaux. To 
do so we introduce containment mappings of tableaux. A containment map- 
ping is quite similar to a valuation, but instead of mapping tableau variables 
to domain values, it, maps them to variables in a second tableau, in such a 
way that rows are mapped to rows. 

Definition 8.9 Let T and T ’ be tableaux on scheme R, with variable sets V 
and V’. A mapping $: V -P V’ is a containment mappingfrom T to T ’ if the 
following conditions hold: 

1. If variable v is in the A-column of T then $(v) is in the A-column 
of T’. 

2. If variable v is distinguished, then $(v) is distinguished. (By our 
naming convention, $(v) = v.) 
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3. $(T) E T’. That is, when $ is extended to rows of T and thence to T 
itself, it maps every row of T to a row in T ‘. 

Example 8.15 Let T and T’ be the tableaux in Figures 8.24 and 8.25. 
There is a containment mapping from T to T ‘, namely $, where 

ti@j) = q, lli14 
Wl) = a3 

W2) = bl 
Wd = QI 
$04) = bz 
G(bd = a2, 

The first two rows of T are mapped to the first row of T’ by +; $ maps the 
third row of T to the second row of T ‘. There is no containment mapping 
from T’ to T, since, for example, the first row of T’ would have to map to a 
row with at least the distinguished variables al, ~22 and as. 

TM 1 A2 A3 -44) 

al a2 h b2 
b3 a2 a3 b2 
b4 bs a3 a4 

Figure 8.24 

T’(AI A2 A3 A41 

al a2 a3 h 

b2 a2 a3 a4 

Figure 8.25 

Theorem 8.3 Let T and T ’ be tableaux over scheme R. T 7 T ’ if and only 
if there is a containment mapping from T to T’. 

Proof (if) Let $ be a containment mapping from T to T ‘. Take any rela- 
tion r(R) and look at T(r) and T’(r). If p is a valuation for T’ such that 
p( T’) !Z r, then p 0 $ is a valuation for T such that p 0 6 (T) s t. The indu- 
sion follows from $(T) C T’ by applying p to both sides. If wd is the row 
of all distinguished variables, since $(wd) = wd, p 0 \c/(wd) = p(w& so 
T(r) 1 T’(r). 
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(only if) Suppose T 7 T ‘. Consider T’ also as a relation. We have 
T(T ‘) 2 T ‘( T ‘). Consider the valuation p ’ that is the identity on the 
variables V’ of T’. Clearly p'(T') = T' C T', so p'(wd) = wd E T'(T'). 
There must be a valuation p for T such that p(T) !E T ' and p(wd) = wd. We 
see that p can also be construed as a containment mapping from T to T '. 

Example 8.16 We see that T 7 T ‘, where T and T' are the tableaux in 
Figures 8.24 and 8.25. For example, if Y is the relation in Figure 8.26, then 
T(r) = Y ‘, where r ’ is given in Figure 8.27, while T'(r) = Y, so T(r) 1 T'(r). 

r(Al A2 4 A4) 

1 4 6 8 
2 4 7 8 
3 5 7 9 

Figure 8.26 

r'(A1 A2 A3 A4) 
1 4 6 8 
1 4 7 8 
1 4 7 9 
2 4 7 8 
2 4 7 9 
3 5 7 8 
3 5 7 9 

Figure 8.27 

Example 8.17 Let T" be the tableau in Figure 8.28. There is a containment 
mapping from T" to T (What is it?), so T" 7 T. For the relation r in Figure 
8.26, T”(r) = r”, where r” is given in Figure 8.29. We see T"(r) 2 T(r). 

T”(A1 A2 A3 A4) 
al =2 bl b2 
b3 a2 43 b4 
b5 b6 a3 a4 

Figure 8.28 
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r”Ul A2 A3 4) 

1 4 6 8 
1 4 7 8 
1 4 7 9 
2 4 6 8 
2 4 7 8 
2 4 7 9 
3 5 7 8 
3 5 7 9 

Figum 8.29 

Corollary Let T and T ’ be tableaux over scheme R. T = T ’ if and only if 
there is a containment mapping from T to T’ and a containment mapping 
fromT’toT. 

Example 833 Let T be the tableau consisting of only the row wd of all 
distinguished variables. Let T’ be any tableau that contains wd. T = T ‘. 
The containment mapping from T to T ’ maps wd to wd. The containment 
mapping from T’ to T maps every row to wd. 

8.5 EQUfVALENCE WITH CONSTRAINTS 

We are trying to characterize when a relation can be faithfully represented by 
its projections. From the corollary to Theorem 8.1 and Theorem 8.2, we see 
that if R = {R,, R2, . . . , R, ] is a database scheme over R, then FE(R) is 
the set of all relations over R only if Ri = R for some i. If Ri = R, there is no 
need for the other relation schemes in R, so R ends up being a single relation 
scheme. Thus, in general, the answer to the question, “When can reiations 
over R be represented faithfully as database over a nontrivial database 
scheme R?” is never. 

We seldom deal in the most general case. We usually want to represent a 
set of relations over scheme R where some set of constraints is imposed. We 
can use those constraints to find nontrivial database schemes on which to 
represent the relations. 

Definition 8.10 Let P be a set of relations over scheme R. If T1 and Tz are 
tableaux over R, then T1 contains T2 on P, written T1 7 p Tz, if Tl(r) 3 
TV for every relation r in P. T, and T2 are equivalent on P, written T1 = p 
T2, if T1 7 r T2 and T2 7 p T1. 
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The set P will most often be expressed as P = SAT(C) for some set of con- 
straints C. We abbreviate = SAT(Cj as = C. Recall that we are interested in 
when SAT(C) C FYX(R) for a database scheme R. That is, for a given 
database scheme R, can every relation in SAT(C) be losslessly decomposed 
onto R? In terms of constraints, we are asking whether C != *[RI. If TI is a 
tableau for the identity mapping (Tl contains the row of all distinguished 
variables), then we want to know if TR behaves as T1 on SAT(C). That is, is 
TR = c TJ? Theorem 8.3 gives a test for I ; we need a test for 2 c. 

For the next lemma, we need to view a tableau as a relation. We have 
already used this device in the proof of Theorem 8.3. We must be more 
precise now, since we want to know when tableau T, considered as a relation, 
is in set P. What we mean by this condition is that for any valuation p, 
p(T) E P. For an arbitrary set of relations P, this conditions is hard to test. 
However, when P = SAT(C), where C consists of FDs and IDS, if for some 
one-to-one valuation p, p(T) E P, then for. any other valuation p ‘, p ‘(T) f P 
(see Exercise 8.20). 

Lemma 8.3 Let T1 and T, be tableaux over scheme R and let P be a set of 
relations over R. Let Ti and Ti be tableaux such that 

1. T1 =pTiandTz =pT& and 
2. Ti and Ti considered as relations are both in P. 

Then T1 C p Tz if and only if Ti E Ti. 

Proof The if direction is immediate. Clearly T{ L Ti implies Ti C p T& so 
Ti !G T;, T1 E p Ti, and T2 = p T2 imply T, C p T2. For the only if direction, 
TI CP T2, Tl = p Ti and T2 = p Ti imply Ti E p T2). We now show that 
Ti c p Ti implies Ti C Ti. 

Consider T;(TJ. (We are treating Ti simultaneously as a tableau and as a 
relation.) Since Ti, as a relation, is in P, Tif T;) C T,‘(TD. Let wd be the row 
of all distinguished variables and let p be the identity valuation for Ti. Ob- 
viously, p( TJ C Ti, so p(wd) = wd is in T;(T;) and hence in T$T;). There 
must be a valuation 7 for Ti such that v(T2’) E T[ and q(wd) = wd. The 
valuation q can be viewed as a containment mapping from Ti to Ti. Hence, 
by Theorem 8.3, Ti C Ti. 

Corollary For the hypotheses of Lemma 8.3, T1 = p Tz if and only if Ti = T$ 

Let us take stock. We are seeking a test for T1 E c Tz. We know how to test 
T1 C Tz. By Lemma 8.3, we could test T1 E c T2 if we had a way to take an 
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arbitrary tableau T and find a tableau T ’ such that T = c T ’ and T ’ as a 
relation is in SAT(C). We shall introduce transformation nrles for tableaux. 
A transformation rule for a set of constraints C is a means to modify a 
tableau T to a tableau T’ so that T = c T ‘. 

We have seen a limited type of transformation rule in subsumption. For a 
tableau T with no duplicated nondistinguished variables, removing a sub- 
sumed row preserves equivalence. We shall look at transformation rules for a 
set of constraints C composed of FDs and JDs. The different transformation 
rules will actually correspond to individual FDs (F-rules) and JDs (J-rules). 
Repeated application of these transformation rules will yield a tableau that, 
as a relation, satisfies all the dependencies in C. 

For the rest of this chapter, C will always be a set of FDs and JDs over a set 
of attributes U. U will be the scheme for all relations and tableaux. 

8.5.1 F-rules 

For every FD X + A in C there is an associated F-rule. The F-rule for X -+ A 
represents a class of transformations that can be applied to a tableau, de- 
pending on which rows are chosen. 

Let tableau T have rows w1 and w2, where wr(X) = wz(X). Let w,(A) = v1 
and w*(A) = 19 and suppose vi # 5. We apply the F-rule for X --, A to T by 
identifying variables v1 and 19, to form a new tableau T ‘. Variables v1 and v2 
are identified by renaming one of them to be the other. If one of v1 and v2 is 
distinguished, say VI, then every occurrence of v2 is replaced by vl. If v1 and 
v2 are both non-distinguished, every occurrence of the one with the larger 
subscript is replaced by the one with the smaller subscript. Since a tableau is 
a set of rows, some rows may be identified by renaming. 

Example 8.19 Let T be the tableau in Figure 8.30 and let C = {AlA + A4, 
A2A4 -+ A3 >. Applying the F-rule forA2A4 -+ A3 to the first and second rows 
of T identifies variables a3 and b3. Since a3 is distinguished, it replaces b3, to 
yield the tableau T’ in Figure 8.31. The F-rule for AlA + A4 can be applied 
to the fist and third rows of T’ to identify variables bl and b4. Since bl has 
the lower subscript, it replaces b 4. The first and third rows are now the same, 
so the result, T” in Figure 8.32, has only two rows. 

T(A1 A2 A3 A4) 

al a2 43 bl 
b2 a2 b3 61 
a1 a2 b3 b4 

Figure 8.30 
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T’C-41 A2 A3 A41 

al ~2 a3 bl 
b2 a2 a3 bl 
al ~2 a3 64 

Figure 8.31 

T”(A1 A2 A3 Ad) 

at a2 03 bl 
b2 a2 a3 h 

Fire 8.32 

Theorem 8.4 Let T’ be the result of applying the F-rule for the FD X + A 
to tableau T. T and T’ are equivalent on SAT(X + A). 

Proof Left to the reader (see Exercise 8.23). 

8.5.2 J-rules 

Lets = {S,, S2, . . . . S, } be a set of relation schemes and let *[S] be a JD 
over U. Let T be a tableau and let w,, w2, . . . , wg be rows of T that are 
joinable on S with result w. Applying the J-rule for *[S] to T allows us to form 
the tableau T’ = T U {w}. 

Example 8.20 Let T be the tableau in Figure 8.33 and let C = { *[A1A2A4, 

A~%41, *[Adz, AA, AA41 ). W e can apply the J-rule for *[AIAz, A2A3, 
A3A4] to the second row and the third row of T to generate the row ( al a2 b3 a4). 
The resulting tableau T’ is given in Figure 8.34. The J-rule for *[A1A2A4, 
AlA&] can be applied to the first and fourth rows of T’ to generate the row 
(a1 bl b3 a4>. Tableau T” in Figure 8.35 is the result of this application. 

T(AI A2 A3 A41 

al bl b2 a4 
al a2 b3 h 
b5 ~2 b3 a4 

Figure 8.33 
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T’(A1 A2 A3 A41 

al bl b2 a4 
at a2 b3 h 
b5 a2 h a4 
al a2 b3 a4 

Figure 8.34 

T”(A1 A2 A3 A4) 

a1 61 b2 a4 

al a2 b3 b4 

b5 a2 b3 a4 

al a2 b3 a4 

at bl b3 a4 

Figure 8.35 

Theorem 8.5 Let S = {S,, S2, _ _ . , S, ). Let T ’ be the result of applying the 
J-rule for *[S] to tableaux T. T and T’ are equivalent on SAT(*[S]). 

Proof We must show that T(r) = T’(r) for an arbitrary relation r f 
SAT(*[S]). 

Let t ’ be any tuple in T’(r). Let p be the valuation with p(wd) = t ’ (wd is 
the all-distinguished row) and p(T ‘) c r. We have p(T) c p(T ‘), since 
T E T’ (set containment), so p(T) E r, and P(w~) = t ’ 6 T(r). Hence 
T’(r) C T(r). 

Now let t be any tuple in T(r) and let p be the valuation with p(wd) = t and 
p(T) E P. The only tuple that could possibly be in p( T ‘) but not in p(T) is 
p(w), where w is the row generated by the J-rule for *[S] from rows wl, w2, 
. . . , wq of T. It is left to the reader to show that if wt, w2, . . . , wq are joinable 
on S with result w, then p(wl), p(w2), . . ., p(w,) are joinable on S with result 
p(w) (see Exercise 8.2-S). Since r is in SAT(*[S]), and {p(wl), p(w2), . . ., 
p(w,)} E p(T) E r, p(w) is in r. Therefore p(T’) E r, and p(wd) = 
t C T’(r). Hence T(r) E T’(r) and T(r) = T’(r). 

8.6 THE CHASE 

In this section we give a computation method, the chase, that finds, given a 
tableau T and set of dependencies C, a new tableau P such that T = P and 
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Tc as a relation is in SAT(C). Thus, using L,emma 8.3 and Exercise 8.18, we 
shall be able to test tableaux for equivalence under C. 

The chase computation is simply described. Given T and C, apply the F- 
and J-rules associated with the FDs and IDS in C, as long as they make a 
change. We shall prove that the order of application of the transformation 
rules is immaterial. By Theorems 8.4 and 8.5, if the computation terminates, 
it always yields a tableau T” = e T. What is harder to show is that the com- 
putation always halts and that the resulting tableau, T*, is in SAT(C). 

Example 8.21 Let T be the tableau in Figure 8.36 and let C = (*[ABC, 
BCD], B -+ C, AD --) C}. (We useA,B,C,D forAl, A2, AS, A4 for readabil- 
ity.) Tableau T = TR where R = {AB, BD, ACD }. Applying the F-rule for 
B 4 C yields tableau T1 in Figure 8.37. We then apply the J-rule for *[ABC, 
BCD] to get T2 in Figure 8.38 and apply the F-rule for AD + C to get T3 in 
Figure 8.39. One more application of the J-rule for *[ABC, BCDI yields 
tableau P in Figure 8.40, No more transformation rules that correspond to 
dependencies in C can be applied to change IP. Also, Tu, as a relation, is in 
SAT(C). 

T(A B C D) 

al a2 bl b2 
4 a2 b4 a4 
al b6 a3 a4 

Figum 8.36 

T1(A B C D) 

al a2 bl b2 
b3 a2 h a4 
al b6 a3 a4 

Figure 8.37 

Tz(A B C D) 

al ~2 bl b2 
b3 a2 h a4 
al b6 a3 a4 
al a2 h a4 

Figure 8.38 

: .’ . I. _ 
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T,(A B C D) 

al a2 a3 b2 
b3 a2 a3 a4 
al 66 a3 a4 
a1 a2 a3 a4 

Figure 8.39 

TVA B C D) 

al a2 a3 b2 
b3 a2 a3 a4 
al b6 a3 a4 
al a2 a3 a4 

b3 a2 03 b2 

Fii 8.40 

Definition 8.11 A generating sequence for tableau T under constraints C is 
a sequence of tableaux TO, T1, TZ, . , . where T = TO and Ti+, is obtained 
from Tj by applying an F- or J-rule for a dependency in C, 0 I i. We require 
T; # Tj+l. If the generating sequence has a last element T,, such that no F- 
or J-rules for C can be applied to T, to make a change, then T, is called a 
chase of T under C. Chase~( T) represents all such chases. 

Example 8.22 Let T and C be as in Example 8.21. T, T1, T2, T3, F is a 
generating sequence for T under C. Therefore, P E chase&T). 

We need to keep track of rows during the chase computation for some of 
our subsequent proofs. Let tableau T’ be derived from tableau T by the ap- 
plication of a J-rule. If w is a row in T, the row corresponding to w in T ’ is w 
itself. Let T ’ be derived from T by an F-rule that changes variable v to 
variable v ‘. If w is a row in T, the row corresponding to w in T ’ is w ‘, where 
w ’ is row w with v replaced by v ‘. (If w does not contain v, then w = w ‘.) 

If To, T1, ma. 9 Ti, s .a 3 Tj, s se is a generating sequence, and wi is a row in 
Tj, we can extend the “corresponds” relation transitively, and write of the 
row wj in Tj corresponding to wi. That is, there are rows wi+i, wi+2, . . . , 
wj-1 where WR E Tk, such that w;+l corresponds to wig Wi+Z corresponds to 
wi+1, -*-3 wj corresponds to wj-1. 

Example 8.23 In the generating sequence T, Tl, T2, T3, P of Example 
8.22, the first rows of tableaux Tl, Tz, T3, T* all correspond to the first row 
of T. Also, the fourth row of TJ corresponds to the fourth row of T2. 
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For any row w in a tableau in a generating sequence, there is always a row 
corresponding to w in any later tableau in the sequence. However, w does not 
necessarily correspond to some row in an earlier tableau in the sequence, 
since w could have been generated by a J-rule. Distinct rows in one tableau 
may correspond to the same row in a later tableau (see Exercise 8.27). 

Theorem 8.6 Given a tableau T and constraints C, every generating se- 
quence for T under C is finite. Thus, chaseo( T) is never empty. 

Proof Since tableaux are sets of rows, and no F- or J-rule introduces new 
variables, there are only a finite number of tableaux that can appear in a 
generating sequence for T under C. If we can show that no tableau appears 
twice in a generating sequence, we are done. 

Let Ti and Tj be tableaux in a generating sequence, where i < j. If at some 
point in the subsequence Ti, Ti+l, . . . , Tj an F-rule was used, then Ti has 
some variable that Tj lacks, SO Ti # Tj. If only J-rules were used in the subse- 
quence, then Tj has at least one more row than Ti, SO Ti # Tjs 

Theorem 8.7 For any tableau ZP in chusec(T), P, as a relation, is in 
SAT(C). 

Proof If T* violates an FD X + A in C, there must be two rows w r and w2 in 
T* with WI(X) = w2(X), but w,(A) # wZ(A). The F-rule forX + A can be 
applied to rows w1 and w2 to change P, which means P cannot be the last 
tableau in a generating sequence under C. Hence P satisfies X + A. Simi- 
larly, if P violates a JD in C, then the J-rule for that JD can be applied to T* 
to make a change. 

Example 8.24 The tableau T in Figure 8.41 is TR for R = {AE, ADE, 
BCD ). The tableau P in Figure 8.42 is in chase,-(T), where C = (AE 4 D, 
D + C, *[AZ% BCDE]}. The J-rule for the JD in C is never used. We see that 
T* satisfies C. 

T(A B C II E) 

al h b2 h as 
~1 b4 bs a4 as 
b6 a2 a3 a4 b7 

Figure 8.41 
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r((A B C D E) 

41 bl a3 04 a5 
a1 b4 a3 a4 as 
b6 a2 a3 a4 b7 

Figure 8.42 

Corollary Chase&T) = { T} if and only if T, as a relation, is in SAT(C). 

8.6.1 The Finite Church-Rosser Property 

The chase computation is an example of a replacement system. A replace- 
ment system is a pair (Q, =$), where Q is a set of objects and * is an 
antireflexive binary relation on Q, called the transformation relation.* In our 
case, the chase computation is a replacement system for every set of con- 
straints C. Q is the set of tableaux over U, and T * T' if T' is obtained from 
T by applying an F- or J-rule corresponding to a dependency in C. 

Definition 8.12 The relation 3 is the reflexive, transitive closure of * . We 
read T S T' as "T goes to T “’ or "T' is reachable from T.” 

Definition 8.13 Given the replacement system (Q, *), object p E Q is 
irreducible if p 3 q implies p = q. That is, for no q # p does p =$ q. 

Defiition 8.14 The replacement system (Q, =P ) is finite if for every p E Q 
there is a constant c, depending onp, such that ifp 5 q in i steps, then i 5 c. 
That is, for any object p in Q, only a finite number of transformations can be 
applied top before reaching an irreducible object. 

Using Theorem 8.6, it follows that the replacement system for a given 
chase computation is finite. Chasec(T) is all the irreducible tableaux 
reachable from T using F- and J-rules for C. 

Definition 8.15 A finite replacement system (Q, *) is finite Church- 
Rosser (FCR) if for any objectp E Q, ifp s q1 andp $ q2 and q1 and q2 are 
both irreducible, then q1 = q2. That is, starting with anyp, no matter how 
we apply transformations, we eventually end up at the same irreducible 
object. 

*Replacement systems ako sometimes include an equivalence relation over Q. Equivalence is 
then used in place of equality in the definition of Finite Church-Rosser and in Theorem 8.8. 
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ExampIe 8.25 Let B be the set of all well-formed Boolean expressions using 
the symbols 0, 1, (, ), V or A. We assume the expressions are completely pa- 
renthesized. The pair (B, *) is a replacement system, where = is the rela- 
tion summarized in Figure 8.43. We have T * T ’ whenever T’ is T with one 
of the strings in the left column replaced by the associated string in the right 
column. 

string replacement 

(0) 0 
(1) 1 
OAO 0 
OAl 0 
1AO 0 
1Al 1 
ovo 0 
Ovl 1 
Iv0 1 
IV1 1 

Figure 8.43 

We have, for example, 

(((0 V 0) V 1) A 0) * 

(((0) V 1) A 0) + ((0 V 1) A 0) * 

((1) A 0) * 
(1 A 0) * 

(0) * 0. 

The strings 0 and 1 are the only irreducible expressions in 8. Every expres- 
sion in B goes to exactly one of 0 or 1 under $,, and does so in a finite number 
of steps. Hence, (B, =-) is FCR. 

We shall show that the chase computation for a set of constraints C is 
FCR. That result implies that chasec(T) always contains exactly one ele- 
ment. To show the chase computation is FCR, we cite the following theorem, 
which is a special case of a theorem due to Sethi. 

Theorem 8.8 (Sethi) A replacement system (Q, * ) is FCR if and only if it is 
finite and, for any objectp E Q, ifp * q1 andp =) 42, then there is a q in Q 
such that q1 Z$ q and q2 5 q. Diagramatically, we have 
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Example 8.26 For the replacement system (B, *) of Example 8.26, 

((0 v 0) V (1 v 1)) * ((0) V (1 V 1)) and 
((0 v 0) v (1 v 1)) * ((0 v 0) v (1)). 

As required by the theorem 

((0) v (1 v 1)) 3 (0 v 1) and 
((0 v 0) v (1)) T to v 1). 

Theorem 8.9 The chase computation for a set of constraints is an FCR re- 
placement system. Therefore, chaseo( T) is always a singleton set. 

Proof We use Theorem 8.8. We have already observed that the chase is a 
finite replacement system. We must show that if we can obtain either tableau 
T1 or tableau T2 from tableau T by a single application of a transformation 
rule for C, then there is some tableau rC that can be obtained from both T1 
and T2 by 0 or more applications for the rules for C. We treat three cases: 

Case 1: 
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Case 2: 

Case3: 

Observe that J-rules leave existing rows in a tableau unchanged, and that 
an F-r&e cannot change one occurrence of a given variable without changing 
all other occurrences. Let w1 and w2 be rows in tableau T, and let U, and ~2 
be the rows in tableau T' corresponding to w1 and w2, where T ’ can be ob- 
tained from T by application of F- and J-rules. By the observation, if 
w,(X) = WI(X), then ur(X) = uz(X). Thus, if some F-rule or J-rule is ap- 
plicable to a set of rows in T, then the same rule applies to the corresponding 
set of rows in T ‘. We now treat the cases. 

Case 1 Let T1 be T with variables v1 and v2 identified using the F-rule for 
X + A. Let T2 be T with variables v3 and v4 identified using Y + B. 

If A # B, use the F-rule for X + A on T2 to identify vl and vP The result k 
r*, which is T with v1 and v2 identified, and v3 and v4 identified. P can also 
be obtained from T, by using Y * B to identify v3 and v4. 

If A = B, the argument for A # B hoids when q, v2, v3, and v4 are ail 
distinct. If not, assume v1 is a distinguished variable, or, if none of vl, ~2, v3 
or v4 is distinguished, v1 is the nondistinguished variable with lowe& 
subscript among the four variables. (We may have to reverse the roles of Tl 
and T2.) Also assume v3 = v1 or v3 = v2. We claim 59 is T with v2, v3, and v4 
replaced by v 1. 

If v3 = vl, the argument above works again, or T, = T2 = P, if v2 = v4. 
If v3 = v2, the argument is more involved. In T,, v2 (= v3) has been replaced 
by vl. Since the F-rule for Y + B was applied to T to identify v3 and v4, the 
rule for Y --t B also applies to T1 to replace v4 by vl. This reptacement yields 
P. In T2, v3 replaced v 4; or vice-versa. If v3 replaced ~4, then the F-rule for 
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X 4 A can replace v3 with v1 in T 2, If v4 replaced v3, the F-rule for X --) A 
will let v1 replace v4 in T2. In either case, ~2, 9, and v4 are replaced by ~1, 
and the result is r*. 

Example 8.27 Let T be the tableau in Figure 8.44. Applying F-rules for 
A --) B and C --) B, we get the tableaux T1 and TZ, respectively, shown in 
Figures 8.45 and 8.46. Applying C + B to T1 or A * B to T2 gives tableau 
T* in Figure 8.47. 

T(A B C) 

al bl 62 
al b3 a3 
b4 a2 a3 

Figare 8.44 

TIM B Cl 

al bl b2 
bl 

ii’, a2 It: 

Figwe 8.45 

Tz(A B C) 

al h b2 
al a2 a3 

b4 a2 a3 

Figure 8.46 

P(A B C) 

al a2 b2 
al a2 a3 

b4 a2 a3 

Figure 8.47 

Proof of Theorem 8.9 continued 

Case 2 Assume the F-rule replaces variable v1 by variable v2 in T to form T1. 
Assume the J-rule creates row w to add to T to form T2. If w has no occur- 
rence of vl, then apply the J-rule to T, to generate w. The application is 
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possible, because the portions of the rows that went into forming w are un- 
changed from T to Tr. Similarly, applying the F-rule to T2 replaces v1 by v2, 
since addition of a row cannot bar application of a rule. The result of either 
rule application is tableau T*, which is T with variable v1 replaced by v2 and 
row w added. 

If row w contains vl, P will be T with vl replaced by v2 and row w ’ added, 
where w ’ is row w with v1 replaced by ~2. Applying the F-rule used to 
transform T1 to T2 still changes vr to ~2, thereby changing row w to w ‘. The 
result is P. The J-rule used to generate w from T can be applied to the rows 
in T1 that correspond to the rows in T to which the rule was originally ap- 
plied. The resulting row from T1 will be w ’ and so the result of the applica- 
tion is r*. Note that some rows in T1 may correspond to more than one row 
in T. 

Example 8.28 Let T be the tableau in Figure 8.48. Applying the F-rule for 
A -+ B yields tableau Tl in Figure 8.49; applying the J-rule for *[A& BC] 
yields tableau T2 in Figure 8.50. Applying the J-rule to T1 or the F-rule to T2 
will yield tableau P. 

T(A B C) 
~1 bt bz 
b3 bl a3 
al a2 a3 

Figure 8.48 

TIM B C) 

b2 
ii Z: a3 

al a2 a3 

Figure 8.49 

T2M B C) 
ai bl b2 
b3 bl a3 
al a2 a3 

al bl a3 

Figure 8.50 
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Proof of Theorem 8.9 continued Case 3 is left to the reader (see Exercise 
8.30). Since we are able to find an appropriate T* in all three cases, the chase 
computation is FCR. 

Since chase&T) is aiways a singleton set, we modify our notation to let 
chasec( T) represent its only element. 

Corollary If SAT(C) = SAT(C ‘), then chu.sec(T) = chasec,(T) for any 
tableau T. 

Proof We prove here the special case where C ’ = C U {c ) for any c such 
that C I= c. Let T* = chase&T). The same applications of rules will take us 
from T to P under C ‘, since C ’ 1 C. Furthermore, Theorem 8.7 shows us 
that we cannot apply any rules for C’ to T*, because 59 as a relation is in 
SAT(C) and hence in SAT(C’). We see &zsecr(T) = T*. 

The proof of the general version of the corollary is left to the reader (see 
Exercise 8.31). If C and C ’ are arbitrary equivalent sets of constraints, then 
C I= c ’ for any constraint c ’ E C. Likewise, for any c in C, C ’ != c. If C” = 
C U C ‘, then SAT(C”) = SAT(C) = SAT(C ‘). It can be shown, using the 
special case, that chasec(T) = chasectJT) = chasecr(T). 

8.6.2 Equivalence of Tableaux under Constraints 

We can now test equivalence of tableaux under constraints, which gives us a 
test for cases when a project-join mapping mn is lossless on SAT(C). By the 
remarks at the beginning of this section, we know T = c chasec( T). Theorem 
8.7 tells us chasec(T), as a relation, is in SAT(C). Using Lemma 8.3, we 
have the following results. 

Theorem 8.10 Let T1 and T2 be tableaux, and let C be a set of constraints. 
T1 C c T2 if and only if chasec(T1) C chasec(T& 

Corollary T1 = c T2 if and only if chase& T1) = chase& Tz). 

Example 8.29 Consider tableaux T1 and T2 in Figures 8.51 and 8.52. T1 is 
the tableau for the set of schemes {AB, BC, AD >. T2 is the tableau for the 
set {AB, BC, CD}. Let C = {A + D, *iAB, BCD]}. Figures 8.53 and 8.54 
show Ty = chasec(T1) and TT = chase&Tz). 
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TI(A B C D) 

al a2 bl 62 
b3 a2 a3 h 
al b5 b6 a4 

Figure 8.51 

T2(A B C D) 

bl bz 
i: z: a3 b4 

b5 b6 a3 a4 

Figure 8.52 

TT(A B C D) 

;: aa: 
bl a4 

a1 b5 “b”, z: 

a1 a2 a3 a4 

b3 a2 4 a4 

Figure 8.53 

T;(A B C D ) 

a1 a2 bl b2 
b3 a2 a3 b2 
b5 b6 a3 a4 
al a2 a3 b2 
b3 a2 bl b2 

Figwe 8.54 

Since Ty contains the row of all distinguished variables, it is not hard to find 
a containment mapping from TTto Ty. Hence Tf c Tyand therefore T2 E c T1. 

8.6.3 Testing Implication of Join Dependencies 

We desire a means to test when all the relations in SAT(C) can be faithfully 
represented by their projections onto the relation schemes in some database 
scheme R. This condition, equivalently stated as C I= *[RI or mn, is the iden- 
tity mapping on SAT(C). In terms of tableau equivalence, TR SC Tl where 
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TI is the tableau consisting only of w& the row of all distinguished variables. 
TI is the identity mapping on all relations. By Theorem 8.10, we can test the 
equivalence above by checking if chczsec( TR) = chasec( TI). Chase& TI) = 
TI (why?), so we are checking whether chusec(TR) = TI. The test for that 
condition is simply whether or not chasec( TR) contains wd (see Exercise 8.33). 

Example 8.30 T1 in Figure 8.51 is the tableau for the database scheme R = 
(AB, BC, AD]. Let C = {A --) D, *[A& BCD] }. Since chusec( Tl), given 
in Figure 8.53, contains wd, any relation in SAT(C) decomposes losslessly 
onto R. T2 in Figure 8.52 is the tableau for database scheme S = (Al?, BC, 
CD 1. Since chasec(T2), given in Figure 8.54, does not contain wd, there are 
some relations in SAT(C) that have lossy decompositions onto S. 

Example 8.31 As promised in Section 6.5.4, we shall now show that if R is a 
database scheme over U that completely characterizes a set F of FDs and 
some scheme R E R is a universal key for U, then any relation in SAT(F) 
decomposes losslessly onto R. 

Let G be the set of FDs expressed by the keys of the relation schemes in R. 
We know G I= R -+ U. Let Tg = chaseo(Tx). Let w be the row for R in TR 
and let w* be the corresponding row in Tg. We claim w* is the row of all 
distinguished variables. 

Let H be a G-based DDAG for R -+ U. There is a computation for 
chase&Tu) that mimics the construction of H. The correspondence will be 
that if Y is the set of node labeb at some point in the construction of H, then 
the row corresponding to w in some tableau in the generating sequence for 
Tg has distinguished variables in all the Y-columns. More formally, let Ho, 

HI, .a., H, = H be the successive DDAGs in the construction of H. We 
shall describe a generating sequence TR = To, T1, . . . , T, for Tg. 

Let Wj be the row in Tj corresponding to w in To. If Yi is the set of node 
labels for DDAG Hi, we want Wi to have distinguished variables in all the Yi- 
columns. Initially, the desired relationship holds. Ye is just R, and we = w is 
the row for R in TR. Suppose the relationship holds for Hi and Ti. Suppose 
also that Hi+1 is derived from Hi by adding a node labeled A, using the FD 
K -+ A from G. K must be a key for some relation scheme Rj in R, where 
A E Rj. There is a row u for Rj in To. Let ui be the corresponding row in Ti. 
Row ui has distinguished variables in the Rj-columns at least (see Lemma 
8.4, to follow). 

Since K * A was used to extend Hi, K E Yi, hence wi is distinguished in 
all the K-columns. Since K E Rj, ui is distinguished in the K-columns. The 
F-rule for K + A is applicable to Ti on rows Wi and Ui, because Wi(K) = 
ui(K). Applying the F-rule sets wi(A) = ui(A), which means that wi(A) is 
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made distinguished, if it is not already. Hence in Ti+t, w~+~ is distinguished 
at least on YjA = Yi+ 1. 

As the result of our induction, we see that w, in T,, is the row of all distin- 
guished variables, since H, = H has all the attributes in U as node labels. 
One minor detail remains. There may be more rules for G that can be ap- 
plied to T,,. Let the chase computation continue until it terminates: T,+,, 
T n+2, -. ., T& The row w* in Tg corresponding to w, in T, is still all 
distinguished. 

We see that chuseG(TR) contains the row of all distinguished variables, so 
G I= *[RI. Thus, any relation r in SAT(G) = SAT(F) decomposes losslessly 
onto R. 

8.6.4 Testing Implication of Functional Dependencies 

We have a test for implication of JDs by a set C of PDs and JDs. We now turn 
to a test for implication of FDs by C. To test implication of IDS, we inter- 
preted tableaux as mappings from relations to relations. For the FD test, we 
shall view tableaux as relations, or, more accurately, templates for relations. 
Before presenting the test, we need two lemmas. 

Lemma 8.4 Let T be a tableau and let C be a set of constraints. Let p be a 
valuation for T such that p(T) E r, where I+ is chosen from SAT(C). If T = 
To,Tl,Tz, . . . . T, is a generating sequence for chaseo( T), then for 0 I i s n, 

1. p(wo) = p(wj), where w. is any row in To and wi is the corresponding 
HOW in Ti. Also, wi subsumes ~0. 

2. p(Tj) C r. 
3. Ti I Ti+l i t+ n. 

Proof Parts 1 and 2. It suffices to say that if wj is a row in Tj and wj+r is the 
corresponding row of Tj+l then 

dwj) = P(w~+I) and 
wj+ 1 subsumes wj; 

and if w is a row in Tj+l that corresponds to no row in Tj, then 

P(W) E r. 

If Tj+l is obtained by an F-rule that changes no variable in Wj, or a J-rule, 
then wj = w~+~ and obviously p(wj) = p(wj+l) and Wj+l subsumes Wj. Other- 
wise, in going f ram Tj to Tj+ 1, for some attribute A, wj(A) changes from v1 to 19. 



178 Project-Join Mappings, Tableaux, and the Chase 

The change must be through the applications of an F-rule for an FD X -+ A 
to two rows ur and u2 in T’, where u,(X) = u2(X), ur(A) = vi and u2(A) 
= ~2. By induction p(ui) = tl and p(u2) = t,, where tl and t2 are tuples in r. 
We must have t,(X) = t,(X). Since T is in SAT(C), tl(A) = t2(A). Now 
PCVI) = P(uI(A)) = t,(A) = t2(A) = due) = ~(~21. Hence P(wj) = 
p(wj+l). Also, if one of v1 or 02 is distinguished, it must be v2, so Wj+l sub- 
sumes Wj. 

If w is a row in Tj+i that corresponds to no row in Tj, then w must be the 
result of joining rows u r, u 2, . . . , uq of T’ on S, where *[S] E C. By Exercise 
8.25, dub, ,442A . - . , p(u,), which are all in r, are joinabie on S with result 
p(w). Since r E SAT(C), p(w) E r. 

The proof of part 3 is left to the reader (see Exercise 8.36). 

Suppose we have a non-trivial FD X + A, and we want to test whether 
C e X * A. We construct a tableau TX as follows. TX has two rows, wd and 
wx. Row wd is all distinguished symbols; wx has distinguished symbols in the 
X-columns and distinct nondistinguished symbols elsewhere. That is, TX = 
TR for R = (U, X}. 

Example 8.32 Figure 8.55 shows TBc for U = ABCD. 

TBC(A B C D) 

at a2 a3 a4 

h a2 a3 b2 

Figure 8.55 

Theorem 8.11 C t= X + A if and only if chasec(Tx) has only distinguished 
variables in the A-column. 

Proof Let P = chasec(Tx). Suppose T* has a nondistinguished symbol in 
the A-column. P considered as a relation is a counterexample to C i= X + A. 
By Theorem 8.7, T* satisfies C. However, every row of T* has all distin- 
guished symbols in the X-columns, since chase computation does not create 
new symbols. Row wd remains unchanged throughout the chase, by Lemma 
8.4. Thus P has two rows that agree on X but disagree on A: wd and the row 
with a nondistinguished symbol in the A-column. Hence, P violates X --) A. 

Suppose now that T* has only a distinguished variable in the A-column, 
and let r be an arbitrary relation in SAT(C). Let ti and t2 be any pair of 
tuples in r with tl(X) = tZ(X). Consider the valuation p for TX such that 
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p(wd) = tr and p(wx) = t 2. Such a vaiuation exists, because w$(X) = 
wx(X). We just saw that wd is the row in P corresponding to wd in TX. Let 
wz be the row corresponding to wx. By Lemma 8.4, p(w$ = p(wx). Since 
T* has only one variable in the A-column, w$(A) = wd(A). Thus we see 

tl(A) = P(wAA)) = ,&v?(A)) = p(wx(A)) = tz(A). 

Any two tuples in T that agree on X also agree on A. Since r was arbitrary, 
SAT(C) C_ SAT(X * A) or C I= X --f A. 

Example 8.33 Suppose we wish to test C I= BC -+ D. If C = {A + D }, 
then chase&T& = Tsc. There is a b2 in the D-column, so BC + D is not 
implied by C. If C’ = {A -+ D, *[ABC, CD]), then chasec,(TBc) is the 
tableau TL in Figure 8.56. T* has only a4 in the D-column, so C’ i= BC + D. 

r*(A B C D) 

a1 a2 a3 a4 

bt a2 a3 a4 

Figum 8.56 

We originally defined Xf as the closure of a set of attributes X with respect 
to a set of FDs F. We can extend the definition consistently to inctude JDs as 
well as FDs. 

Definition 8.16 Let C be a set of FDs and JDs and let X be a set of at- 
tributes. The closure of X with respect to C, denoted X+, is the largest set of 
attributes Y such that C I= X -+ Y. Note that if C is only FDs, the new defini- 
tion reduces to the ofd definition. 

Corollary For a given C, X+ is the set of all attributes A such that the 
A-columns of chase& TX) has only distinguished variables. 

CoroIIary If J is a set of JDs, then J I= X + Y implies X 2 Y. That is, a set 
of JDs implies only trivial FDs. 

Proof ChaseJ( TX) will have a nondistinguished variable in every column cor- 
responding to an attribute in U - X, since J-rules do not identify symbols. 
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8.6.5 Computing a Dependency Basis 

Since MVDs are a special case of JDs, we can always test C t= X - Y by 
testing C I= *[XU. X2], where Z = U - XY. However, the next theorem 
shows an alternate way to use the chase to find ail sets Y such that C I= X 
++ Y, for a given X. 

Theorem 8.12 Let C be a set of constraints, and let Y be a set of attributes 
disjoint from Xf under C. C I= X ---H Y if and only if chasec( TX) contains a 
row u y with distinguished variables exactly in all the YX+-columns. 

Proof (if) Let Tz be chusec(Tx). Let ud and ux be the rows in Tz cor- 
responding to wd and wx. (We know wd = ud.) Let R be the database scheme 
{XY XZ}whereZ = U - YXf . We shall show that Tg = chusec( TR) must 
contain wd, hence C I= *[XY, Xi?], which is equivalent to C I= X - Y. 

Let pxy and pxz be the rows in TR for relation schemes XY and XZ. Let 
qxy and qxz be the corresponding rows in Ti. Consider a mapping 6 from 
variables in TX to variables in T$ such that 6(wd) = qxy and 6(wx) = qxz. 
The mapping 6 can be viewed as a valuation if T$ is considered as a relation; 
6 exists because pxu(X) = p&X), so q&X) = qxz(X). Since Tg as a rela- 
tion is in SAT(C), by Lemma 8.4, G(Tjc) E Tg, 6(wd) = 6(ud), and 6(wx) = 
Sttc,). Since u$(X+) = ux(X+), qxfiX+) = qxz(X+). We see that 6 maps 
distinguished variables in the X+-columns of T;F to distinguished variables in 
the X+ columns of T;j;. 

We shall show that for row uy of T$ with distinguished symbols in exactly 
the YX+-columns, 6(uy) is the row wd of all distinguished symbols in Tz. 
Since UY is distinguished in the X+-columns, 6(uy) is distinguished in the 
X+-columns by the argument in the previous paragraph. Since qxy sub- 
sumes pxy, qxy is distinguished in all the Y-columns. We know 6(wd) = 
qxy, so 6 must map distinguished variables in the Y-columns of Tg to 
distinguished variables in the Y-columns of T$ Row uy is distinguished in 
all the Y-columns, so 6(uy) is distinguished in all the Y-columns. Since qxz 
subsumes pxz, qxz is distinguished in all the Z-columns. We know 6(wx) = 
qxz, so 6 must map nondistinguished variables in the Z-columns of T;G to 
distinguished variables in the Z-columns of T& Row u y is nondistinguished 
in all the Z-columns, so 6(uy) is distinguished in the Z-columns. U = 
YX+Z, so 6(uy) is distinguished everywhere. Therefore Tg contains wd, so 
cl=x--Y. 

(only if) Assume C I= X - Y. Let C’ = C U {*[XY, XZ]}, where Z = 
u - YX’, as before. By the corollary to Theorem 8.9, chasec(Tx) = 
chasec t( TX) because SAT(C) = SAT(C ‘). Consider the computation for 
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chasecl(Tx) where the first step is to apply the J-rule for’*[XY, X2] to rows 
wd and wx. The result is a row w that is distinguished exactly in the XY- 
columns. During the remainder of the chase computation, any nondistin- 
guished variables in the X+-columns of w will be made distinguished. Thus 
the row in chasec I( TX) corresponding to w will have distinguished variables 
in exactly the YX+-columns. (Why are there no distinguished variables 
elsewhere?) Chasec(Tx) = chasecr(TX), so we are done. 

Example 8.34 Let C = {B --+ C, *[ABC, CDE]). Tableau TB is given in 
Figure 8.57 and Ti = chase&Tg) is given in Figure 8.58. We see that I?+ = 
BC and that C implies the MVDs B-ADE, B-H@, B-HA and B-DE. 

TB(A B C D E) 

a1 a2 a3 a4 a5 
bl a2 bz b3 b4 

Figure 8.57 

T;(A B C D E) 

al a2 a3 a4 a5 

bl a2 a3 b3 h 

a1 a2 a3 b3 b4 

bl a2 a3 a4 as 

Figure 8.58 

From chase&TX), then, we can determine the set Q = { Y 1 C I= X-H Y 
and X+ n Y= @). Referring to Section 7.4.2, by replication, C I= X-++A 
for any Z t X+. Exercise 8.38 will show that C I= X-t+Y if and only if Y can 
be written asX’Y ‘, where X’ G X+ and Y’ E Q. We can extend our defini- 
tion of dependency basis to include JDs. 

Definition 8.17 Let C be a set of constraints and let X be a set of attri- 
butes. The dependency basis of X with respect to C, denoted DE!‘(X), is 
mdsb(( Y 1 C I= X --t, Y 1). (Recall that mdsb is minimum disjoint set basis- 
see Section 7.4.3.) 

As before, C I= X-Y if and only if Y is the exact union of sets in 
DIP(X). DIP(X) can be calculated directly from Q andX+ as mdsb(Q) U 

Ii-41 IA -+I. 
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Example 8.35 Let C = (B + C, *[ABC, CDE]}, as in Example 8.34. We 
saw in that example that B + = BC and Q = {ADE, 8, A, DE). We can 
calculate DEP(B) = {A, B, C, DE >. 

8.7 TABLEAUX AS TEMPLATES 

In this section we shall formalize the idea of a tableau as a template for 
relations. . 

Definition 8.18 Let P be a set of relations, and let r be any relation. A com- 
pletion of r under P is a relation s in P such that I E s and there is no relation 
s ’ in P such that r c s ’ $G s. COMP&-) is the set of all such completions; 
COMP&) is shorthand for COMPS~,&). 

Completions do not always exist. 

Example 8.36 Let r be the relation in Figure 8.59. If F = {A + C }, then 
COMP,(r) is empty. If J = (*[AB, BCD]}, then COMPdr) = {s ), where s 
is the relation in Figure 8.60. 

r(A B C D) 

1 3 4 6 
2 3 4 6 
1 3 5 7 
Figure 8.59 

sCA B C II) 

1 3 4 6 
2 3 4 6 
1 3 5 7 
2 3 5 7 

Figure 8.60 

Completions are not unique, given they exist. 

Example 8.37 Let r be the relation of Figure 8.59. L.et P = SAT(*[AB, 
BC]). The dependency *[AB,BC] is an embedded ID for the given relation 
scheme. COMP&-) contains relation s in Figure 8.60, and also the relation q 
in Figure 8.61. In fact, COMP&) contains one relation for every value in the 
domain of attribute D. 
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q(A B C D) 
1 3 4 6 
2 3 4 6 
1 3 5 7 
2 3 5 6 

Figure 8.61 

A set P of relations is closed under intersection if for every pair of relations 
r and s in P, r n s is in P. 

Lemma 8.5 P is closed under intersection if and only if completions under P 
are unique. 

Proof Suppose P is closed under intersection. Let s and s ’ be completions 
ofrunderP.Byclosure,sns’isinP,andsns’~r,sos=sns’=s’. 
For the converse, suppose completions under P are unique. Let r and s be in 
P, and let q = r n s. There must be some subset r ’ of r (perhaps r itself) 
such that Y ’ is a completion of 4 under P. Likewise, there is a subset s ’ of s 
that is a completion of q. By uniqueness of completion T ’ = s ‘, so r ’ = q = 
s ’ and q is in P. 

Corollary If C is a set of FDs and IDS, then completions under SAT(C) are 
unique. 

Proof Left to the reader (see Exercise 8.40). 

Completions always exist for a set J of IDS only. Completions can be found 
in a manner similar to the chase computation. However, if C contains both 
FDs and IDS, completions do not always exist, even for relations that satisfy 
the FDs (see Exercise 8.41). For a set of FDs F, COA@&) exists exactly 
when r E SAT(F). In that case, COMPdr) = r. (We use COMPp(r) to 
stand for its only member when P is closed under interse’ction.) 

We now give the set of relations a tableau represents. 

Definition 8.19 Let T be a tableau and let P be a set of relations. The repre- 
sentation set of T under P, denoted REPp( T), is 

{ r 1 T e COMP&(T)) for some valuation p }. 

As usual, REPc( T) stands for RJ?TP~~~~~~( T). 
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Lemma 8.6 Let P be a set of relations closed under intersection and let Ti 
and Tz be tableaux. If Tt c p TZ, then for every relation r in REpP( Tr), there 
is a relation s in REP,(T2) such that s E r. 

Proof Let T E l?Ef’p(T~), where r is COMPp(pr(Tr)), and let wd be the row 
of all distinguished variables. T*(r) contains pr(wJ, since t 2 pr(Ti). Since 
Tr C p Tz, pl(wB) E Tz(r). There must be a valuation p2 such that p2(wd) = 
pr(wd) and pz(T2) E r. Let s = COMP,(p2(T2)). Relation s exists because 
~z(T2) G r E P. It follows that s G r. 

Example 8.38 Lemma 8.4 is quite weak when P = SAT(C), for C a set of 
FDs and IDS. No matter what C is, SAT(C) contains all relations consisting 
of a single tuple. Suppose we have Tt C_ c 272 and T E REPc( T1). Let t be a tu- 
ple in r, let s be the relation consisting only of t, and let p be the valuation 
such that p(T2) = s. Since COMpC(s) = s, s E REPc( T2) and clearly s E t. 

However, when P = SAT(C), we can prove a fairly strong result. 

Theorem 8.13 Let C be a set of constraints and let T be a tableau. If T* = 
chaseo( T), then REP&T) = REP&T*). 

Proof Suppose r E REP&T). Let p be the valuation such that r = 
COMP&(T)). Clearly, p(T) E 1. Since r E SAT(C), from Lemma 8.4 we 
have 

1. p( 2”) E p(F) and 
2. p(P) E T. 

We see COMP&r*)) = r, so REP&T) C REP&T*). 
Now suppose r E REPc(T*). Let p be a valuation such that r = 

COMP&(F)). Since TX as a relation is in SAT(C), p(P) E SAT(C), so 
T = p(F). T may have more variables than T*, but p can be consistently ex- 
tended to T in such a way that p(T) E p(F). Let w be any row in T, and let 
w* be the corresponding row in TX. Set p(w) = p(w*). Let T = To, T1, T2, 
. . ., T, = TX be a generating sequence for T*. By Lemma 8.4, we know that 

~(2-1) E dT2) G - -- C p(T,). 

Since .SA T( C) has the intersection property, 

co~~cb’(T~)) c COMPc(p(T2)) E . -. s cOMP(p(T,)). 
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(Here COMP&) stands for a relation.) Suppose one of the containments is 
proper: 

There must be a tuple p(w) in p( T;+,) that is not in COMP&( T,)), othcr- 
wise ~(Ti+l) E COMPc(p(Ti)) and the two completions are equal. 
Therefore, w E Ti+l, w e Tie Row w must have been generated by a J-rule 
from rows in Ti, say rows wl, w2, . . . , wq and the J-rule for *[S]. Now p(wI), 
P(W2h * - *, P(w,) are in p(Tj), hence in COMPc(p(Tj)). But COMPc(p(Ti)) 
c SAT(C) and hence must satisfy *[S], so p(w) is in COMPc(p(Ti)), a con- 
tradiction. None of the containments are proper, so COMP&(T)) = 
coMPc(p(T9) = 1. 

We see that REP&) E REPc( T*), and so REPc( T) = REPc( P). 

Corollary For a set of constraints C and tableau T, 

REPc(T) = {p(P) [ P = chasec( T) and p is a valuation}. 

Proof REPdT) = REPc(P) = {COMPc(p(!i”Y) 1 p is a valuation 1. As 
we saw in the proof of the theorem, COMPc(p(P)) = p(P). 

In light of the last theorem, we might expect some connection between the 
conditions T1 = c T2 and REPS = REPc( Tz). However, the first does 
not imply the second (Exercise 8.42), nor does the second imply the first, as 
the next example shows. 

Example 8.39 Let T1 and T2 be the tableaux in Figures 8.62 and 8.63. Let 
C = (A + B}. Both the tableaux, as relations, are in SAT(C), hence they 
are their own chases under C. There is no containment mapping from T1 to 
Tz, so T1 fc T2. However, we see that for any valuation pi for T1 there is a 
valuation p2 for T2 such that pl(T1) = p2( T2), and vice-versa. By the cor- 
ollary to Theorem 8.13, REPc(T1) = REP~(T& 

Tl(A B Cl 

al a2 a3 

at a2 b2 

b3 b4 ~3 

Figure 8.42 

” 1. ’ 
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T264 B C 1 
at bt a3 
a~ bi b2 
b3 a2 a3 

Fii 8.63 

8.8 COMPUTATIONAL PROPERTIES OF THE CHASE 
COMPUTATION 

In general, the chase computation has exponential time complexity. If 
tableau T has k columns and m rows, chasec( T) can have mk rows (see Exer- 
cise 8.44). If we are using the chase computation to test for a lossless join, we 
need not always compute the entire chase. As soon as wd, the all- 
distinguished row, is encountered, there is no need to continue. If wd occurs 
in any tableau in a generating sequence, it will appear in the final tableau in 
the sequence. However, the problem of determining whether wd E chasec( T) 
probably does not have a polynomiaI-time solution, because the problem of 
testing C i= *[S] is known to be NP-hard. There are methods, other than the 
chase, that can be used to test C I= c in polynomial time, where c is an FD or 
MVD. 

ChaseF( T), for a set F of FDs, never has more rows that T, since F-rules do 
not create new rows. It is not suprising, then, that chuseF(T) can be com- 
puted in polynomial time. We assume that the input to the problem is the 
tableau T and the set F. For simplicity, assume that one attribute or one 
tableau variable takes one unit of space to express. Let 

k = ]U] = th e number of the columns in T. 
m = the number of rows in T, and 
p = the amount of space to express F. 

The size of our input is 

n = O(k-m + p). 

We now indicate how to compute chase&T) in O(n3) time. We shall make 
repeated passes through the set of FDs. For each FD X 3 A, we do a bucket 
sort on the rows of the tableau to bring rows with equal X-components 
together. If 1x1 = 4, the sort takes O(q em) time. Once the rows are sorted, 
in O(q mm) time again, we can fiid rows with equal X-components and make 
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them identical in their A-columns. Over all the FDs in 1;, the sum of the sizes 
of their left sides is no more thanp. Thus, one pass through all the FDs takes 
O(p -m) time. 

We continue to make passes through F until we make a pass where no 
changes occur. At that point, we are done. T can have at most k-m distinct 
variables to begin with. Every pass except the last decreases the number of 
variables by one, so we make O(k .m) passes at most. The total time spent on 
the chase is O(k-p-m2), which is no more than O(n3). 

If the tableau corresponds to a database scheme, and only the relation 
schemes are given as input, the procedure above requires O(n4) time, where 
n is the size of the input (see Exercise 8.45). Other methods for computing 
the chase exist that can bring the time complexity down to O(n2/log n). 

Up to this point we have assumed all our FDs have single attributes on 
their right sides, in order to make the F-rule simple to state. The F-rule can 
be generalized to handle multiple attributes on the right side of an FD. If wl 
and w2 are rows in a tableau such that wl(X) = w2(X), and X + Y is an FD 
in the set of constraints, we can identify wl(A) and w2(A) for each attribute 
A in Y. 

There is also an extension of the J-rule that allows us to generate more than 
one row at a time. If *[S] is a JD in the set of constraints, we may apply the 
project-join mapping ms to a tableau and use the result as the next tableau in 
the generating sequence. 

Example 8.40 Suppose T1 in Figure 8.64 is a tableau in a generating se- 
quence for chase,-(T), where C contains *[A& BC, CD]. T2 in Figure 8.65 
can be the next tableau in the generating sequence. 

T1(A B C D) 

bl a2 b2 a4 
~1 a2 a3 b3 
b4 bs ~3 a4 

Figure 8.64 

The astute reader may be wondering if the subscripts on nondistinguished 
variables can be dispensed with and these variables could be considered 
distinct until identified with a distinguished variable. The next example 
shows a tableau where nondistinguished variables must be equated to per- 
form the chase. 
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T2(A B C D) 

bl a2 4 a4 
bt a2 a3 b3 
h a2 a3 a4 
al a2 b2 a4 
a1 a2 a3 b3 

a4 
it, ;: :: b3 
b4 b5 a3 a4 

Figure 8.65 

Example 8.41 Let T be the tableau in Figure 8.66 and let C = {A -+ C, 
B --f C, CD + E). In order to compute chase&T), we must be able to iden- 
tify b2, b4 and bs. 

T(A B C D E) 

al bl b2 a4 b3 
al a2 b4 b5 b6 
b7 a2 bs a4 a5 
b9 bto a3 h a4 

Figure 8.66 

The reader should check that the chase in Example 8.41 cannot proceed 
without equating nondistinguished variables, even if the closure of the FDs is 
used. 

We shall briefly turn our attention to embedded join dependencies (EJDs). 
Lets = {S,,&, . . . . S, } be a set of relation schemes where S1S2 - * * S = 

f- S C U. To test C L= *[S], form the tableau Ts over U. Compute T, - 
chases. If Tg contains a row that is distinguished in all the S-columns, 
then C I= *[S]. 

Example 8.42 Let S = (AD. AB, BDE ), let U = A B CD E, and let C = 
(A + C, B + C, CD + E, E + B }. We form the tableau Ts, as shown in 
Figure 8.67, and compute T,* = chasec(Ts), as shown in Figure 8.68. Since 
T,* contains a row distinguished in the ABDE-columns, the implication 
holds. Note that the C-column must be included. If Ts were formed over just 
A B D E, as shown in Figure 8.69, chusec(Ts) would not contain the row of 
all distinguished variables. 



Exercises 189 

Ts(A B C D E) 
*I bl b2 a4 63 
a1 a2 b4 bs 66 
b7 a2 bg a4 a5 

Figure 8.67 

Tz(A B C D E) 
a1 a2 b2 a4 a5 
*I a2 bz bs b6 
b7 a2 b2 a4 a4 

Figure 8.60 

T;(A B D E ) 
*I bl a4 b2 
al a2 b3 b4 

b5 a2 a4 a5 

Figure 8.69 

The chase computation does not generalize to include EJDs as part of C. 
The J-rule for an EJD would only generate a partial row. The partial row 
could be padded out with new nondistinguished variables, but then the proof 
of finiteness of the chase fails (Theorem 8.6). 

8.9 

8.1 

8.2 
8.3 

8.4 

8.5 

EXERCISES 

Let R = {All, BCD. AE}. Compute I~z&) and 111n(s) for the rela- 
tions r and s in Figures 8.1 and 8.2. 
Prove part 1 of Lemma 8.1. 
L&R = {R1,R2, . . . . R, } be a database scheme where R = RlR2 
. - - R,. Show that for any relation r(R) 

m&) E FIX(R). 

Prove that for any tableau T with scheme R and any relation r-(R), 
r c T(r). 
Let T be a tableau with scheme R, and let r(R) be a relation. Show 
that if T has a distinguished variable in every column, then T(r) is a 
relation. That is, T(r) is afinite set of tuples. 
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8.6 Apply the tableau 

TM1 A2 A3 Ad 
al a2 a3 bl 

b2 a2 a3 a4 

al b3 b4 a4 

to the relation 

d4 A2 -43 A4) 

1 3 5 7 
1 3 5 8 
2 4 6 8 
1 4 6 7 

8.7* Prove Lemma 8.2. Hint: Show that if tuples tI, t2, . . . , tp are joinable 
on R, then there is a valuation p for TR that maps wi to ti, 1 5 i I p, 
where wi is the row with distinguished variables in the Z+columns. 

8.8 Show that if tableau T contains the row of all distinguished variables, 
then T(r) = r for any relation r. 

8.9 Let R = {A1A2A3A4, A2A3A4A5} and let S = {A1A2A3, A2A3A4, 

AdAs}. How many sets of relation schemes Q are there such that R 1 
Q L S? 

8.10 For the sets R and S of Exercise 8.9, show that the containment 
FZX(R) 2 FZX(S) is proper. 

8.11” Prove a version of Theorem 8.1 where all the containments are proper. 
8.12 What is the maximum number of rows a tableau T can have subject to 

the constraint SUZ?( T) = T? 
8.13 Prove Theorem 8.2. Hint: Use the result that TR = Ts if and only if 

R = S. 
8.14 Show that for an arbitrary tableau T, SUB(T) E T. 
8.15 Prove or disprove: T1 E T2 implies SUB(T1) c SUB(T2). 
8.16 For the tableaux 

Tl(Al A2 A3) 

ai a2 bl 
b2 a2 a3 
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and 

T26-41 A2 4) 

al a2 by 

b2 a2 a3 

b2 b3 bl 

find a relation r such that the containment 

Tlk) 2 T2(r) 

is proper. 
8.17 Given tableau T and rows wr and w2 in T, say w1 supersedes w2 if w1 

subsumes w2 and w,(A) # w2(A) implies w2(A) is a nondistinguished 
variable appearing nowhere else in T. Let SUP(T) be T with all 
superseded rows removed. Prove SUP(T) = T. 

8.18 Let T1 and T2 be tableaux. Prove that if T1 2 T2 as sets of TOWS, then 
T1 E T2 as mappings. 

8.19 Given tableaux T1 and T2, give an algorithm to test if there is a contain- 
ment mapping from T1 to T 2. What is the time-complexity of your 
algorithm? 

8.20 Let T be a tableau and C a set of FDs and JDs. Prove: If p(T) E 
SAT(C) for some l-l valuation p, then p ‘(T) E SAT(C) for any other 
valuation p ’ . 

8.21 What equivalence preserving transformation rules exist for C = @? 
8.22 Apply the F-rules for the FDs Al + A3 and A3A4 + AZ to the tableau 

TM1 A2 A3 A41 

al bl a3 b2 
b3 a2 a3 a4 
al h b5 a4 

as many times as possible. 
8.23 Prove Theorem 8.4. Hint: Show that if p is a valuation such that 

P(T) E r for r E SAT(X -+ A) and w1 and w2 are rows of T where 
WI(X) = WZCO, then p(wi(AN = p(w~(A)). 

8.24 Continue applying the J-rules for C in Example 8.20 to tableau T” un- 
til no more changes can be made. 
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8.25 Let S = ES,, S2, . . . , S, } be a set of relation schemes, let T be a 
tableau and let p be a valuation for T. Show that if WI, ~2: . . . , wq are 
rows of T joinabte on S with result W, then p(wl), p(wx), . . . , p(w,) are 
joinable on S with result p(w). 

8.26 Compute the chase of tableau 

T(A B C D E ) 

al bl a3 b2 G. 
al b3 b4 a4 a5 
b5 a2 a3 a4 b6 

under the set of constraints C = {A 4 B, E + D. *[A B C D, D E] }. 
8.27 Give an example of a generating sequence where two distinct rows in 

one tableau have the same corresponding row in a subsequent tableau. 
8.28 Let To, T,, . . . , T,, be a generating sequence for an arbitrary chase 

computation. Show that T,, 2 T, 7 - - - 2 T,,. 
8.29 Consider the replacement system of Example 8.25. Show that if the 

condition that parentheses explicitly express the precedence of A over 
v is removed, then the system is not FCR. 

8.30 Complete case 3 of the proof of Theorem 8.9, 
8.31 Prove the general case of the corollary to Theorem 8.9. 
8.32 Prove that the tableaux 

T,(A B C D) 

al bl a3 b2 
al a2 b3 b4 
b5 a2 a3 a4 

and 

T2(A B C D) 

bl bz 
i: :: b4 a4 
b5 b6 a3 a4 

are equivalent on SAT(C), where C = {A --f B, D -+ C, *[AB, BC, 
CD1 1. 

8.33 Show that for a tableau T, if T = TI, where TI is the tableau with just 
row wd (of ah distinguished variables), then T contains wd. 
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8.34 For Example 8.30, find a relation in SAT(C) that has a lossy decom- 
position onto database scheme S. 

8.35 (a) Consider the database scheme R = {ABC, ADEI, BDEI, 
CDEI} and the set of constraints C = {A + D, B -+ E, C -+ I}. 
Show that C I= *[RI, but that for no proper subset S of R does 
c k *[s]. 

(b)* Generalize part (a) to show that for any IZ 1 3 there is a set R of n 
relation schemes and a set C of functional dependencies such 
that C I= *[R], but for no proper subset S of R does C 5= *[S]. 

(c) Show that if R consists of two relation schemes, X and Y, and C 
is only FDs, 

C I= *[X, yl if and only if 
c1=xnr-+x0rC~xnY-+Y. 

8.36 Prove part 3 of Lemma 8.4. 
8.37 What is (AB)+ under the set of constraints 

8.38 

8.39 

8.40 

8.41 

8.42 

8.43 

8.44 

8.45 

C = {*[ABC, BCD, DE], B 4 D]? 

Let C be a set of constraints, X a set of attributes and Q = ( Y 1 C I= 
X++ YandX+ f~ Y= @}.ShowthatC t=X- YifandonlyifY 
can be writtenX’ Y’, withX’ s X+ and Y’ E Q. 
Find DEP(BC) under the set of constraints { *[ABD, ACEI], 
"[ACDI, BCEI], B + I}. 
Show that if C is a set of FDs and IDS, then SAT(C) is closed under in- 
tersection, but if C also has EJDs, it is not necessarily closed under 
intersection. 
Show that if C contains only IDS, then COMP&-) always exists, but 
that if C also contains FDs, then COMP,-(r) does not necessarily ex- 
ist, even if T satisfies all the FDs. 
Given the set of constraints C and tableaux Ti and T2, show that 
T1 = c T2 does not necessarily imply REP&T,) = REPc(T2). Note: 
In light of Theorem 8.13, you may assume T1 and T2, as relations, are 
in SAT(C). 
Construct an example along the lines of Example 8.39, where C con- 
sists only of IDS. 
Give a general example of a tableau T with m rows and k columns, 
and a set C of constraints, such that chase&T) has mk rows. 
Show that the procedure for computing the chase given in Section 8.8 
has time-complexity O(n4) if the input is given as a set of relation 
schemes and a set of FDs, rather than a complete tableau and FDs. 
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8.46X Suppose we generalize the J-rule to include EIDs, as described at the 
end of Section 8.8. Partial rows are padded with new nondistinguished 
variables. Give a set C of constraints, which will include EIDs, such 
that an infinite generating sequence To, Ti, T2 . . . exists under C. 
Moreover, the generating sequence must have the property that 
Ti # Ti+,, i L 0. 

8.10 BIBLIOGRAPHY AND COMMENTS 

Most of the material from Sections 8.1-8.4 is due to Beer-i, Mendelzon, et al. 
[1979] and Aho, Sagiv, and Ullman [1979a, 1979b]. Tableaux and the chase 
process with FDs alone are due to Aho, Beeri, and Ullman [1979], who used 
it to test when a set of FDs implies a ID. The extension of the chase to IDS, its 
use to solve other dependency problems, and the treatment of tableaux as 
templates are by Maier, Mendelzon, and Sagiv [1979]. 

Theorem 8.8 is from Sethi [1974]. Graham [1980] offers another proof that 
the chase is finite Church-Rosser. Liu and Demers [1978] and Downey, 
Sethi, and Tatjan [1980] have offered fast algorithms for the chase computa- 
tion with FDs alone. With IDS, fast algorithms probably do not exist. It is 
NP-hard to test if a ID is implied by a ID and a set of FDs (Maier, Sagiv, and 
Yannakakis [1981]), a ID and a set of MVDs (Beeri and Vardi [198Ob]), or a 
set of MVDs alone (Tsou [1980]). The first two problems have been shown to 
be in NP. Kanellakis [1980] has shown intractability when doing inferences 
from FDs where domain sizes are restricted. 

The “if” part of Exercise 3.52 was first noted by Delobel and Casey [1973]. 
The “only if” part was noted by Rissanen [1977]. 


