
Composed, and in Control:
Programming the Timber Robot

Mark P. Jones1, Magnus Carlsson1, and Johan Nordlander2

1 Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU, Beaverton, OR 97006, USA

2 Department of Computing Science
Chalmers University of Technology, S - 412 96, Göteborg, Sweden

http://www.cse.ogi.edu/pacsoft/projects/Timber/

Abstract. This paper describes the implementation of control algo-
rithms for a mobile robot vehicle using the programming language Tim-
ber, which offers a high-level, declarative approach to key aspects of
embedded systems development such as real-time control, event han-
dling, and concurrency. In particular, we show how Timber supports an
elegant, compositional approach to program construction and reuse—
from smaller control components to more complex, higher-level control
applications—without exposing programmers to the subtle and error-
prone world of explicit concurrency, scheduling, and synchronization.

1 Introduction

This paper describes some programs that we have written to control a small
robot vehicle called Timbot (the “Timber Robot”). The functionality provided
by these programs and the specifications of the vehicle on which they run are
not particularly unusual from the perspective of previous and current work on
autonomous control and robotics. But the novelty of our work, and the focus
of this paper, lies in our use of Timber, a new programming language that has
been designed to facilitate the construction and analysis of software for embed-
ded systems. In particular, Timber offers a high-level, declarative approach to
several of the key areas for embedded systems development—such as real-time
control, event handling, and concurrency. By comparison, the languages that
have traditionally been used in this domain typically relegate such features to
the use of primitive APIs or coding idioms, leading to programs that are harder
to analyze, and more difficult to reuse or port to new platforms.

1.1 Background: Project Timber

The work reported here has been carried out as part of a larger effort called
Project Timber (“Time as a basis for embedded real-time systems”) at the OGI
School of Science & Engineering. One of the goals of Project Timber, and of



particular relevance in this paper, is to investigate the role that advanced pro-
gramming languages can play in supporting the construction and analysis of
high-assurance, portable real-time systems.

Another important goal for the project is to develop techniques and mech-
anisms for building systems that adapt dynamically to changes in their envi-
ronment, in resource allocations, or computational load. By comparison, many
systems today are brittle, and become unusable, or perhaps even fail outright,
if used under conditions that their designers had not anticipated. For example,
a live MPEG video stream can quickly become unwatchable if even just a small
percentage of the underlying network packets are lost as a result of a drop in
available bandwidth. An alternative is to build more flexible systems that can
gracefully degrade the quality of the services they provide—according to user-
specified policies—and still provide useful functionality. In the case of a live video
stream, for example, we can respond to a reduction in bandwidth by reducing
the frame rate, the image size, the color depth, or some user specified combina-
tion of these, and still continue to enjoy a live, real-time video stream. In fact,
this very example was one of the motivations for including a video camera on
Timbot, and we are investigating a somewhat different application for Timber
as a tool for programming and analyzing adaptation policies. Further discussion
of these topics, however, is beyond the scope of this paper.

1.2 Outline of Paper

The rest of this paper are as follows. In Section 2, we give an overview of Tim-
bot, describing the hardware components from which it has been assembled.In
Section 3, we introduce the Timber programming language by showing how it
can be used to provide a software interface to the robot vehicle. In Section 4,
we begin to use this interface to develop a library of reusable controllers, and
then we show how these can be combined to implement more complex control
applications in Section 5. Finally, in Section 6, we conclude with a review of
future and related work.

2 Introducing Timbot

In this section, we provide an overview of Timbot, the small robot vehicle shown
in Figure 1. Built on the chassis of a radio-controlled monster truck, Timbot hosts
an on-board embedded PC (an 850MHz PIII, with 256MB ram, and a wireless
802.11b network adapter); an analog video camera on a pan-tilt mounting, which
connects to the computer via a PC/104+ frame grabber; sonar and line tracking
sensors; and a battery system that allows Timbot to be used either on the
desktop or as a standalone vehicle. Recently, we have been using Timbot with
a standard Linux distribution installed on a 1GB microdrive, which provides
enough headroom to host a fairly rich development environment. However, we
have also used Timbot in other configurations, replacing the microdrive with
smaller compact flash cards, and using custom built Linux kernels with RTAI



Fig. 1. Timbot, the Timber Robot

for real-time support. Timbot has more memory and more computational power
than the machines found in many industrial embedded systems; this reflects its
intended use as a platform for experimentation and demonstration. Nevertheless,
it still exhibits many of the characteristics—and raises many of the challenges—
that occur in the development of a modern, sophisticated embedded system.

The block diagram in Figure 2 shows the connections between the main
components of Timbot in more detail. At the center, the CPU is connected over

power
supply ¾ -serial

camera -
analog
video frame

grabber

CPU
(Pentium III,

850MHz,
256MB ram)

wireless
network
adapter

¾ -serial
sonar

controller - angle

?6
distance

-serial
servo

controller

?
pan

?
tilt

?
steer

- speed

Fig. 2. A Block Diagram of Timbot

standard PC buses to a network adapter and to the frame grabber/camera com-
bination in the lower left hand corner. Toward the top left, a power supply unit
generates regulated voltage supplies for each component and handles charging of
the batteries when Timbot is connected to a desktop power supply. The power
supply is also connected to the CPU by an RS232 serial line that can be used,
among other things, to query for an estimate of remaining battery power.

For this paper, however, our attention will be focused on the components
in the right hand portion of the diagram, centered around the servo and sonar
controllers. These two devices are also accessed via RS232 serial connections, and
respond to multi-byte messages from the CPU by setting the physical position
of a servo and, in the case of the sonar controller, pulsing an ultrasonic range
finder to measure the distance to an obstacle. There are four servos on Timbot,
and these can be set independently to adjust camera direction (pan), camera



attitude (tilt), steering direction (steer), and sonar direction (angle). In addition,
an electronic speed controller (speed), which has the same electrical interface as
a mechanical servo, is used to control the speed of Timbot’s motors, and hence
the speed at which it crosses the floor.

3 A Timber interface for Timbot

In this section, we describe the interface that Timber programs use to access
and control the robot. This interface provides a bridge from the description of
hardware in the previous section to the control programs that will come later on.
We will also use this to introduce the Timber language and the idioms of reactive
programming that it adopts. In the tradition of declarative languages, the goal
of Timber is to allow programmers to describe what they want to accomplish,
without having to worry about how it is achieved in terms of low-level concepts
such as concurrent threads, scheduling, interrupts, and synchronization.

In discussing Timber code, we will comment on important details, but we do
not attempt to provide a full tutorial or reference; further details may be found
elsewhere [1]. In fact, Timber was derived from Nordlander’s O’Haskell [3], which
was, in turn, based on the functional language Haskell [7]. Where O’Haskell mod-
ified Haskell by providing a high-level approach to concurrency and reactivity
via stateful objects, asynchronous messaging, and subtyping, the Timber lan-
guage modifies O’Haskell by adding constructs to specify timing behavior and
by adopting strict evaluation to facilitate analysis of worst-case execution times.
We hope that the key aspects of our code will be clear from the accompanying
text, but experience with Timber, O’Haskell, Haskell, or similar languages (in
decreasing order of applicability) will be needed to understand the details.

3.1 The Timbot Interface

Our first fragment of Timber code is the definition of the Timbot type, which
describes the software interface to the special hardware features of the robot:

record Timbot < Truck, CameraControl, Sonar

record Truck =

speed :: Speed -> Action

steer :: Angle -> Action

record CameraControl =

pan :: Angle -> Action

tilt :: Angle -> Action

record Sonar =

angle :: Angle -> SonarListener -> Action

The first line tells us that Timbot is a combination of three interfaces for con-
trolling vehicle movement (Truck), camera orientation (CameraControl), and



sonar usage (Sonar), respectively. The Truck and CameraControl interfaces are
straightforward, with methods that take either a single angle or speed parameter
and return an action that will move the corresponding servo to the specified po-
sition. More generally, actions represent “asynchronous message sends,” and are
an implicit trigger for concurrent execution, allowing new tasks to be executed
(or, at least, scheduled for later execution) without delaying further execution
of the code from which the action was invoked. (Note that there is no need to
wait for the result of an action because actions do not return values.)

The definition of the Sonar interface requires more explanation. In a tra-
ditional programming language we might expect to access the sonar by calling
a function that: sets the sensor direction; pulses the ultrasonic transducer; lis-
tens for an echo to obtain an estimate of distance; and returns the result to the
caller. It has long been recognized, however, that so-called blocking operations
like this are a significant source of complexity in the coding of concurrent and
distributed systems [4], often requiring programmers to make assumptions, or to
use encodings that can lead to deep but subtle bugs—such as deadlock—if they
are not correct or if they are not applied correctly. Timber avoids these prob-
lems by eliminating blocking computations. There are no blocking primitives in
the Timber library—no getchar, read, or delay methods, for example—nor
any means for a programmer to construct a blocking method. Instead, Timber
adopts a purely event-driven approach in which a program advertises methods
(or “callbacks”) that its environment can invoke to inform the program when
input becomes available. Of course, this event-oriented approach is widely used
in other languages, but it is weakened in many cases by the continuing presence
of blocking operations, which makes it much harder to use in a reliable fashion.

For our interface to the Timbot’s sonar, we avoid the need for blocking by
passing two parameters to the angle method. The first is the angle for the sonar,
while the second is a “listener” object that determines how the resulting distance
reading will be passed back to the program.

record SonarListener =

distance :: Maybe Distance -> Action

Notice that the distance method takes an argument of type Maybe Distance,
indicating that it will either be a value of the form Just x—when a distance x is
measured—or a value Nothing—when no measurement is obtained. This could
occur if there is no object within range (approximately 2.7m) or if the ultrasonic
signal from the sonar is absorbed instead of being reflected. By distinguishing
this case explicitly within the type system, we may incur a little extra work in
decoding and applying distance readings. Nevertheless, this is clearly preferable,
at least if one is interested in reliable control programs, to encoding an out-of-
range reading as a particular distance value, and hoping that programmers will
always remember to check for the special case.

3.2 Implementations of the Timbot Interface

Every top-level Timber program is parameterized by an env argument of type
StdEnv that allows the program to interact with the external environment in



which it is running. For example, the environment provides a putStrLn method
that can be used in a command of the form env.putStrLn msg to display a
message on the console. In the future, we plan to extend the environment with a
timbot method that allows the interface to Timbot’s hardware to be accessed in
a similar way as env.timbot. Our current prototype, however, uses the following
getTimbot function instead, whose implementation is discussed in Section 3.4.

getTimbot :: StdEnv -> Cmd Timbot

Of course, it is useful (and possible) to have other implementations of the Timbot
interface. For example, we use one such interface for simple development and
testing on machines other than Timbot. We are also constructing a more sophis-
ticated implementation of the interface that connects Timber control programs
to a simulator that can accurately model the motion and sensors of Timbot.

Now we can begin to write simple programs to control Timbot! The following
program, for example, uses getTimbot to obtain an interface to Timbot (binding
the variable timbot to the result), and then starts the robot moving at a constant
speed with the steering turned all the way to the left. The result, of course, is
to drive Timbot anticlockwise around the perimeter of a circle.

circle env = do timbot <- getTimbot env

timbot.steer hardLeft

timbot.speed 30

after (20*seconds) (timbot.speed 0)

The do keyword introduces a sequence of four commands. The symbolic constant
hardLeft gives the maximum angle to which the steering can be set for a left
turn. (There is, of course, a corresponding value, hardRight, for right turns.)
The speed setting of 30 corresponds to a (slow) forward speed; speed values
range between -128 (reverse, at speed!) and +127 (forward, with haste!), but we
have not yet attempted to calibrate speed in more traditional units.

Given only the first three lines, the definition of circle would, quite literally,
send Timbot into an infinite loop: once a setting is made, the servo controller
will work, even against physical pressure, to maintain it. To prevent the infinite
loop, we included the final line to specify that timbot.speed 0 should be exe-
cuted 20 seconds after the program begins. The symbolic constant seconds is a
multiplier that can be used to express time values. (There are similar multipliers
for milliseconds and microseconds.) The use of symbolic constants makes it
possible to express times in a platform independent manner, recognizing that
multiplier values are likely to vary from one machine to the next.

This is also our first example of a timing annotation. In code like this, the
after construct is intuitive and simple, but we will see that it is also powerful.
As a first hint, we note that the after construct in this example is emphatically
not the same as a 20 second (blocking) delay followed by the timbot.speed 0
command. (Remember: there are no blocking operations in Timber!) Instead, it
should be read as a high-level declaration of the time at which a specific action is
to be performed. It would make no difference if the after construct were moved
to the first line after the call to getTimbot; the semantics, and for all practical
purposes, the observational behavior of the program would not be changed.



3.3 Monadic Programming in Timber

While Timber adopts a strict evaluation strategy like ML [2], it also relies on
monadic programming [8] to encapsulate side-effects, and to facilitate analysis
and optimization. Many of the programs in this paper run in the Cmd monad,
meaning that they have a type of the form Cmd t, and correspond to a com-
mand that can be executed to obtain a result of type t. When no particular
return value is needed, we typically substitute the unit type, written (), for t.
For example, the circle program in the previous section is a function of type
StdEnv -> Cmd ().

In practice, most Timber programs use several different but related monads
that distinguish, for example, between methods—which have access to the local
state of an object—and commands (i.e., values with types of the form Cmd t)—
which can invoke the methods of an object, but do not themselves have any local
state. The use of different monads provides documentation and more precise in-
formation for programmers and program analysis tools alike. For example, the
type system allows us to distinguish several special types of command using sub-
types of Cmd t: commands that execute a synchronous request have a type of the
form Request t; actions—which are commands that execute an asynchronous
method call—have type Action; and commands that instantiate a template to
construct an object of type t have types of the form Template t.

Timber also provides special syntax for these different kinds of command.
Requests are written as a sequence of commands prefixed by a request key-
word instead of the do that we saw in the definition of circle. Return values
are specified by commands of the form return e. Actions are written in a sim-
ilar way, but prefixed by the action keyword. Of course, actions do not (and
cannot) specify return values. The syntax for templates uses expressions of the
form template local in e to denote a command that, when executed, will con-
struct a new object whose local state variables (if any) are initialized by the
(possibly) empty list of statements in local, and whose interface is specified by
the expression e. The interface to an object will often be a record, but this is
not required; unlike other object-oriented languages, Timber treats objects and
records as orthogonal language features.

3.4 Implementation Details

It is quite easy to implement the getTimbot function of Section 3.2 using stan-
dard Timber libraries that work with character devices. For reasons of space,
we do not include the code here, and restrict ourselves to a brief discussion of
the most important issue: synchronization. For example, from the description of
Timbot in Section 2, it is clear that truck control settings and camera control
settings must be multiplexed through the same serial link to the servo controller.
Some kind of synchronization is needed in situations like this to avoid giving con-
current tasks simultaneous access to the same device. The sonar controller might
easily become confused, for example, if the multi-byte messages for two different
control tasks were accidentally interleaved. Many languages, however, require



explicit coding of synchronization, which works against the goals of abstraction
because it assumes that programmers will have enough information about the
underlying implementation to understand when synchronization is required and
to know how it should be achieved. In Timber, these problems are solved at the
language level—its semantics guarantee that each object is treated as an implicit
critical section, meaning that at most one of its methods is active at a time. As
such, synchronization is implicit in Timber code, with the task of determining
where it is actually necessary being left to the underlying implementation.

4 The Controller Abstraction

While embedded systems may use sophisticated sensors and actuators to engage
in complex interactions with their environment, many present a much simpler
interface to their human users: an on/off switch! This is typical for systems that
are designed to operate autonomously, without frequent user input once they
have been turned on. We have already found several examples of this in the pro-
grams that we have been writing to control Timbot, both in small components,
and in complete programs, which we can express in timber by using the following
Controller abstraction:

record Controller =

start :: Action

stop :: Action

4.1 An Acceleration Controller: First Attempt

As an example, the following code defines a controller that will set a timbot in
motion, accelerating from rest by increasing the vehicle’s speed by incr units
after each period of time t, but never exceeding the specified maxSpeed.

accelControl :: Speed -> Speed -> TimeDiff -> Timbot -> Template Controller

accelControl maxSpeed incr t timbot

= template running := False

in let accel s = action if running then

timbot.speed s

let s’ = s + incr

if s’ <= maxSpeed then

after t (accel s’)

in record start = action if not running then

running := True

accel 0

stop = action running := False

timbot.speed 0

This controller is useful in practice because it reduces the possibility of a dam-
aging jolt that could occur if we set the speed of Timbot directly to the target
speed. The key here is the accel method that is called with a zero speed set-
ting when the controller is first started. Subsequent recursive calls increase the



speed in steps using after to ensure that they are distributed correctly over
time. Additional logic, using a Boolean state variable running, will terminate
the acceleration if the controller is stopped before the target speed is reached.

Unfortunately, our definition has a serious flaw: if the controller is turned off,
but then turned back on again before the next accel step is executed, then we
will continue with the sequence of accel calls initiated when the controller was
first started, while also generating a second sequence of calls for the later start.
Such behavior is unlikely to produce satisfactory results!

4.2 An Acceleration Controller: Second Attempt

Clearly, it is not enough for an acceleration controller’s stop method just to
reset the running flag and bring the vehicle to a stop with timbot.speed 0; it
must also cancel any pending calls to accel. It is easy to implement this using
standard Timber library functions. But we will go a step further and generalize
to obtain an abstraction that can be used in other contexts, while also neatly
encapsulating our solution to the bug in the original accelControl. The benefit,
of course, is that other programmers can then use this more general construct
to build new controllers more concisely, without recreating our original bug.

We start with the definition of a new subtype of Controller that adds a
method called invoke. This new method will be invoked immediately after the
controller is started. Each time it is called, however, it returns a value of type
Maybe TimeDiff, indicating when (if at all) it should next be invoked.

record RepeatController < Controller =

invoke :: Request (Maybe TimeDiff)

Now we can use an object of this type to build a controller with the correct
behavior using the following startstop function:

startstop :: RepeatController -> Template Controller

startstop rc

= template running := False

sc <- singlecall

in let tick = action mpa <- sc.invoke

case mpa of

Just t -> sc.call (after t tick)

Nothing -> done

in record start = action if not running then

running := True

rc.start

tick

stop = action if running then

running := False

sc.cancel

rc.stop

Note the use of the single call object sc, which allows our program to schedule
the execution of an action a using sc.call a, but also allows that action to



be canceled, if it has not already started, using sc.cancel. This provides the
missing feature that we needed to avoid the original accelControl bug, and is
included as part of the Timber libraries.

Now, for example, we can recode our accelControl controller more concisely,
and without the bug, using the following definition:

accelControl maxSpeed incr t timbot

= template s := 0

ctrl <- startstop (record

start = action s := 0

stop = action timbot.speed 0

invoke = request

timbot.speed s

s := s + incr

return (if s <= maxSpeed

then Just t else Nothing))

in ctrl

Notice that all of the logic associated with the running flag has been captured
and hidden away by the use of startstop.

4.3 Imperative versus Declarative: A Matter of Style?

Our definitions of accelControl have an imperative feel, which some readers
may feel detracts from the goals of Timber as a declarative language. This is
subjective, but we note also that it often comes down to a debate about pro-
gramming style. The following alternative definition, for example, while retaining
some imperative elements, avoids the explicit recursion in the original:

accelControl maxSpeed incr t timbot

= let profile = zip [0,t..] [0,incr..maxSpeed]

in template mc <- multicall

in record start = action

forall (ti,si) <- profile do

mc.call (after ti (timbot.speed si))

stop = action

mc.cancel

timbot.speed 0

This code defines a list of (time,speed) pairs called profile that describes the
complete acceleration process. This list is used when the controller is started
to generate a corresponding sequence of (time-delayed) actions. (The forall
construct—which might suggest a loop in an imperative language—is really just
convenient syntactic sugar for a standard operation on lists.) The only real dif-
ference here is the use of a multicall, which behaves much like a singlecall,
except that it enables us to call (and subsequently cancel) a collection of mul-
tiple pending actions. The multicall method used here is not included in the
current Timber libraries, but will perhaps be added in a future version.



4.4 Other Controller Components

As we write programs to control Timbot, we are collecting a library of reusable
components, like accelControl, that are useful in other applications. In this
section, we describe three representative examples from this growing collection.

Our first example is a periodicControl, which will execute a particular
command at regular intervals for as long as the controller is turned on. Its
definition is a simple application of startstop:

periodicControl :: TimeDiff -> Cmd a -> Template Controller

periodicControl t cmd = do rc <- template in

record start = action done

stop = action done

invoke = request cmd

return (Just t)

startstop rc

No special actions are needed (beyond those already handled by startstop)
when a periodicControl component is either started or stopped, so the trivial
action, done, is specified for these two methods.

Our second example is sweepControl, which can be used to sweep a device
(such as the sonar, or the camera) across a range of different angles (between
minA and maxA), changing the angle by some fixed incr after each t units of time,
and triggering an appropriate action at each point. For this example, we use an
object with a state variable angle that records the current angle, and a Boolean
state variable incr to indicate if the angle is currently increasing or not (i.e.,
moving from minA to maxA or from maxA to minA). As one might hope, the peri-
odic stepping of sweepControl is captured naturally using periodicControl.

sweepControl (minA, maxA, stepA, t) act

= template

angle := minA

incr := True

ctrl <- periodicControl t

(action act angle

if incr then angle := angle + stepA

if angle > maxA then

angle := maxA

incr := False

else angle := angle - stepA

if angle < minA then

angle := minA

incr := True)

in ctrl

Almost all of the code here deals with the specific needs of a sweepControl
component—much of which has to do with calculating how the sweep angle
should change from one step to the next. There is, by comparison, very little in
the way of boilerplate code, because that has already been packaged away for us
in abstractions like periodicControl.



Our third example demonstrates a different style of definition. In this case,
a multiControl controller can be used to start/stop each of the elements in a
list of controllers from a single start/stop command.

multiControl :: [Controller] -> Template Controller

multiControl cs = template in record

start = action forall c <- cs do

c.start

stop = action forall c <- cs do

c.stop

The following simple program illustrates how the components described above
can be combined to construct simple control programs for Timbot. This partic-
ular section of code, for example, constructs independent sweep controllers, each
operating at a different frequency, for the camera pan and tilt, and then uses
multiControl to package them into a single controller.

do cam <- getTimbot env

pc <- sweepControl (-60, 60, 6, 50*milliseconds) cam.pan

tc <- sweepControl (-30, 30, 2, 80*milliseconds) cam.tilt

multiControl [pc, tc]

In this example, we are simply using Timber to describe, at a high-level, the
construction and connections between a group of reusable control components.
What the language hides are the subtle and sometimes complex concurrency,
scheduling, and synchronization issues that are needed to weave the code from
each component together with the intended timing.

5 Control Applications

In this section we describe some simple control programs that can be constructed
from the components in previous sections. In particular, these programs are
designed to use information obtained from sonar. The most important details to
notice in these examples are the ease with which components can be combined,
and the clarity that results from the implicit treatment of concurrency. Note
also that each example is packaged using the same controller abstraction as the
components from which they are built. As a result, these examples could in turn
be reused as components in a larger, more complex system.

5.1 Simple Obstacle Avoidance

In this section we show the code for a simple obstacle avoidance program that
drives the robot forward while sweeping the sonar across the path in front of it
to look for obstacles. (For the purposes of this paper, an obstacle is any object
that is within 1m of the robot on its forward path. In practice, we often test
Timbot by stepping into the path of the robot and using ourselves as obstacles!)
If an obstacle is detected, then the robot will stop, but continue scanning in the



hope that the obstacle will move. If a full second passes with no obstacle being
detected, then the robot will once again begin accelerating forward again.

The code for simpleObstacleAvoid is straightforward, obtaining a timbot
interface; building an accelerator controller, a listener for the sonar, and a con-
troller to sweep and trigger the sonar; and gluing these pieces together.

simpleObstacleAvoid env

= do timbot <- getTimbot env

accel <- accelControl 50 10 (500*milliseconds) timbot

lstn <- obstacleLstn accel

sweep <- sweepControl (-12, 12, 2, 100*milliseconds)

(\a -> timbot.angle a lstn)

return sweep

The main control logic is provided by the listener that receives distance mea-
surements from the sonar, which we construct using the obstacleLstn function:

obstacleLstn :: Controller -> Template SonarListener

obstacleLstn ctrl

= template lastTime := 0

in record distance d

= action t <- currentBaseline

case d of

Just x | x<1.0 -> lastTime :=t

ctrl.stop

_ -> if t > lastTime+1*seconds

then ctrl.start

This listener records the time at which an obstacle was last detected in a private
state variable lastTime. Each time the sonar reports a distance, the listener
checks to see if it indicates the presence of an obstacle. Note that an out-of-
range reading is treated, perhaps rather dangerously, as an indication that no
obstacle has been seen! The careful reader might also spot that obstacleLstn
is a candidate for reuse because it can be connected to an arbitrary controller,
and not just to the accelControl that is used in simpleObstacleAvoid.

5.2 Wall Following

In this section, we show the Timber code for another well-known example of
autonomous robot control: wall-following. The goal of this application is to drive
the robot along at a fixed distance from a wall on its right hand side. If the robot
gets too close to the wall (below a distance minD), then we steer the robot to
the left, and away from the wall. On the other hand, if it gets too close (greater
than a distance maxD), then it will steer to the right, and toward the wall. (For
readers not familiar with this particular problem, we should note that this simple
strategy will only work correctly within certain parameters—we assume that the
vehicle begins parallel to the wall at a distance within minD and maxD, and that
it does not move or turn too quickly.)



Again, the code breaks into two pieces, the first of which constructs and
connects components, while the second encodes the main logic in a listener.

wallFollow minD maxD env

= do timbot <- getTimbot env

accel <- accelControl 40 10 (500*milliseconds) timbot

lstn <- wallLstn timbot accel minD maxD

trigger <- periodicControl (200*milliseconds)

(timbot.angle 70 lstn)

multiControl [trigger, accel]

wallLstn :: Timbot -> Controller -> Distance -> Distance

-> Template SonarListener

wallLstn timbot ctrl minD maxD

= template in record

distance d = action

case d of Just x | x < minD -> timbot.steer hardLeft

| x > maxD -> timbot.steer hardRight

| otherwise -> timbot.steer 0

Nothing -> ctrl.stop

The listener that we have used in this example responds a little differently, and
perhaps too cautiously, to an out-of-range reading from the sonar (the case for
Nothing in the definition above) by assuming that this indicates the end of the
wall, and so bringing the vehicle to rest. In fact, an out-of-range reading might
also have been the result of a transient glitch. We leave it as an exercise to the
reader to extend the definition here to delay stopping the vehicle until several
consecutive out-of-range readings have been received, and so reduce the chance
that the robot might stop prematurely,

6 Future and Related Work

The examples in this paper have demonstrated how Timber can be used to sup-
port an elegant and compositional approach to the construction of simple control
algorithms for the Timbot robot vehicle. The high-level treatment of concurrency
is particularly useful in avoiding the need for programmers to deal explicitly with
the thorny issues of synchronization, scheduling, etc. As we continue to develop
more interesting and more sophisticated control programs, we are also building
a useful library of flexible and reusable control components.

There have been several other attempts to explore the use of declarative lan-
guages in similar application domains. Rees and Donald [9], for example, showed
how the abstraction mechanisms of Scheme can be used in robot control, but
also relied on explicit concurrency and synchronization. Wallace and Runciman
[10] showed how functional languages can be used to describe an embedded con-
troller for a lift shaft, but adopted a more primitive process model that allows
processes to receive only one type of message. Most recently, Functional Reac-
tive Programming (FRP) has been used to provide declarative specifications of



event-based programs with continuously time-varying behavior functions. The
FRP style has been used in a number of applications including robot control
[6, 5], where a special task monad is used to sequence tasks and track the robot
state. More detailed comparison of Timber and FRP is a topic for future work.

Acknowledgments

The work reported in this paper was sponsored in part by DARPA, contract
#F33615-00-C-3042, as part of the PCES program (Program Composition for
Embedded Systems). This work has benefited from the comments of members of
the Project Timber team, and of the PacSoft and SySL centers at OGI. Partic-
ular thanks: to Perry Wagle for considerable assistance in building Timbot, and
for suggesting and prototyping interesting control applications; and to Andrew
Black, Dick Kieburtz, and James Hook for helpful insights and encouragement.

References

[1] Andrew P. Black, Magnus Carlsson, Mark P. Jones, Richard Kieburtz, and Johan
Nordlander. Timber: A programming language for real-time embedded systems.
http://www.cse.ogi.edu/PacSoft/projects/Timber/, April 2002.

[2] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML - Revised. MIT Press, 1997.

[3] Johan Nordlander. Reactive Objects and Functional Programming. PhD thesis,
Department of Computer Science, Chalmers University of Technology, Göteborg,
Sweden, May 1999.

[4] Johan Nordlander, Mark Jones, Magnus Carlsson, Dick Kieburtz, and Andrew
Black. Reactive objects. In Proceedings of the Fifth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC 2002), Ar-
lington, VA, April 2002.

[5] John Peterson, Gregory D. Hager, and Paul Hudak. A language for declarative
robotic programming. In Proceedings of the IEEE International Conference on
Robotics and Automation, Detroit, MI, May 1999.

[6] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Controlling
robots with Haskell. In Proceedings of Principles and Applications of Declarative
Languages (PADL ’99). Springer-Verlag, 1999.

[7] Simon Peyton Jones and John Hughes, editors. Report on the Programming Lan-
guage Haskell 98, A Non-strict Purely Functional Language, 1999. Available from
http://www.haskell.org/definition/.

[8] Simon Peyton Jones and Philip Wadler. Imperative functional programming.
In Proceedings of the 20th Symposium on Principles of Programming Languages
(POPL ’93). ACM, January 1993.

[9] Jonathan A. Rees and Bruce R. Donald. Program mobile robots in scheme. In
Proceedings of ICRA ’92, the IEEE International Conference on Robotics and
Automation, 1992.

[10] Malcolm Wallace and Colin Runciman. Lambdas in the liftshaft - functional
programming and an embedded architecture. In Proceedings of Functional Pro-
gramming and Computer Architecture, (FPCA ’95), La Jolla, California, June
1995. ACM Press.


