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Abstract—With the rapid growth of modern cities, public
transportation systems require smart planning to provide effec-
tive and competitive services to the daily commuters. Due to
the presence of Wireless LAN Network (WLAN), Wi-Fi access is
available to commuters during their daily commute. The overar-
ching goal of this work is to leverage infrastructure-based indoor
positioning systems (IIPS) deployed at train stations to enable
several smart transportation use cases by analyzing commuter
traffic. Specifically, in this work we address identification of
whether a user is in-train or on-platform by utilizing two types
of passively sensed Wi-Fi data, namely, received signal strength
(RSSI) and phase vectors (AoA) measured at the deployed access
points from data received from mobile devices. We conduct
structured analysis of each data source, to identify features that
distinguish on-platform and in-train devices. Our CommuterScan-
ner solution achieves up to 90% accuracy using random forest
model. Our solution works for a variety of deployments including
APs with RSSI-only or RSSI+AoA capabilities and irrespective
of if the device is connected to the Wi-Fi.

I. INTRODUCTION

A. Indoor Positioning in Urban Transportation

With the rapid growth of modern cities, public transporta-
tion systems require smart planning to provide effective and
competitive services to the daily commuters [18]. Due to the
presence of Wireless LAN Network (WLAN) [6], Wi-Fi access
is available to commuters during their daily commute [15],
[25]. Infrastructure-based indoor positioning systems (IPS)
utilize the WLAN and can identify devices on the stations
by using received signal strength (RSSI) and angle-of-arrival
(AoA) data measured for each device at the Wi-Fi access
points. The key theme of this work is to leverage indoor
positioning systems (IPS) deployed at the train stations to
detect headcounts of commuters waiting for trains on different
stations at any given time. This information may be used by
transportation agencies to understand commuter traffic and
enable smart transportation services.

Several smart transportation use cases can be enabled via
IPSs deployed at stations such as (a.) adaptive scheduling of
subways and commuter rails based on traffic, (b.) generating
analytics such as determining traffic in each commute direction
or weekday vs. weekend traffic, (c.) efficient and cost-effective
air conditioning systems on stations and trains based on the
headcounts, and (d.) emergency preparedness and evacuation
planning. Overall goal is two-fold, namely, (a.) to provide
effective and safe experience for daily commuters, and (b.)
potentially save a city millions of dollars per year.
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(a) Station view 1 (b) Station view 2

Fig. 1: IIPS deployment at a station.

B. Challenges of Commuter Classification in IPS

Transportation agencies are interested in analytics based
on the accurate head counts of commuters waiting for train
on each station. Further understanding the head count of
commuters on train in each direction would be insightful as
well. Overall, it is challenging to leverage existing IPS to
accurately place the tracked devices on platform and train,
respectively, due to two factors, namely, (a.) configuration of
platforms and trains, and (b.) accuracy of IPS is limited.

Platform and train configurations. As shown in Figures
1 and 2, station platforms (marked in green in Figure 2) are
often narrow and long. In our scenarios, the two stations
were: S1= 14 meter wide × 148 meters long and S2= 23
meters wide × 68 meters long. The train on the tracks
(marked in blue in Figure 2) is even narrower (approximately
3 meters wide, slightly shorter than the platform length).
The platform also may have access to stair, escalators and
elevators. Yet another factor, illustrated in Figure 3.a, is that
majority of the commuters wait closer to the edge of their
respective destination trains, rather than towards the center
of the platform. The station depicted in Figure 1 has the
escalators in the center, therefore, the area towards the center
of the platform is even limited. In our tested stations, access
points (APs) are only placed on the platform; no hotspots are
available on trains. Other configurations are also possible, and
would require configuration specific solutions.

Accuracy of IPS. As depicted in Figure 2, the RSSI-based
indoor positioning systems have location estimates (depicted
as red triangles) which can be up to 10 meters off from the
actual device location [3], [6] (shown with dashed red circles).
Similarly, AoA-based systems have an accuracy of 3 to 4
meters [21]–[23] (shown with dashed orange circles). Due to
such limitations of indoor positioning systems and the narrow
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Fig. 2: CommuterScanner: on-platform vs. in-train classification problem.

structures of platform and trains, the indoor positioning sys-
tems, by themselves, can only distinguish on-platform versus
in-train devices with low accuracy. As shown in Figure 3.b,
based on the systematic data collected with ground truths from
live IPS deployments, the percentage of correctly placed on-
platform devices by RSSI-based IPS is only 68%, whereas the
same for AoA based IPS is 86%. However, due to the narrower
trains, the percentages of correctly placed in-train commuters
are 31% for RSSI-based IPS and only 50% for AoA-based
IPS. Therefore, in this work we focus on the problem of on-
platform versus in-train classification by using the passively
sensed RSSI and AoA (phase vectors) data received by IPS
from devices via the Wi-Fi access points.

Prior works [12], [24] have proposed using mobile device
sensors such as accelerometer and GPS for transportation
mode detection. However, use of device-based approaches
would require particular apps or services installed on mobile
devices of all commuters. Commuters may not be willing to
install such apps due to numerous reasons such as battery drain
from GPS use, privacy, etc. The app must work on variety
of devices such as different iPhones, Android (Samsung, LG,
OnePlus, etc.) and Windows phones, which typically vary also
by the different sensors inside the devices. Often some of the
sensors, such as GPS, cellular signal, may not work well when
such commuter stations are underground. Therefore, we pro-
pose to leverage already deployed WLAN and infrastructure-
based indoor positioning systems (IPS) by passively sensing
signals from the mobile devices of the commuters.

C. Contributions

We present CommuterScanner system to classify if a user
(device) is on-platform or in-train by using only RSSIs and
phase vectors measured at the APs. Below, we describe the
contributions of this work.
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(a) Commuters waiting (b) Correct placements by IPS

Fig. 3: Factors impacting commuter classification.

• To the best of our knowledge, our work is the first to
examine RSSI and phase vectors for classification of device
location in a commuter station. We leverage not only the
instantaneous RSSI values from APs but also the phase
vectors measured on the antenna array on each AP and across
multiple APs for the given classification task.

• We conduct structured analysis of each data source,
namely, RSSIs and phase vectors to identify features that
distinguish on-platform and in-train devices.

• Our CommuterScanner solution achieves up to 90% accu-
racy using random forest and combining RSSI+AoA features.
For RSSI only features up to 88% accuracy is achieved.
Therefore, our solution works for RSSI only APs and APs with
AoA capabilities. Thus, can be employed in a wide variety of
deployments. Further, the solution works for both connected
(using data packet RSSI and/or AoA) and unconnected devices
(using probe-only RSSI).

II. BACKGROUND

We first describe how infrastructure-based indoor position-
ing systems work, followed by the problem statement.

A. Infrastructure-based Indoor Positioning Systems

In this work, we use commercial-off-the-shelf (COTS) APs
[6] that have been deployed at many enterprise setups such
as airport, offices, malls, and hospitals. Figure 4 shows that
the AP has 4 serving antennas (for transmitting or receiving
signals from Wi-Fi devices) and 32 circular-array antennas. To
localize a device, the infrastructure-based indoor positioning
system (IIPS) uses two types of Wi-Fi measurements: received
signal strength indicators (RSSIs) measured at the serving
antennas and a phase vector (consisting of phase values)
measured at the circular-array antennas. Each set of phase
values is computed by using channel state information (CSI)
[1] measured at the physical layer of the AP [11].

RSSIs phases
AP

Fig. 4: Measurements at an AP [6]
Figure 5 illustrates an IIPS on top of an enterprise WLAN

infrastructure [4]. Each AP measures Wi-Fi signals emitted
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from tracked devices and forwards the measurements to a
WLAN controller [5]. The controller aggregates and then
forwards the measurements received from multiple APs to a
location server (LS) deployed on-site or on-cloud. Based on
the measurements, the LS uses a combination of RSSI-based
trilateration and phase-based angle-of-arrival (AoA) method
to localize and track the devices [11]. The method achieves
median localization accuracy ranging from 1 m to 3 m for real-
world deployments at many enterprise setups in retail, airports,
and workplaces. AP density required is about one AP per 15
m x 15 m to guarantee good Wi-Fi coverage [10]. The method
also achieves sub-meter accuracy for areas having line-of-sight
between the device and several APs.

User device

Wi-Fi tag

AP

AP

AP

WLAN 
controller

Location server
(on-site or on-cloud)

Fig. 5: Illustration of IIPS [4] on top of a WLAN

The IIPS samples Wi-Fi measurements without requiring
an app installed on a mobile device. APs can measure RSSI
for probing-only devices (not connected to Wi-Fi) [26]. For
connected devices APs can measure both RSSI and phase
values from data packets. For sampling RSSI measurements,
an AP in the vicinity of a device measures the RSSI of the
signal emitted from the device when the device sends a probe
request to scan for APs [26] or a data packet to associated
AP, or responds to a request from the AP if the device’s radio
transmitter is active [6]. Phase-based AoA localization requires
a group of APs to measure the phases of the signal emitted
from a device at the same time. Each group has a master AP
which sends several request packets to all devices connected to
itself in 250 ms [7]. The device sends response packets, which
all APs in the group use to measure the phase. To localize all
devices connected to different APs, each AP becomes master
in a round-robin manner.

B. Problem Statement

Table I describes the notation used for defining the Com-
muterScanner on-platform vs. in-train detection problem.

Symbol Description
timet Timestamp of time step t
estt Location estimate at time step t

estt = [estXt, estYt]
actt Actual location at time step t

actt = [actXt, actYt]
channelt Channel that a device is connected at time step t

RSSIsit = [RSSIAi
t, RSSIBi

t], Signal strength in bands 5GHz (A) and
2.4GHz (B) measured at AP i at time step t

phasesit Phase vector measured at AP i having antennas 1 . . . P

[phasei,1t , ..., phasei,Pt ]

at =[a1
t , ..., a

i
t, ..., a

N
t ], where ai

t =[RSSIsit, phasesit] ,
Data measured at N APs deployed on a floor at time step t

st Device status at time step t
st = 1 : on-platform OR st = 0 : in-train

TABLE I: Notation used for CommuterScanner.
On-platform vs. in-train detection. Figure 2 depicts the

problem of detecting if user is on-platform or in-train. Given at
current time t, a1t , ..., a

n
t is the data (RSSIs and phase vectors)

measured at multiple access points deployed on a station,

Fig. 6: CommuterScanner Architecture.

CommuterScanner predicts the device status st at t in real-
time. In this paper, we interchangeably use words detection,
prediction or classification to mean the same thing.

III. THE CommuterScanner APPROACH

Here, we describe the overall CommuterScanner approach
for detecting if a device is on-platform or in-train.

The key idea is to utilize RSSI and AoA (phase vectors) data
received at any given time t, to identify if the device is on-
platform or in-train. CommuterScanner is a machine learning
framework designed as a two step process as illustrated in
Figure 6. The first step is the feature extraction where all
relevant features are extracted that potentially distinguish if a
device is on-platform vs. in-train. The features are then tested
with various machine learning models to determine which
model will be best suited for the problem. Below we describe
the two steps of (i.) feature extraction, and (ii.) modeling.
As all APs are located on platform in our tested stations,
we hypothesize that the APs would receive unobstructed and
much stronger signals from on-platform devices than the in-
train devices due to the metal body of the train.

A. CommuterScanner Architecture

The model is trained using data collected on-platform and
in-train. The model is then deployed on the IIPS for real-
time predictions. The predictions are made for a device at
each instance of input received from the APs. and, in case,
the consecutive predictions jump between on-platform and in-
train, a windowed majority voting based smoothing can then
be applied on the prediction output to mitigate the jumpiness.

B. Feature Extraction

For a device, we extract and analyze the following features
on RSSIs and phase vectors received from multiple APs.

RSSI features. The APs deployed on the station receive
RSSI data from each device periodically. We explored two
types of RSSI based features. First set of features are statistics
over RSSIs across the reporting APs, such as maximum,
minimum, average, median and standard deviation of RSSIs.
Further, based on our hypothesis of weaker signal strengths for
in-train devices compared with on-platform devices, we gen-
erated features such as the fraction of reporting APs that have
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(a) Stats of RSSIs. (b) Fraction of APs.
Fig. 7: ‖ co-ordinates view of RSSI-based features.

Fig. 8: ‖ co-ordinates view of AoA-based features.

RSSI in certain range. RSSI ranges considered are {[-120,-
75],(-75,-70],(-70,-65],(-65,-55],(-55,-45],(-45,0]}1. In Figures
7 (a) and (b), we depict the full set of RSSI-based features
for in-train and on-platform devices. We utilize parallel co-
ordinates [9] visualization to view how the features distinguish
the labels. Each vertical line depicts an attribute (RSSI-based
features and label) with different values marked on the line
(e.g., maxRSSI varies from -35 to -90). Each horizontal line
going across the attributes up to the label (train and platform)
depicts a tuple. Data collected in-train is orange, and on-
platform data is in blue. Most of the features have significant
overlap between on-platform and in-train devices. However,
maximum RSSI across APs is one feature where on-platform
devices can sometimes be heard with up to -40 or stronger
RSSI, while maximum RSSI for in-train devices mostly re-
mains weak. Further, fraction of APs reporting RSSI in range
(-45,0] has marked difference between in-train vs. on-platform
devices. These observations conform to our hypothesis about
the difference in signal strength, however, as shown in Figure
7, there is no single feature to distinguish between on-platform
vs. in-train devices.

AoA features. Similar to the RSSI data, in AoA-based
location computation, each AP computes a phase vector of
n antennas (typically 16 or 32 based on AP model) for
each client. Often, the phase vector may be partial, i.e., the
vector may not have data from some of the antennas. For
AoA data, we extend our hypothesis that the phase vectors
may be received from fewer antennas inside the train than

1In notation (a,c], (a,c] is used to indicate an interval from a to c that is
exclusive of a, but inclusive of c.

those on the platform. Thus, for each AP, we compute the
fraction of antennas (out of 32) for which valid phase value
is received. Statistics such as maximum, minimum, average,
median, and standard deviation over the phase fractions across
APs are computed (Figure 8). As depicted by the parallel co-
ordinates view, no single attribute clearly distinguishes the in-
train (orange) versus on-platform (blue) features.

C. Modeling

Once the features are extracted, this step scales these
features to the range [0, 1] before applying a model to classify
motion. We considered different models: (a.) Support Vector
Machine (SVM) [8], (b.) Decision Tree (DT) [19], and (c.)
Random Forest (RF) [14]. We also tried Logistic Regression
and Naive Bayes but exclude them due to poor accuracy.

IV. EVALUATION

Below, we describe our evaluation of CommuterScanner on-
platform versus in-train detection approach. We collected data
from infrastructure-based indoor positioning systems deployed
at two stations.

A. Goals and Metrics

1) Goals: To investigate how our proposed Commuter-
Scanner approach can be used for on-platform vs. in-train
classification, we focus on answering the following questions:

Goal 1: Which model provides accurate classification using
the different feature sets?

Goal 2: How effective are RSSI and AoA features in
distinguishing on-platform vs. in-train devices?

2) Metrics: Table III below describes the metrics used in
our evaluation. These metrics are well-defined in literature, yet
we describe them in the context of our classification problem
(see Table II).

Predicted/Actual on-platform in-train
on-platform True Positive (TP) False Positive (FP)
in-train False Negative (FN) True Negative (TN)

TABLE II: CommuterScanner confusion matrix.
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Metric Description
Training Accuracy Average 10-fold cross validation accuracy for 80% training set.
Precision Precisionon-platform = TP / (TP+FP),

Precisionin-train = TN / (TN+FN).
Recall Recallon-platform = TP / (TP+FN),

Recallin-train = TN / (TN+FP).

f1 score f1on-platform = 2*(
(Precisionon-platform∗Recallon-platform)

(Precisionon-platform+Recallon-platform)
)

f1in-train = 2*(
(Precisionin-train∗Recallin-train)

(Precisionin-train+Recallin-train)
)

Test Accuracy Accuracy for the 20% test set.

TABLE III: Metrics for our evaluation based on Table II.

B. Data Collection

The goal of the data collection is to collect the measured
(RSSIs and phase vectors) from the APs at the indoor posi-
tioning system from a connected mobile device together with
the actual user label (on-platform or in-train). The indoor
positioning system is instrumented to dump out the measured
data systematically in a log file, which is then parsed and
relevant information is extracted as features with label.

Stations Station 1 Station 2
14m×148m 23m×68m
10 APs at height=3.0m 6 APs at height=3.5m)

Number of Participants 4
Devices iPhone6s, iPhone 7, Samsung S6, Nexus 6
Minutes of data platform= 245, platform= 210,

train=196 train=158

TABLE IV: Data Collection.
We collected data at two commuter stations, we call them

station 1 and station 2. The stations are similar in shape, with
a platform in between two tracks for train A and train B going
in opposite directions. Station 1 is a slightly longer setup with
APs aligned on either sides of the platform for maximum Wi-
Fi and location coverage. Table IV summarizes the dataset that
we use for building our CommuterScanner prediction models.

Fig. 9: Avg. accuracy for 10-fold CV on 80% training set.

Fig. 10: Accuracy on 20% test set.

C. Experimental Results

We compare the accuracy of different models by using the
data collected in 2 stations. Given the data collected in mul-
tiple experiments, we first randomly permute the experiments

performed in each station. Then, we put 80% of the data into
a training set for training the models and the remaining 20%
of the data for testing the models. For Goal 1, we compare the
three models, namely, (a.) SVM, (b.) Decision Tree, and (c.)
Random Forest. To evaluate Goal 2, we test 3 combinations
of features, namely, (a.) RSSI only, (b.) AoA only, and (c.)
RSSI + AoA.

Figure 9 depicts the training accuracy. We perform a 10-fold
cross validation on the training set. When using only RSSI
features, SVM achieves 78.3% accuracy. Whereas decision
tree and random forest achieve 81.8% and 86.5% accuracy,
respectively. Overall, RSSI only features outperform AoA only
features. The combination of RSSI + AoA feature slightly
improves decision tree and random forest models. Trends are
similar in the 20% test set (Fig. 10); Random forest model
with RSSI+AoA achieves 90.1% accuracy on the test set.

Figures 11 (a), (b) and (c), depict the f1 scores, precision
and recall for on-platform and in-train, as defined in Table III.
In particular, compared with the accuracy of indoor positioning
(Fig. 3(b)), f1 scores for random forest model with RSSI only
is 85% for on-platform and 90% for in-train. By combining
RSSI+AoA based features, f1 score of random forest is 87%
for on-platform and 91% for in-train. Therefore, Commuter-
Scanner has greatly improved the classification accuracy, in
particular, in detecting in-train devices.

Conclusions. CommuterScanner achieves up to 90% accu-
racy using random forest and combining RSSI+AoA features.
For RSSI only features up to 88% accuracy is achieved.
Therefore, our solution works for RSSI only APs and APs
with AoA capabilities. Thus, can be employed in a wide
variety of deployments. Further, the solution works for both
connected (data packet RSSI and/or AoA) and unconnected
devices (probe only RSSI).

V. RELATED WORK

Transportation detection works are classified as (A.) client-
based and (B.) infrastructure-based. CommuterScanner be-
longs to the second category.

A. Client-based transportation detection. Numerous ef-
forts address the problem of detecting a transportation mode
(walking, train, car, etc.) of a client. Client-side detection uses
inertial sensor data (accelerometer, gyroscope, etc.) or wireless
data (GPS, GSM, Wi-Fi) or the combination of both. Several
works [12], [17], [27] extract features from inertial sensor data
(accelerometer) to classify mobility (stationary or moving) and
transportation mode of a client with accuracy above 90%.
These approaches have high power consumption. Yu et al. [27]
proposed a design to reduce the power consumption while
achieving high accuracy. A client-side app is required and
user consent to collect the sensor data. Wireless data based
approaches [16], [24] extract features from wireless data such
as Wi-Fi, GSM or GPS to classify transportation mode of
a user with accuracy above 90%. GSM incurs smaller power
consumption compared to GPS and is also applicable to indoor
environments. Several works [2], [20] combine sensor and
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20% Test Set: (a.) F1 Scores, (b) On-platform Precision and Recall, and (c) In-train Precision and Recall.

Fig. 11: Results for two stations.

wireless data. By using traditional models (decision tree, Hid-
den Markov model), Reddy et al. [20] achieve 93% accuracy.
Chen et al. [2] present transfer learning based approach which
is generalizable across different user devices.

B. Infrastructure-based transportation detection. These
approaches perform the transportation detection by using the
Wi-Fi signal heard opportunistically from a device. Kang et al.
[13] proposed a system that uses a Wi-Fi monitoring device
deployed on a bus to detect if a client gets on or off the
bus. Our work focuses on data reported from access points
deployed on a train station to detect if a user is on-platform
vs. in-train. Infrastructure-side can be deployed while avoiding
power consumption at client-side and no need for a mobile
app.

VI. LIMITATIONS, FUTURE WORK AND CONCLUSION

This work has the following limitations.
• How the classifier will be leveraged for headcount is
omitted due to lack of space.
• Accuracy and generalizability of classifiers must be tested
with more data from different station configurations.
• Additional factors such as time correlation may improve
classification accuracy, and would be a great future study.
• Direction of train for in-train commuters can be detected.

In summary, we present CommuterScanner classification
over RSSI and phase vector measurements for IIPS deployed
in train stations. We demonstrate that our solution works for
both RSSI-only and AoA based deployments; also irrespective
of if device is connected to Wi-Fi.
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