
Block-Supply Chain: A New Anti-Counterfeiting Supply Chain
Using NFC and Blockchain

Naif Alzahrani
Portland State University

nalza2@pdx.edu

Nirupama Bulusu
Portland State University

nbulusu@pdx.edu

ABSTRACT
Current anti-counterfeiting supply chains rely on a centralized
authority to combat counterfeit products. This architecture re-
sults in issues such as single point processing, storage, and fail-
ure. Blockchain technology has emerged to provide a promising
solution for such issues. In this paper, we propose the block-supply
chain, a new decentralized supply chain that detects counterfeiting
attacks using blockchain and Near Field Communication (NFC)
technologies. Block-supply chain replaces the centralized supply
chain design and utilizes a new proposed consensus protocol that is,
unlike existing protocols, fully decentralized and balances between
e�ciency and security. Our simulations show that the proposed
protocol o�ers remarkable performance with a satisfactory level
of security compared to the state of the art consensus protocol
Tendermint.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architectures;
System on a chip; • Networks → Peer-to-peer protocols; • Applied
computing → Supply chain management;

KEYWORDS
Blockchain, supply chain, consensus protocol, counterfeiting

1 INTRODUCTION
The problem of counterfeit products, especially pharmaceutical
products, has plagued the international community for decades
[11]. TheWorld Health Organization (WHO) estimates that globally,
10 percent of medicines are counterfeit, rising to 30 percent in
developing countries [2]. The battle against counterfeiting remains
a signi�cant challenge. This is of signi�cant concern, as counterfeit
pharmaceutical products can cause critical illnesses and even death.
In response to this situation, several product anti-counterfeiting
approaches have been proposed. Nevertheless, most of the existing
works are centralized and rely on a trusted server to coordinate
and manage product authentication.

Most traditional centralized supply chains utilize technologies
such as Radio-frequency identi�cation (RFID) and NFC tags and
an authentication server to �ght counterfeiting attacks. There are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CryBlock’18, June 15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5838-5/18/06. . . $15.00
https://doi.org/10.1145/3211933.3211939

three common counterfeiting attacks [10]: (1) the modi�cation of
a product’s details on a tag, such as changing the expiration date,
(2) the cloning of a genuine product’s details to use on counterfeit
product tags, and (3) the removal of a legitimate tag from a genuine
product and its reapplication to a counterfeit product. The typical
architecture of centralized supply chains creates several problems.
First, there is a tremendous processing burden on the server, since
signi�cant numbers of products �ood through the supply chain
nodes. Second, substantial storage is required to store authentica-
tion records for all products. Third, as with centralized systems,
traditional supply chains inherently have the problem of a single
point of failure. To overcome such issues, blockchain technology
stands out as a potential framework to establish a modernized,
decentralized, trustworthy, accountable, transparent, and secured
supply chain against counterfeiting attacks [11].

Over the last few years, blockchain technology has been an attrac-
tive solution for many di�erent industries beyond cryptocurrency
[6]. The reasoning behind this is the transparency, security, quality
assurance, global peer-to-peer transactions, and decentralization
that the blockchain provides [15]. Fundamentally, a blockchain is
a public, distributed ledger that contains chained blocks, each of
which is made up of several transactions. These blocks are validated
globally and transparently to guarantee security (i.e., they are only
comprised of valid and correct transactions). The blocks are shared
and synchronized across nodes via a peer-to-peer, distributed, and
decentralized structure [11]. Despite its potential to elevate security,
work and storage distribution, and transparency of supply chains,
there have been only a few projects that examine the integration of
anti-counterfeiting supply chains and blockchain technology. This
has motivated us to exploit this promising technology to combat
counterfeit goods by transforming our previous centralized supply
chain [2] to a decentralized block-supply chain.

The �rst problem that we address in this paper is the centralized
anti-counterfeiting supply chains. Despite their potential to detect
counterfeit products, they still experience single point processing,
storage, and failure. Additionally, they do not o�er transparency as
they do not allow supply chain nodes to verify the authenticity of
a product’s data. To overcome these issues, we propose the block-
supply chain, a decentralized supply chain that exploits blockchain
technology. In this chain, each node maintains a blockchain for each
product. This blockchain is comprised of chained blocks where each
is an authentication event. A new block is proposed to the network
by the node that currently has the product (i.e., the proposing node).
This newly proposed block is then validated by a number of other
nodes we call validators, to ensure that the block is valid. Upon
successful validation, all nodes in the block-supply chain network
add this block to their copies of the blockchain as will be explained
in more detail in Section 3.

30

https://doi.org/10.1145/3211933.3211939

CryBlock’18, June 15, 2018, Munich, Germany N. Alzahrani et al.

The second problem that we tackle in this paper is regarding
the number of blocks’ validators and the way they are selected. A
blockchain’s validators are responsible for assuring its security and
executing its consensus protocol. There are a considerable number
of existing consensus protocols. Nonetheless, most of them do not
take the number of validators or how to select them into consider-
ation, as will be discussed in Section 2. The number of validators
in a blockchain network in�uences its security substantially, es-
pecially in a fully decentralized blockchain, in which there are no
special nodes; all nodes are trustless as in our block-supply chain
use case. The optimal number of validators in such blockchains,
which achieves the optimal security, would be all nodes in the net-
work except the proposing node (i.e., n � 1, where n is the number
of nodes). However, this choice results in: (1) substantial validating
work as of O(n) for each validation event, (2) high communication
overhead to reach consensus with O(n2) in protocols like PBFT
[4] (Practical Byzantine Fault Tolerance) and Tendermint [3], (3)
large block size due to including each validator’s signature as an
evidence of its validity. An alternative choice to the n � 1 valida-
tors is to rely on a �xed static number of validators chosen at the
genesis state (e.g., Tendermint and Hyperledger Fabric [5]). This
choice, however, leads to: (1) partial centralization, (2) performance
bottleneck, especially if the number of validators is relatively low,
and (3) unfair selection between nodes, mainly if the nodes have
equal voting and computing power.

To overcome the validators’ selection problem, we propose a
new protocol based on Tendermint, with the ability to select a
di�erent set of validators for each validation event (i,e., proposing
a new block). Our protocol exploits two stages of randomness to
protect against security threats and provide fairness (i.e., equal
selection probability among nodes). Additionally, it guarantees the
distribution of validation work and decentralization. Our protocol
randomly employs log n validators, rather than the optimal choice
of n � 1 validators, and achieves a satisfactory level of security
when compared to the optimal choice. The reasoning that has led to
this speci�c value (i.e, log n) is to reduce the validation work from
O(n) to O(log n), and the communication overhead from O(n2) to
O((log n).n). This reduction results in a considerable enhancement
in performance, and it decreases the communication and the storage
overhead. Nevertheless, we plan to make the number of validators
dynamic and variable based on the hostility of the network.

The contribution of this paper is of twofold:

(1) It introduces a decentralized supply chain that exploits the
blockchain technology (block-supply chain), and thus, over-
coming the centralization issues previouslymentioned. Block-
supply chain can trace-and-track products without a central-
ized tracking server. Moreover, it detects the three counter-
feiting attacks (modi�cation, cloning, and tag reapplication)
by involving the supply chain nodes transparently.

(2) It introduces a new consensus protocol that deals with the
problem of selecting validators. This protocol has several ad-
vantages. First, it is very e�cient and scalable, and it shows a
considerable improvement in performance when compared
to the optimal secure Tendermint with n � 1 validators. Sec-
ond, it o�ers a satisfactory level of security. For example, it
was able to detect counterfeiting attacks with a detection

rate of 98.4% in a blockchain network with 200 nodes, where
33% of them are malicious. Third, after the geniuses state,
our protocol is fully centralized, that is it does not rely on
�xed validators. Instead, the validators’ set changes every
time a new block is proposed. Forth, it provides fairness of
selection among nodes with 1

n probability.

2 RELATEDWORK
In this section, we will examine some very related existing works.
The related literature falls into two general camps: (1) works that
integrate blockchain and supply chain technologies, (2) the current
widely used consensus protocols.

2.1 Block and Supply Chains.
Tian [16] proposed a conceptual framework of an agri-food supply
chain using RFID and blockchain. This supply chain is designed to
trace agri-food "from farm to fork."

Saveen et al. [1] discussed the potential bene�ts of using blockchain
technology in manufacturing supply chains. Then, they proposed a
framework for a manufacturing supply chain for cardboard boxes
that involves blockchain as a platform to collect, store and manage
product details of each product throughout its life cycle. This work
introduced a general overview of replacing the centralized system
into a decentralized one using blockchain.

In a study published by Hackius et al. [6], the authors conducted
an online survey and asked professionals for their opinion on using
blockchain in supply chain management. The authors found that
most of the participants were positive about blockchain and the
bene�ts that it can o�er.

2.2 Consensus Protocols.
2.2.1 PBFT (Practical Byzantine Fault Tolerance). PBFT [4] is

a replication algorithm that can tolerate Byzantine faults. PBFT
progresses through a series of views. Each view has a primary node
(i.e., proposer,) which is selected in round-robin order. The other
nodes (replicas) in the view are called backups. A client sends a
request to the primary. The primary multicasts a signed pre-prepare
message for this request to the backups. The backups accept the
pre-prepare message, and broadcast signed prepare messages. If the
backups receive 2f prepare messages for the request (where f is
the is the maximum number of replicas that may be faulty), they
multicast signed commit messages. Backups execute a view change
protocol, in case of a faulty primary. PBFT has the following issues
[3]. First, changing the view is subtle and a bit complicated. Second,
all previous client requests since the last commit are migrated to
the new view.

2.2.2 Tendermint. Tendermint [3, 7] delivers security for repli-
cating an application on multiple nodes as it can work even if up
to one-third of nodes in the network fail in arbitrary ways. Tender-
mint is a consensus protocol that does not include proof-of-work
mining, which overcomes the energy and resources consumption
issues, and speeds up blocks’ validations [7]. Tendermint is based
on PBFT, and it involves three stages of voting to reach consensus
(propose, prevote, and precommit). A proposer proposes a new block,
then the validators prevote on the block and only proceed to pre-
commit if they receive more than 2/3 of prevotes. Validators only

31

Block-Supply Chain CryBlock’18, June 15, 2018, Munich, Germany

accept the block if more than 2/3 of precommits are received. Ten-
dermint requires a �xed known set of validators. Voting on a block
proceeds in rounds, where each round has a new proposer. The val-
idators vote on whether to commit the block or advance to the next
round. Tendermint is notable for its simplicity, performance, and
fork-accountability [8]. Though, the number of validators yields a
powerful in�uence on Tendermint’s performance. This is due to
the communication overhead created by the two stages of voting
(i.e., prevote and precommit). This creates a trade-o� between per-
formance and security, where more validators strengthen security.
Our protocol is based on Tendermint and inherits all the features
o�ered by Tendermint. However, it deals with the validators’ selec-
tion issue by selecting a di�erent random set of validators on each
block proposal.

2.2.3 Hyperledger Fabric. Hyperledger Fabric employs PBFT as
its consensus algorithm [5]. Thus, it can tolerate up to 1/3 byzantine
nodes in a blockchain network. In Fabric v0.6, there exist a �xed
number of validation peers responsible for executing the consensus
protocol. A proposer can submit a transaction to any of them. Then,
the chosen peer broadcasts this transaction to the other peers. One
of the validation peers is selected as a leader. When generating a
block, the leader broadcasts it to all peers. When a validation peer
receives this block, it hashes it, broadcasts the hash to all other
peers, and begins counting their responses. If two-thirds responses
were received with the same hash, it commits the new block to its
local ledger. Hyperledger Fabric, like Tendermint, su�ers partial
centralization since it employs a �xed known number of validation
peers.

2.2.4 Stellar Consensus Protocol (SCP). SCP [12] is a consensus
protocol that utilizes quorums, where a quorum is a set of nodes
from a network su�cient to reach an agreement. SCP is based on
Federated Byzantine Agreement (FBA), in which SCP exploits the
concept of a quorum slice. A quorum slice is the subset of a quorum
that can cause one particular node to reach an agreement. The key
idea in FBA is that every node chooses its own quorum slices. A
node accepts a vote or a transaction when a threshold (e.g., 2/3) of
nodes in its quorum slice con�rm it. However, SCP requires the
quorum slices to overlap. The previously discussed protocols such
as PBFT, Hyperledger Fabric, and Tendermint employ a �xed and
globally known set of nodes to reach a consensus. In contrast, SCP
gives each node a choice to select one or more quorum slices, each
of which might have di�erent nodes. Despite the beauty of this
design, it might result in undermining the consensus as quorum
slices might not overlap.

It is worth mentioning that we only considered the BFT (Byzan-
tine Fault Tolerance) protocols in this section since they are more
relevant to our proposed protocol. We did not have the space to
include other mining consensus protocols like PoW (prof-of-Work)
[13], PoS (prof-of-Stake) [17], or the non-BFT protocols like Paxos
[9] and Raft [14].

3 PROPOSED BLOCK-SUPPLY CHAIN
This section describes our block-supply chain in detail. Block-
supply authenticates each product and detects counterfeit goods
without the need for a centralized authentication server. Instead,

it involves the nodes in the authentication process by utilizing
blockchain technology. The system has two phases, the initializa-
tion phase, and the veri�cation phase. The products’ manufacturer
executes the initialization phase, and the supply chain nodes exe-
cute the veri�cation phase. Each product is occupied by an NFC tag,
which contains the product’s details such as serial number, name,
and expiration date.

3.1 Initialization Phase
This �rst phase is responsible for initializing the details of each
product, securing them, and storing them on the product’s NFC tag.
Each NFC tag has a read-only unique tag ID (TID) and a counter.
The read-only counter is increased automatically on each reading
of the tag and keeps track of the number of times that the tag is
read by the nodes.

In this phase, the manufacturer forms the product’s data (PData),
which includes the following: the unique product ID (PID), the prod-
uct name (PName), the product expiration date (PExpiryDate), and
a �eld called (ToSignTID), that is equal to the read-only (TID). Then,
the manufacturer digitally signs PData using its private key to pro-
duce the product’s data digital signature (Si�nedPData). After that,
it writes the product data (PData) and its signature (SignedPData)
to the product’s tag.

Once the tag is prepared, the manufacturer creates a genesis
block for the product. Figure 1 shows the block structure. A block
contains three parts. First, the block header, which includes the
following: the blockchain ID (to identify each product’s blockchain),
the block height (order) in the blockchain, the fee to be paid to
the block’s validators, and the hash of the previous block (Hi�1).
Second, the Validation of the previous block to provide evidence
of its validity. Third, the block data, which contains the product’s
data (PData), the shipping source node address (Src), the node the
product is being shipped to address (D), and the current number
of reads on the product’s tag (#Reads) to track how many times
the product’s tag has been read (this �eld is for detecting the tag
reapplication attack).

Finally, the manufacturer broadcasts the genesis block to all
nodes in the supply chain, and ships the product to the supply
chain. The manufacturer is the initiator of the product’s blockchain
and is no longer involved in authenticating the product.

Figure 1: Blocks structure and chaining them.

32

CryBlock’18, June 15, 2018, Munich, Germany N. Alzahrani et al.

3.2 Veri�cation Phase
This phase is executed between the supply chain nodes using
blockchain. As a product �ows throughout the supply chain, its
blockchain gets updated each time it leaves a node and moves to
the next by adding new blocks to it. When a node (D) receives a
product, two types of authentication are performed:

Local Authentication: the node (D) authenticates the product
locally by, �rst, reading the product’s tag and verifying the Signed-
PData. If this veri�cation succeeds, then the node checks if the
PData on the tag is the same as the PData on the last block in the
node’s own copy of the product’s blockchain. This step detects the
"modi�cation attack." Next, the node checks for "cloning attack" by
checking the ToSignTID on the tag to the tag’s read-only TID. Then,
it compares the ToSignTID and PID on the tag to the corresponding
ones on the last block in the blockchain. If a mismatch is detected,
then the product is cloned. The last inspection is to check against
the "tag reapplication attack." This is done by comparing the reads
on the tag’s counter (minus one to exclude the current node’s read)
to the number of reads stored on the last block (#Reads). If they are
equal, then this indicates that no reads have been performed on the
product’s tag between Src and D.

Global Authentication: after successful local authentication ,
and before dispatching the product to the next node in the supply
chain, the node becomes a proposing node, and proposes a new
block. The proposed block contains the new source (Src), destination
(D), the current number of reads of the tag’s counter (i.e.,#Reads),
the hash of the previous block, and the digital signatures of the
previous block’s validators. The proposing node, then, broadcasts
this newly proposed block to all nodes in the blockchain network.
The validators validate the block globally and vote on it.

Each validator executes the global authentication which includes
the following steps. First, the validators ensure that the blocks are
well-chained and have the appropriate order. Second, they check if
PData in the previous blocks is the same as the one in the proposed
block. Third, they trace-and-track the product by ensuring that
the source (Src) in a block (blocki) is equal to the destination (D)
in its previous block (blocki�1). If the three checks are successful,
then the block is valid, and it is safe to include it in the blockchain.
The validators guarantee that the blockchain always contains valid
blocks so the next proposing node can safely rely on the blockchain
when executing its local authentication.

Yet, we have only discussed the role of validators, but howwe can
select them and how can they communicate to reach an agreement
on a block validity? Our proposed consensus protocol answers
these two questions in the following section.

3.3 Consensus Protocol
In this section, we propose a new consensus protocol that achieves
a remarkable balance between security and scalability. Unlike other
protocols that rely on a �xed static set of validators responsible
for validating all proposed blocks, our protocol randomly selects a
di�erent set of lo� n validators each time a new block is proposed.
Thus, it improves the performance by distributing the validation
works among nodes with equal selection probability. Additionally,
there are numerous bene�ts: it provides fairness of selection among

nodes, and it yields total centralization due to selecting di�erent
sets of validators.

Each node in the block-supply chain has a unique pair of keys
(public and private) and is identi�ed by its public key. There are
four types of nodes. First, the "proposing" node, which currently
has the product. It executes the local authentication algorithm, pro-
poses a new block, and broadcasts it to all nodes in the network.
Second, the "validator" node, which is responsible for validating
the newly proposed block by executing the global authentication
algorithm. Moreover, validators communicate their votes to reach
consensus. Third, the "validation-leader" node, which is respon-
sible for selecting the random log n validators for the proposing
node. Each proposing node has a corresponding validation-leader
assigned to it randomly as will be discussed later. Finally, the "idle"
node, which does nothing except waiting for the decision to be
made by validators on whether to accept or reject the block. All
other nodes in the network are idle.

The validators’ selection is performed in two stages:
Validation-leaders’ selection: in this stage, each proposing

node is mapped randomly to a validation-leader at the genesis
state. The validation-leaders are regular nodes in the network. The
blockchain initiator (i.e., the manufacturer) performs this stage.
Then, it sends each validation-leader its corresponding propos-
ing node’s ID along with the genesis block. The random mapping
guarantees that each proposing node is mapped to exactly one
validation-leader and no node is mapped to itself.

Validators’ selection: when a validation-leader receives a pro-
posed block from its corresponding proposing node, it executes
this second stage. The validation-leader randomly selects log n val-
idators. Then, it instructs these validators to start validating the
block by sending a "validate" message. The validators’ selection
algorithm ensures that the validation-leader a) does not select itself
as a validator, and b) does not select a validator twice.

Thus far, we have covered how the validators are selected. How-
ever, these validators need a way reach consensus in the presence of
Byzantine nodes. Our protocol is based on Tendermint and exploits
its capability to overcome up to 1/3 Byzantine faults. The validators
in our protocol pre-vote on the proposed block, and when they hear
from more than 2/3 of log n other nodes, they pre-commit the block.
The block is committed when more than 2/3 of log n pre-commits
are received. The consensus algorithm is illustrated in Figure 2, and
it is summarized as follows:

(1) The proposing node proposes a new block and broadcasts it
to all nodes.

(2) The validation-leader node responsible for this proposing
node acts upon receiving the proposed block. It executes
the "validators’ selection" algorithm to randomly select log
n validators. Then, sends validate message to these selected
validators.

(3) The remaining nodes wait for a "validator-time-out" after
receiving the proposed block. The validator-time-out is the
time that every node waits to hear a validate message from
the validation-leader node, or a pre-vote message from a val-
idator. This time-out period protects the protocol’s liveness
from faulty validation-leaders. There are three possibilities
a node might act in this step. First, if the node receives a

33

Block-Supply Chain CryBlock’18, June 15, 2018, Munich, Germany

Figure 2: Our consensus protocol. The �rst step is "Propose".

validate message, then it acts as a validator and carries on
the validation process. Second, if the node receives a pre-vote
message, then it is an idle node, and it waits to hear the
remaining 2/3 pre-votes. Third, if the node receives neither,
then it acts as an "all-validate" validator and carries on the
validation process. All-validate is an alternative mode to the
log n mode that we described so far. This mode allows all
nodes to participate in reaching a consensus. It is a special
case that preserves the liveness of the protocol.

(4) The validators wait for a proposer-time-out after receiving
the validate message. This time-out protects the protocol’s
liveness from faulty proposing nodes. The validators begin
this step by initializing the voting’s round-number to zero.
Each validation event (i.e., executing the consensus protocol)
is a round. The validators’ votes depend on two factors:
a) whether or not they receive the proposed block within
the proposer-time-out, b) whether or not the proposed block
is valid. If a validator receives the proposed block in the
proposer-time-out, it validates the block, and pre-votes ’valid’
if the block is valid or ’invalid’ otherwise. However, if the
proposer-time-out terminates, then the validator pre-votes
’timed-out’.

(5) When a validator receives more than 2/3 log n pre-votes, it
pre-commits ’valid’, ’invalid’, or ’timed-out’ according to the
received pre-votes type.

(6) When a validator receives more than 2/3 log n pre-commits,
it commits ’valid’, ’invalid’, or ’timed-out’ according to the
received pre-commits type. The remaining nodes commit
when they receive more than 2/3 log n pre-votes followed by
2/3 log n pre-commits.

(7) There is a �nal subsequent step �ows the commit step, and
it is of three types. First, if a node commits ’valid,’ then it
adds the proposed block to the blockchain and extends it to
a new height. Second, if the node commits ’invalid,’ then it
aborts the protocol. Third, if the commit is of type ’timed-
out,’ the idle and validation-leader nodes do nothing, they
wait to hear again from the validators. On the other hand,

the validators check the round-number against a rounds’
counter we call rounds-limit. If the round-number is less than
or equal to the rounds-limit, the validators: a) increase the
rounds-limit by one, b) increase the proposer-time-out based
on the network conditions, and c) start a new round giving a
chance for the proposing node to re-propose. However, if the
round-number is greater than the rounds-limit, the validators
pre-vote ’invalid’.

It is worth mentioning that the proposed block and all types
of messages (i.e., validate, pre-vote, and pre-commit) are digitally
signed by the sender using its private key and veri�ed by the re-
ceiver using the sender’s public key.

4 EXPERIMENTS AND EVALUATION
In this section, we evaluate the performance and security of our
proposed block-supply chain protocol. One of our most important
design goals is to balance between performance and security. We
chose Tendermint as a reference protocol due to its noteworthy
performance, ability to maintain liveness and safety in the pres-
ence of Byzantine nodes, and most importantly its similarity to
our blockchain use case (i.e., mining-less). Our protocol achieves
remarkable performance and at the same time maintains a reason-
able level of robustness in a fully decentralized and distributed
manner. The high performance and scalability are accomplished by
decreasing the number of validators and distributing the validation
work among the blockchain nodes on every block proposal, instead
of relying on the same set of validators. The security is achieved by
the random leaders-proposers’ mapping and validators’ selection.

4.1 Performance
We have conducted several experiments to examine our protocol
performance with di�erent numbers of nodes. Our reference proto-
col was Tendermint employing n � 1 nodes as validators. We chose
n � 1 validators for Tendermint because the only way that Tender-
mint can guarantee the total centralization, fairness of validators’
selection, and optimal security is by involving n � 1 nodes in the
validation process.

We simulated our block-supply chain application to examine and
compare the performance of Tendermint and our proposed protocol
using Omnet++ as our simulation platform. We chose networks of
sizes 100, 125, 150, 175, 200 nodes respectively to investigate the
scalability of the protocols when the number of nodes increases.
Figure 3 illustrates our �ndings. When block-supply chain uses
Tendermint with n � 1 validators, the consensus latency (i.e., the
time taken to validate products) is very high compared to our pro-
tocol. This latency increases dramatically as the number of the
nodes increases when Tendermint is used. In contrast, our protocol
yields a gradual increase in latency, which demonstrates excellent
scalability.

4.2 Security
To evaluate security, we conducted several experiments. For each
experiment, we randomly select the 0.33% random malicious nodes
for each network of the �ve networks (i.e., the 100, 125, 150, 175, or
200 nodes networks). The 0.33% threshold is chosen because Ten-
dermint and ,hence, our protocol can only tolerate 1/3 of Byzantine

34

CryBlock’18, June 15, 2018, Munich, Germany N. Alzahrani et al.

Figure 3: Consensus Latency for our protocol and Tender-
mint with n � 1 validators.

nodes. To further increase the risk we assumed, without loss of gen-
erality, that these malicious nodes know each other. Therefore, they
cooperate with each other to compromise the blockchain. We chose
the "cloning attack" as a security threat. Our security metric was
Detection Rate (DR). To illustrate the importance of introducing
validation-leaders in our protocol, we included the detection rate of
our protocol with and without them. Figure 4 shows the DR with
95% Con�dence Intervals (IC) for our protocol without and with
validation-leaders compared to Tendermint with n � 1 validators.

5 CONCLUSIONS AND FUTUREWORK
We have proposed a new decentralized supply chain (block-supply)
utilizing blockchain and NFC technologies. The block-supply chain
was able to track-and-trace products and detectmodi�cation, cloning,
and tag reapplication attacks. For this chain, we introduced a new
scalable and secure consensus protocol. Our simulations show that
our new protocol is very e�cient for large networks, which makes
it a suitable choice for large blockchains that require total central-
ization.

Nerveless, this is an ongoing work, and we plan to make it
more e�cient and robust. For example, the always-validation (i.e.,
validators always validate even if chances of attacks are low) is
a performance shortcoming particularly in blockchains with low
hostility. Future work includes the application of a game theoretical
model, so instead of always-validate, validators validate with some
probability that is probational to the blockchain hostility.

Additionally, although the validators’ set changes dynamically
every time a new block is proposed, the number of validators is
static (i.e., lo� n), which is a piece of knowledge that can be ex-
ploited by an adversary. A future solution is to make the number of
validators dynamic and changeable based on a blockchain’s hostil-
ity factor. The blockchain nodes learn this factor periodically and
update their beliefs about the network. As a result, the number
of validators utilized by our protocol changes (in a random way)
proportionally to the hostility factor.

Finally, one limitation to consider is that it is possible for a
validation-leader node to produce an assignment that is not truly

Figure 4: Detection Rate with 95% Con�dence Intervals.

random. This may result in a biased validators’ selection and may
compromise the safety of the network in case if the validation-
leader is malicious and cooperates with other malicious nodes. A
possible solution is to involve the validation-leaders in the game
theoretical model mentioned above so that a punishment payo� is
applied in case of such attacks. Another solution is to require the
validation-leaders to provide some sort of proof of work.

REFERENCES
[1] Saveen A Abeyratne and Radmehr P Monfared. 2016. Blockchain ready manufac-

turing supply chain using distributed ledger. (2016).
[2] Naif Alzahrani and Nirupama Bulusu. 2016. Securing Pharmaceutical and High-

Value Products against Tag Reapplication Attacks Using NFC Tags. In Smart
Computing (SMARTCOMP), 2016 IEEE International Conference on. IEEE.

[3] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph.D. Dissertation.

[4] Miguel Castro, Barbara Liskov, and others. 1999. Practical Byzantine fault toler-
ance. In OSDI, Vol. 99.

[5] Hyperledger Community. 2018. hyperledger/fabric.
https://github.com/hyperledger/fabric/tree/v0.6.

[6] Niels Hackius and Moritz Petersen. 2017. Blockchain in logistics and supply
chain: trick or treat?. In Proceedings of the Hamburg International Conference of
Logistics (HICL). epubli.

[7] Jae Kwon. 2014. Tendermint: Consensus without mining. Retrieved May 18
(2014).

[8] Jae Kwon and E Buchman. 2016. Cosmos: A network of distributed ledgers.
(2016).

[9] Leslie Lamport and others. 2001. Paxos made simple. ACM Sigact News 32, 4
(2001).

[10] Mikko Lehtonen, Thorsten Staake, and Florian Michahelles. 2008. From identi�-
cation to authentication–a review of RFID product authentication techniques. In
Networked RFID Systems and Lightweight Cryptography. Springer.

[11] Tim K Mackey and Gaurvika Nayyar. 2017. A review of existing and emerging
digital technologies to combat the global trade in fake medicines. Expert opinion
on drug safety 16, 5 (2017).

[12] David Mazieres. 2015. The stellar consensus protocol: A federated model for
internet-level consensus. Stellar Development Foundation (2015).

[13] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[14] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable

consensus algorithm.. In USENIX Annual Technical Conference.
[15] Marc Pilkington. 2016. 11 Blockchain technology: principles and applications.

Research handbook on digital transformations (2016).
[16] Feng Tian. 2016. An agri-food supply chain traceability system for China based

on RFID & blockchain technology. In Service Systems and Service Management
(ICSSSM), 2016 13th International Conference on. IEEE.

[17] Pavel Vasin. 2014. Blackcoin’s proof-of-stake protocol v2. URL: https://blackcoin.
co/blackcoin-pos-protocol-v2-whitepaper. pdf (2014).

35

	Abstract
	1 Introduction
	2 Related work
	2.1 Block and Supply Chains.
	2.2 Consensus Protocols.

	3 Proposed block-supply chain
	3.1 Initialization Phase
	3.2 Verification Phase
	3.3 Consensus Protocol

	4 Experiments and Evaluation
	4.1 Performance
	4.2 Security

	5 Conclusions and future work
	References

