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Abstract—In this paper, we provide a basic solution for online
compression of data streams using error-bounded piecewise-
linear approximation (PLA). We compare this method to the
optimal (but offline) solution. Our current work in progress is
developing an online PLA method that meets the same optimality
constraints as the offline method. Also, the vertices of the
constructed approximations are subsets of the sampled data
points, which we believe to be a benefit in many scenarios.

I. INTRODUCTION

In many applications, data is presented as a continuous
stream in which the most recent data is expected to be available
with low latency from the source. For example, stock market
data is most useful in a one minute window, and traffic data
more than an hour old often cannot represent current condi-
tions accurately. In simplistic terms, network applications can
take several online approaches toward handling data streams,
some of which may resemble the following:
• Pass every value without manipulation: generates large

network traffic.
• Average data over a fixed period: reduces network traffic

but also data accuracy corresponding to the averaging
period.

• Maintain a sliding window: only transmit data when
significant changes occur, thus balancing network traffic
and data accuracy.

Resources are often constrained in terms of power (wireless
sensor networks), cost (3G cellular networks), or capability
(acoustic networks). Additionally, many-to-one networking
applications can suffer from DDOS (Distributed Denial-of-
Service) effects as scale increases, thus requiring undesired
reductions in data quality in order to maintain scalability. For
these reasons, there is significant motivation to reduce data
volume while maintaining robustness.

Although many solutions to online stream compression
exist, they provide an optimally small number of data points at
the cost of throwing out the original data; conversely, optimal
approximations using connected segments of actual data points
are calculated offline.

Our work in progress is developing a piecewise linear
method to approximate data streams with a minimal subset
while also providing an accuracy guarantee. Providing a
minimal subset requires choosing data points only from the
generated sets without introducing averaged or otherwise in-
terpolated points. This allows for the up-front transmission and
processing of approximated data; additionally, untransmitted
data can be retained for later transmission when network traffic
is lower or when power reserves are restored. Because all

data values are original sensor readings, any additional data
will “fill in the gaps,” thus providing additional resolution for
statistical analysis and reporting.

In this paper, we define the optimal (minimal subset) mea-
sure of a data stream, which is calculated in an offline manner
using a dynamic programming algorithm. We then devise an
online method of piecewise linear approximation. It is a greedy
approach in which only changes beyond a given error bound
are recorded. To evaluate this method, we use uniform two-
dimensional position data; however, these methods can also
be applied to time-series sensor readings.

Our preliminary results indicate that the greedy approx-
imation method achieves impressive compression ratios for
mobility data, while still providing the benefits of online data
streaming. Our eventual goal with this work is to provide a
data stream that achieves the optimal compression for any
given error bound and, unlike current solutions, is also online.
If possible, we will present preliminary mathematical results
in our endeavors.

II. RELATED WORK

Significant effort has been dedicated to approximating
sequential data within a guaranteed bound, for time-series
data [1]–[3] and higher-dimensional data as well [4]. Some
approximation methods are more indirect when related to
networking, such as fuzzy [5], [6] and aggregation [5], [7],
[8] methods, but almost all perform some form of linear fit.

Common terminology for sequential data approximation
includes filters, such as swing filters or slide filters [2].
Elmeleegy et al. define slide filters as disjoint piecewise
approximations that are sequentially adjusted in order to
minimize residual error, and this method is most similar to our
greedy approximation method. Kiely et al. propose an “Adap-
tive Linear Filtering Compression” algorithm as a lossless
compression algorithm for sensor networks, in which the filter
aspect is used to predict sample values which are corrected in
later transmissions if wrong [9]. In our work, we chose to keep
all data segments connected without reverse correction or data
prediction. Because of this, we are able to choose only actual
data points from data sources without interpolating new points
to facilitate an increase in approximation accuracy.

Keogh et al. define a sliding window method in their dis-
cussion and consider it in the more common notion, although
it is not similar to sliding filters above [1]. It is, however, very
similar to the greedy algorithm used here and the authors also
mention that it is widely used due to its online nature, for
example in frequent-patterns discovery [10]. Keogh et al.’s



approximation method, SWAB (sliding-window and bottom-
up), performs greedy approximation but keeps a buffer in
order to backtrack and refine approximations within a certain
window. Gandhi et al. propose a generic form of a greedy
bucket merging method in order to approximate time series
data quickly and in a near-optimal fashion, and as a result are
able to represent provable error bounds [11]. Soroush et al. use
a piecewise linear approximation on online data and apply it to
an actual sensor testbed [3]. They achieve an optimally small
approximation because the resulting line segments are not a
subset of the original data. An optimal result consisting of only
original data points was proposed by Dunham [12] using the
L∞ norm as an error measure. Additionally, Dunham devised
a scan-along approach for the optimal method; however, it
was not discussed or evaluated.

III. DATA SERIES APPROXIMATION

A. Problem Statement

For an ordered set of n vectors

D = {d̂1, d̂2 · · · d̂n}, with d̂i = 〈xi, yi〉

define ADε as the subset of D approximated with a maximum
linear interpolation error of ε.

ADε = {â1, â2 · · · âm}.

Exact points are chosen from the original data set in order
to facilitate a finite optimal solution space and make the online
approximation efficiently computable. Therefore, ADε ⊆ D
and the ordering of D is preserved in ADε . Furthermore, we
assume n ≥ 2 in order to require that â1 = d̂1 and âm = d̂n
where 1 < m ≤ n.

The linear interpolation error from any point d̂i not in
ADε is the euclidian distance between d̂i and d̂′i, where d̂′i
is the orthogonal projection of d̂i onto âj âk, the line segment
between the two elements in ADε nearest (by index) to d̂i in
D. Typically, this is defined as ‖âj d̂i × âj âk‖; however, this
does not limit the distance to the line segment. Therefore, we
define a function, dist, in similar vein but measuring at a fixed
maximum distance from the endpoints as well (see [12],Fig. 2
for a similar approach).

B. Optimal Approximation

Here, we define ADε as a recursive relation in order to
portray the dynamic programming solution to the optimal
subset given ε. First, we define ADε =M(1, |D|) and

M(i, k) =


{di, dk} dist(d̂id̂j , d̂id̂k) < ε

∀j ∈ (i, k)

min||
j∈(i,k)

(M(i, j) ∪M(j, k)) otherwise.

(1)
where min||(M(i, j) ∪ M(j, k)) is defined as the union of
M(i, j) and M(j, k) having the smallest set size over j.
M(i, k) produces a minimal subset bounded by ε as a result
of the principle of optimality, given the initial case:

M(i, i+ 1) = {d̂i, d̂i+1},

and for three consecutive points, there are two possibilities,
both of which are minimal subsets and bounded by ε:

M(i, i+2) =


{d̂i, d̂i+2} dist(d̂id̂i+1, d̂id̂i+2) < ε

{d̂i, d̂i+1, d̂i+2} otherwise.

Because the construction recursively depends on the last
element of D, any additional data points have the possibility of
changing the entirety of ADε , thus rendering this method of ap-
proximation an offline solution. The caveat to this is mentioned
by Dunham [12], where there exists no set of bounded lines
through certain points after extremes are reached. However, in
implementing such a method we found that early segmentation
decisions led to slightly sub-optimal results.

C. Greedy Online Approximation

This algorithm applies a sliding window to the data set. In
In Algorithm 1, the window starts at item d̂i in the data set and
iterates forward to item d̂j . If the points in the interval (i, j)
are bounded by the line d̂id̂j , j is advanced further. Otherwise,
d̂j−1 is added to A and iteration continues with i = j−1. This
algorithm is online because for any data item d̂t corresponding
to time t, the algorithm only operates on d̂n where n < t.

Algorithm 1 Pseudo code for greedy online approximation.

let ADε = {d̂0}
let start = 1, last valid = 2

for di in D − {d̂1, d̂2} do
if line d̂startd̂i bounded by ε for {d̂start+1 . . . d̂i−1} then
last valid = i

else
ADε = ADε ∪ {d̂last valid}
start = last valid
last valid = last valid+ 1

end if
end for

IV. RESULTS & OUTLOOK

Table I shows approximated set sizes as percentages and
number of points for both the greedy approximation method
on real GPS mobility traces and the optimal approximation
calculated on the entire data sets. For this mobility data, our
hybrid online algorithm produces a near-optimal compression
ratio. Figure 1 shows the compression ratios for different error
bound values for both the greedy online and optimal offline
compression methods. The greedy approximation method was
nearly always within 3% of optimal for all data sets.

When choosing an optimal approximation for a given error
bound, multiple solutions are possible. We provide order to
the set of solutions by choosing the solution with the lowest
average linear interpolation error. Again for the skiing data
set, Figure 2 shows the average linear interpolation error of
the entire data set for each value of ε, showing that the greedy
solution provides near-optimal average error. This, however,



Data Set Greedy Optimal
ε = 0.25m ε = 5.0m ε = 0.25m ε = 5.0m

Percent Points Percent Points Percent Points Percent Points
JOGGING 79.20% 335 17.2% 73 78.72% 333 15.8% 67
CYCLING 43.18% 2262 5.90% 309 39.50% 2069 4.70% 237
DRIVING1 13.48% 577 2.10% 90 12.78% 547 1.92% 82
DRIVING2 16.34% 957 2.15% 126 14.44% 846 1.98% 116
DRIVING3 28.72% 725 3.88% 98 26.19% 661 3.37% 85
DRIVING4 28.51% 825 3.73% 108 25.72% 744 3.35% 97

SKIING 47.26% 5239 4.97% 551 44.03% 4881 3.50% 388
TABLE I

GREEDY AND OPTIMAL APPROXIMATION SET SIZES, REPRESENTED AS PERCENT OF
ORIGINAL DATA SET SIZE AND THE EQUIVALENT NUMBER OF POINTS FOR ε = 0.25m AND ε = 5.0m.
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Fig. 1. Individual plots for SKIING approximated data set size given certain
error bounds. Sizes above 10% have been removed for readability.
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Fig. 2. Individual plots for SKIING approximated data set size given certain
error bounds. Sizes above 10% have been removed for readability.

is where there will be notable improvement by developing an
online optimal solution.

Our primary goal, and next step, is to design an online
version of the optimal approximation dynamic programming
algorithm that also minimizes an error measure (such as aver-
age) for a given solution. We believe this will be possible by
defining data subsets in which future data cannot recursively
affect their representation significantly. To our knowledge, this
will be the first such algorithm with these characteristics.
Later on, we will quantify data savings at a massive scale
by simulating the large vehicular network implemented in

[13]. Also of interest is study into lowering complexity and
parallelizing the approximation methods.
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