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Abstract—As sensor networking technologies continue to de-
velop, the notion of adding large-scale mobility into sensor
networks is becoming feasible by crowd-sourcing data collection
to personal mobile devices. However, tasking such networks
at fine granularity becomes problematic because the sensors
are heterogeneous, owned by the crowd and not the network
operators. In this paper, we present Zoom, a multi-resolution
tasking framework for crowdsourced geo-spatial sensor networks.
Zoom allows users to define arbitrary sensor groupings over
heterogeneous, unstructured and mobile networks and assign
different sensing tasks to each group. The key idea is the
separation of the task information ( what task a particular sensor
should perform ) from the task implementation ( code ). Zoom
consists of (i) a map, an overlay on top of a geographic region,
to represent both the sensor groups and the task information,
and (ii) adaptive encoding of the map at multiple resolutions
and region-of-interest cropping for resource-constrained devices,
allowing sensors to zoom in quickly to a specific region to
determine their task. Simulation of a realistic traffic application
over an area of 1 sq. km with a task map of size 1.5 KB shows
that more than 90 % of nodes are tasked correctly. Zoom also
outperforms Logical Neighborhoods, the state-of-the-art tasking
protocol in task information size for similar tasks. Its encoded
map size is always less than 50% of Logical Neighborhood’s
predicate size.

I. INTRODUCTION

With the convergence of technology developments in
sensor-equipped mobile smart phones, geospatial web inter-
faces, high data rate 3G and 4G wireless cellular standards,
and open WiFi networks, the notion of adding large-scale
mobility and coverage into sensor networks by crowdsourcing
sensor data collection to mobile phones is becoming feasible.
Applications of such crowdsourced geospatial sensing systems
encompass monitoring of traffic, weather, air and noise pollu-
tion, endangered birds in oil spills, and health studies.

As shown by the Mobile Millennium Project at Berkeley
[2], the MetroSense project at Dartmouth [5] and Participatory
Sensing at UCLA [4], it is possible to create a sensor network
that (i) is heavily mobile, and (ii) has sufficient incentives for
people to actively participate in sensing. The crowdsourced
sensor networks, however, are highly unstructured in the
sense that the sensor nodes are mobile, heterogeneous, owned
by individuals, and are operated at will depending on the
individual’s incentive to contribute sensor data. Thus, it is
difficult to focus the sensed bit (data) over the geographic
region in a fine-grained way. For example, querying sensor
data over the whole network might end up getting the amount

of data that is correlated with the density of sensors (i.e.
most data comes from where most cars or people are) but
not necessarily relevant to the phenomena being studied.

To maximize the sensor data utility, it is important to pro-
vide structure over the existing unstructured sensor network.
The sensor network application operator should be able to
configure the network to control the who, what, and where of
sensing in arbitrarily non-uniform, fine-grained ways across a
large sensing region. As an example, for an engineer trying
to understand arterial (non-highway) traffic flow, finer-grained
sensing of location, emissions, or speed may be required
along problematic bottleneck areas. While there are high
level approaches to determine where measurements should
be sampled [9], there is not a systematic way to enable the
network operator to program arbitrary nodes in the network
to perform the required tasks at a large geographical scale. In
effect, these crowdsourced sensor networks can collect a fixed
amount of data at any given time. It is important to be able
to place the bits geographically that make the largest impact
to the application.

In this paper, we propose Zoom, a framework to sup-
port location-based sensing over large geographic regions
for crowdsourced heterogeneous sensor networks. Our design
goals for the Zoom framework are (i) simplicity, (ii) effi-
ciency, (iii) support for heterogeneous devices, (iii) support
for unstructured and mobile networks, and (iv) adaptation
to resource constraints. The key idea of our approach is to
use map-based encoding of tasks, essentially a task map that
represents the who, what, and where of sensing. Each pixel in
the map represents a small square region that corresponds to
a square region in the physical world (i.e. the where). The
pixel value specifies the who and what. This allows us to
specify an arbitrary group of sensors with arbitrary sensing
area depending upon the application. Furthermore, maps can
be encoded at multiple resolutions, allowing for finer-grained
control of the who, what, and where to sense.

The contributions of this paper include:
• Zoom, the first map-based framework for configuring

a mobility-based, large geospatial region, sensor net-
work: The innovation of Zoom is the use of maps to
simultaneously encode both the task identification and
the task location. Zoom is essentially different from
existing approaches in that it makes task creation and
assignment visually intuitive. It supports heterogeneous



sensor platforms by decoupling the task information
from the task implementation ( code ), and by unifying
the interpretation of task encoding using a well-known
standard image encoding and decoding technique.

• Three techniques to adapt Zoom to resource impoverished
embedded mobile platforms: The first technique is to
encode maps at different resolutions to support platforms
with different resources. The second technique is to allow
sensor nodes to select a specific region to be encoded,
reducing the size of the map. Finally, Zoom can encode a
map into independent blocks and let sensor nodes quickly
locate the relevant block to decode. The three resource
adaptation techniques give Zoom the flexibility to work
with a wide range of sensor platforms.

• Evaluation of the framework using simulation: With maps
of size only 35 KBytes, Zoom can define a task over a
region of 600 sq. km. with only 2 % error in identifying
road segments. Simulation of a realistic traffic application
over an area of 1 sq. km. with a task map of size 1.5
KBytes shows that more than 90 % of the nodes are
configured correctly.

The rest of this paper is organized as follows. Section II
compares the new features and benefits provided by Zoom to
previous work in tasking sensor networks. Section III covers
key design assumptions. The overall design of Zoom is elab-
orated in Section IV. Section V evaluates Zoom and explores
the various factors impacting its performance, demonstrating
that Zoom is more efficient in tasking crowdsourced, mobile,
geospatial sensor networks compared to the state-of-the-art
approaches. Finally, we conclude in Section VI.

II. RELATED WORK

Crowd-sourced sensing is rapidly gaining popularity with
the rapid proliferation of sensor-equipped smart phones and is
being used for large-scale geospatial sensing applications as
diverse as noise pollution monitoring and traffic monitoring.
Zoom is intended to task such devices, which span hetero-
geneous hardware platforms and sensing capabilities. Tasking
a sensing network is a form of macroprogramming, which
basically provides a high level programming model for the
network that abstracts away the details of individual nodes
[17]. In other words, it derives local actions at individual nodes
or groups of nodes to achieve the desired global behavior of the
network [3]. At its core, macroprogramming involves defining
groups of nodes and assigning each group a task to perform.
We now review grouping mechanisms in previous work.

Grouping mechanisms developed in previous work can be
classified into two main categories — attribute-based and rule-
based ( Figure 1 ). Cougar [24] and TinyDB [15] are examples
of the attribute-based approach, wherein the sensor network is
typically considered as a database. Nodes and the data are
named. SQL-like queries are used to task nodes to report
data. The node group is defined within the query. This is a
preliminary approach for data collection and can only support
limited in-network processing tasks. It is also difficult to
define multiple arbitrary groups of nodes. Hood [22], Abstract

Regions [21], and Logical Neighborhoods [16] are examples of
the rule-based approach, wherein groups are often defined by a
set of rules. A node whose state, including sensing capability,
location, or sensing data, satisfies the rules is a member of the
defined group. The rules may be defined based on physical
parameters or logical parameters. For example, in Logical
Neighborhoods [16], logical nodes are specified by attributes
and logical neighborhoods are specified by the set of nodes
satisfying a constraint on the nodes’ attributes. The constraint
is basically a predicate to determine if a node belongs to the
logical neighborhoods. The rule-based approach offers greater
flexibility and capability in creating groups than the attribute-
based approach. It is still challenging to define arbitrary groups
of nodes using either the attribute-based approach or the rule-
based approach. Zoom addresses this challenge by using a
map-based approach. Essentially, the whole sensor network
can be represented as a spatial map and groups can be defined
arbitrarily on the map. This approach allows Zoom to task
arbitrary groups of sensors with varying granularity.

Macro 
programming
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DSWare       SINA

Hood
Abstract Region
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Fig. 1. Macroprogramming abstraction categories

Figure 2 depicts an alternate view of prior work in macro-
programming sensor networks, encompassing two main cat-
egories – supporting homogeneous networks and support-
ing heterogeneous networks. Many early macroprogramming
paradigms [22], [15], [21], [24] were designed for homoge-
neous networks. Only a few attempts [16], [1] support het-
erogeneous and mobile networks. Interestingly, no prior work
adapt the macroprogramming model to different platforms
with a range of memory, computation, and power capabilities,
a distinct feature of heterogeneous networks. Zoom not only
supports heterogeneity and mobility but also provides three
adaptation techniques for different sensor platforms.
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Fig. 2. Taxonomy of macroprogramming for sensor networks

Table I summarizes features provided by different program-
ming abstractions. Only Zoom offers support for heterogeneity,
mobility, and adaptation.

Also noteworthy and pertinent to our work are protocols for
sensor nodes to efficiently download new code over the air
and ensure safe and secure installation of new code. Typical
examples of such protocols are Deluge [10] and its secure
descendant Seluge [14]. These protocols assume that the nodes



Abstraction Spatial Scope Heterogeneity Mobility Adaptation
Hood local No Yes No
Abstract local No Yes No
Region
Logical Regional Yes Yes No
Neighborhood
Zoom Global Yes Yes Yes

TABLE I
A COMPARISON OF FEATURES ACROSS MACROPROGRAMMING MODELS.

already know what task they are supposed to perform and
focus solely on network-wide dissemination. Zoom fills this
gap. Its purpose is to explicitly tell the nodes what task they
are supposed to do in the first place.

Finally, we have not found any work that defines a data
structure for encoding task information with grouping in-
formation in sensor networks. We believe Zoom is the first
to explicitly address this problem and use maps to encode
tasks and group information for large geographical sensing
networks.

III. DESIGN ASSUMPTIONS

Before describing the assumptions underpinning Zoom, we
clarify our notion of task information and task implementation.
A task is a set of operations which one or more nodes
need to perform to accomplish a high-level objective. For
example, one task could be to collect sound measurements
at 5 KHz and reporting the measurements to a predefined
base station. Another task could be to track a moving vehicle.
The description of a task is task information, which can be
represented by a unique task index ( e.g. task index 1 is
tracking temperature contours ). A list of task indices for
popular sensing tasks should be specified for every node. For a
new task index, a node may need to obtain the appropriate task
implementation. The task implementation is platform specific
and could be some parameters for an existing program, a
binary update of an existing program, or even a new binary
image that is required to perform the task.

The design of Zoom assumes:

• Location-Awareness: Nodes in the network know their
own location, obtained from GPS receivers or other lo-
calization methods. This a reasonable assumption because
our target platforms are hand-held devices, which often
have built-in GPS.

• Dissemination protocols: There exist protocols to dissem-
inate task information in the network. This assumption
is reasonable because there are a wide range of dis-
semination protocols for networked sensing applications.
Dissemination can also be done via radio broadcasts.

• Code Update: There exists protocols for a node to
download the task implementation to perform a specific
sensing task. The goal of Zoom is to help nodes determine
their task. This can be done either via peer to peer
communication or by downloading code from a nearby
base station using WiFi or 3G networks.

• Push Communication: A simple approach for a node to
determine its task is to periodically poll a predefined
server for the task information. This approach allows
the server to assign exact tasks to individual nodes. The
drawback is that every node has to actively poll the server,
incurring high bandwidth usage. An alternative approach
is push based - let the server periodically broadcast the
network-wide task information to the network. Although
a message containing the task information for all nodes
will have a larger size compared to a message containing
the task information for a single node, this approach
allows nodes to disseminate the task information within
the network and keep the whole network updated using
fewer transmissions.

IV. ZOOM FRAMEWORK

In the following section, we describe the overall architecture
of Zoom, the Sensor Task Interchange Format (STIF) for en-
coding group and task information, and finally three resource
adaptation techniques for resource-poor sensor platforms.

A. Zoom Architecture

Figure 3 shows an overview of the Zoom framework,
consisting of two main components — task encoding and
task decoding. Task encoding is performed at the back end
where an operator can arbitrarily define geographical regions
and assign a sensing tasks to each region. The task indices
with the location information can be represented as a task
map. A location on the map corresponds to a real physical
location. The pixel value at a particular map location is the
corresponding task index, specifying the task to be performed
at that location. The map is then encoded as an image in the
STIF format, described in Section IV-B.

Upon receiving the map, a node removes the image header
and decompresses the task map. The node calculates the pixel
in the image that corresponds to its physical location and
retrieves the task index. At this point, the node compares the
new task index to its current task index to determine if it needs
updated code to perform the new task. Pseudo-code 1 shows
the pseudo-code of the task map decoding algorithm.

Algorithm 1 Task Map Decoding Algorithm
if Receive a taskMap then

mapVersion = getMapVersion(taskMap)
if mapVersion < curVersion then

curVersion = mapVersion
[Rx,Ry] = getGISCoordinate(taskMap)
[taskMap,imgWidth,imgHeight]=decodeMap(taskMap)
pixelX = imgWidth*localX/Rx
pixelY = imgHeight*localY/Ry
taskIdx = taskMap(pixelX,pixelY)

end if
end if

Figure 4 illustrates how Zoom works. To the left is the
physical map of a city. An operator decides to measure noise
pollution in the left area and to measure traffic speed in the
right area. The operator defines the regions ( e.g. by drawing
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Fig. 3. Zoom Framework

on the map ) and assigns the appropriate task indices, indicated
by color values. The corresponding task map ( on the right of
the figure ) is then encoded and disseminated to the network.
A node upon receiving the map determines the task it must
perform by checking the corresponding pixel value.

Fig. 4. Task Map Overlaid on Top of Physical Map

Suppose the two regions overlap. Then nodes in the over-
lapping area must perform both tasks. The overlapping area
is assigned a new task index, which in turn includes both the
two given tasks. The complexity of this operation is handled
at the back end. Hence, the nodes themselves do not have to
implement complex algorithms to interpret multiple tasks.

To avoid flooding the network with maps, we implemented
a dissemination protocol with a polite gossiping mechanism
[13] to reduce redundant message transmissions. Basically,
each task map has a unique key and a version number that
is incremented for each map update. A node upon receiving
a new map will schedule a map rebroadcast. If it overhears
other broadcasts of the same map and version, it will suppress
its own rebroadcast and wait longer. This technique has been
used in recent dissemination protocol [8].

B. STIF Format

A straightforward approach to encoding task and geograph-
ical information is to add attributes such as a task index to
geographic information system (GIS) shapefiles [20], used
widely in GIS applications, and disseminate this file into the
network. This approach has two limitations. The shapefile has
a large size as it was developed for a different purpose. A
shapefile that lists all roads and suburbs in Portland is more

than 7 MB whereas a very high resolution image representing
the same information is only 800 KB. Moreover, it is difficult
to represent the shapefile at multiple resolutions as roads are
represented by a set of piecewise linear segments. It is unclear
how fewer points could be used to represent roads at a lower
resolution, without loss.

An image is good for representing arbitrary shapes. It can
be resized to represent shapes at different resolutions quickly.
We can also avoid unnecessary geometric computations to
determine whether a node is inside or outside a region. The
node can simply compare its location with the corresponding
image pixel to determine its task index (pixel value). Image
encoding and decoding functions are highly popular and have
been built into almost every current hand held device. For these
reasons, we choose images as the basic block for encoding task
indices with group information.

There are several popular image file formats. Each format
compresses images differently. Among them, Quadtree [7] and
Graphic Interchange Format (GIF) [23] are suitable for Zoom.
Quadtrees are most often used to partition a two dimensional
space by recursively subdividing it into four quadrants. They
encode the quadrants’ locations together with the quadrants’
values. However, as shown in table II, using the quadtree
format still results in a large data size.

Format Size (Byte)
Raw 65536
GIS Shapefile 68132
QuadTree 7735
Boundary 3192
STIF 1199

TABLE II
FILE SIZE FOR DIFFERENT FORMATS. STIF HAS THE SMALLEST SIZE.

In GIF [23], a color consists of three 8-bit channels — Red,
Green, and Blue. GIF in general supports a maximum of 256
colors for its color index table. An image pixel is represented
by one 8-bit value. The pixel value is the corresponding color
in the color index table. Figure 5 depicts the core structure of
a GIF image. The GIF representation is naturally suited to the
purpose of our Zoom framework. Each pixel can describe a
geographical region and the pixel value is the task index.

RGB Color 0

RGB COLOR 1

RGB Color 255

1 6 9 3 9 4
2 ...

...

Image Pixels Color Index

0

255

...

1

2

Fig. 5. GIF Image Format

The pixel values are compressed using the LZW compres-
sion algorithm [12]. LZW builds a dictionary for repeated
patterns in the sequence of image pixel values - scanned from
left to right and top to bottom - and encodes these patterns
with a codeword that has a shorter length compared to the



patterns. It must be noted that even without the dictionary, the
image can be decoded successfully. Readers can refer to [12]
for a complete description of GIF and LZW compression.

We have developed the Sensor Task Interchange Format
(STIF) based on GIF. STIF represents a task map as a gray
scale image and uses the same LZW compression technique
as GIF. We, however, replace the GIF header with a simple
header containing the map identification, the map version, the
coordinates of the physical map, and the height and width
of the image. Figure 6 depicts the STIF header. The id and
version fields identify the map and the freshness of the map.
The top left and bottom right coordinates scope the physical
region to be reprogrammed. The image width and height
indicate the size of the encoded image.

0 15 31

TASK_MAP_ID TASK_MAP_VERSION

TOP_LEFT_X TOP_LEFT_Y

BOTTOM_RIGHT_X BOTTOM_RIGHT_Y

IMAGE_WIDTH IMAGE_HEIGHT

Fig. 6. STIF Header.

STIF has two drawbacks. The number of color indices is
limited to 255 (8 bits/pixel). We believe that this is large
enough for multiple concurrent tasks in a sensor network. We
could increase the number of bits to represent a pixel, and
consequently the number of task indices, but at the cost of
compression efficiency. Moreover, decoding STIF images may
require slightly higher memory ( albeit smaller than the image
size itself ) compared to other image formats. By carefully
tuning the LZW compression parameters, we can overcome
the memory problem. Indeed, Sadler et al. [19] have developed
an LZW variant for resource poor embedded devices.

Sometimes, a node may not have enough resources to
decode a high resolution map representing a large geographical
region. It also needs to know only the task indices in a small
geographical region around itself. Instead of decoding the
whole task map, we have developed three resource adaptation
techniques, described in the next section, that can help Zoom
conserve memory and bandwidth for such nodes.

C. Zoom Resource Adaptation

Fig. 7. Multi-resolution Encoding

1) Multi-Resolution Encoding: Our first resource adapta-
tion technique is to encode the task map at different res-
olutions, allowing nodes to download only the appropriate
resolution that they can handle. Figure 7 shows a map encoded
at three different resolutions. A lower resolution leads to
a smaller image, requiring less memory and computational

power to decode. There is a trade-off between the resolution
and the ability to define the task at a fine granularity. We
analyze this trade-off in Section V-C1.

2) Selected Region of Interest Encoding: In Figure 8, a
node needs to know the task indices of only a region large
enough to cover its entire mobility (e.g. from home to work
and back), rather than the task indices of all regions in the map.
Instead of encoding the entire task map, we can selectively
encode only a small region within the map. Hence, the node
can obtain a region of interest (ROI) in the task map. In
addition, a node may need high granularity task indices for
a specific area such as a building to determine the appropriate
task to perform when it is inside or outside the building.
We can also selectively encode that region with a higher
resolution. Hence, the node can obtain a higher resolution task
map for the region of interest.

Fig. 8. Selected Region of Interest Encoding. A specific region can be
encoded to reduce the image size to be transmitted. The region can also be
encoded at a higher resolution to increase the identification accuracy.

Fortunately, GIF allows us to easily specify a specific region
within the image to be encoded. After the header information,
the data starts with a fixed image descriptor code followed by
TL and BR (Figure 10) containing the top left and bottom
right of the encoding image block. Using these two fields, we
can specify the region of interest block. There is no change
in decoding the map. However, this technique assumes that a
node can interact with a base station.

3) Region of Interest Cropping: Upon receiving an encoded
map, a node does not necessarily decode the whole map, either
because it is interested in only the task index of its nearby
region, or because it has limited resources and cannot decode
the whole map. Zoom adapts a technique that allows the node
to quickly crop out only a region that is relevant to itself. This
technique was originally developed to support region cropping
in video streaming applications [6].

b

Cropped Region 
of Interest

Fig. 9. Region of Interest Cropping. The task map is divided into blocks
and encoded separately.

The main idea is to divide the task map into blocks and
to encode each block independently ( see Figure 9 ). The
encoded blocks are appended to each other ( Figure 10 ).
Upon receiving the encoded map, a node can determine the



corresponding region of interest based on its location, then
search for the start of that block, and decodes only the found
block. This technique does not conserve bandwidth but can
help a node find its task index quickly with fewer resources.

... ... ... ...

... 1 4 4 1 1 ...

HEADER BLOCK 1 ... BLOCK N

ID TL BR END SZ DATA

ID  IMAGE DESCRIPTOR (0x2C)

TL TOP LEFT POSITION

BR BOTTOM RIGHT POSITION

END END CODE (0x00)

SZ    SIZE

Fig. 10. GIF Format to Support ROI Cropping. Each image descriptor can
be the start code for a new block.

In GIF, the image descriptor code (0x2C) is used to indicate
the start of a block. All other fields remain the same. This way,
we can use the GIF decoder with minimum changes, except to
search the appropriate block to be decoded. However, dividing
the map into smaller blocks reduces the LZW compression
performance, increasing the total encoded map size. This is
because the number of repeated patterns is reduced by limiting
the data within blocks. We analyze the trade off between
encoded map size and decoding time in Section V-C4.

D. Implementation

The Zoom framework has several components. We have
implemented a task map encoder with support for Region
of Interest (ROI) cropping in Matlab. We have implemented
two variants of the task map decoder in C/C++; a basic
task map decoder and a task map decoder with support for
ROI cropping. The decoders are implemented in standard
C. Hence they can be ported to different platforms using
appropriate cross-compilers. The implementation details for
the Intel(R) Core(TM)2 Duo chipset are listed in Table III.
We have implemented a complete system with both the task
map decoder and networking support in our simulators. 1

Components Program size RAM
Task map decoder 14.5 KB 1.3 KB
Task map decoder 15.3 KB 1.5 KB
with ROI cropping

TABLE III
IMPLEMENTATION DETAIL

V. EVALUATION

A. Goal and Metrics

Our evaluation goal is to answer the following questions:
1) Can the map-based approach in Zoom successfully rep-

resent geographical regions and tasks?
2) How is Zoom’s performance in terms of encoded map

size and update latency affected by the number of
regions and number of nodes in the network?

3) Is Zoom better than previous approaches to macropro-
gramming?

1The preliminary version of Zoom is available for download at http://sys.
cs.pdx.edu/home/projects/zoom.

To answer the first question, we consider how well STIF can
encode road segments from a GIS file. Basically, we encode
a geographical map using the STIF format and analyze the
number of pixels that contain more than one road segment.
Figure 11 depicts possible cases where a pixel may contain
only one road segment (a), two road segments (b), three road
segments (c), or four road segments (d). In the ideal case, a
pixel should uniquely identify a road segment, containing no
more than one road segment. However, as the map resolution is
reduced, a pixel covers a larger geographical region and may
contain more road segments. It is impossible to distinguish
these road segments based on the pixel alone. In that case,
STIF is unable to assign a distinct task to each road segment
within a pixel. We refer to such a pixel as an error pixel.
The definition of error also depends on the application. For
example, in Figure 11(b), there is a clear error because the
two roads do not intersect and are indistinguishable. Whereas
the error pixel in Figure 11 (c) or (d), might be acceptable for
some applications. In our evaluation, we consider (b), (c), and
(d) as error pixels. We analyze the number of error pixels as
a function of the map resolution.

Fig. 11. Number of roads within a pixel. (a) a pixel can uniquely identify
a road segment. (b, c, d) a pixel can not uniquely identify a road segment.

To answer the second question, we analyze (i) the update
latency as a function of the number of nodes and map
resolution in a realistic traffic monitoring application, (ii) the
mean number of nodes with an incorrect task index as a
function of map resolution, (iii) the size of the encoded task
map as a function of the number of ROI blocks and (iv) the
time to decode one specific block. In general, as the number
of ROI blocks increases, the encoded map size increases but
the decoding time decreases.

Answering the third question is somewhat tricky. It is not
really possible to quantitatively compare Zoom to previous
tasking approaches because as discussed in related work,
each approach addresses a different problem and provides
slightly different features. The work closest to Zoom is Logical
Neighborhoods [16]. We compare the size of Zoom encoded
maps to the size of Logical Neighborhood predicates for
defining an equivalent spatial group of nodes.

B. Experimental Design

To investigate of the first question, we extract the GIS
shapefile for Portland and its nearby suburbs from the latitude
and longitude coordinates of (7597010.859, 645515.097) to
(7696218.347, 711876.59). This covers a 600 sq.km area. The
shapefile is available at the US Census Bureau website and
contains several records. Each record contains one or more
street segments. Each street segment is defined by a set of
points with corresponding longitude and latitude coordinates.



We export this file into STIF files at different resolutions. Then
we count the number of error pixels, as shown in Figure 11.
These results are discussed in Section V-C1.

To investigate the second question, we use MobiReal [11],
a realistic network simulator for mobile ad-hoc networks, to
simulate a realistic traffic application. MobiReal is built on
top of GTNets [18], a full-featured network simulator. Mo-
biReal allows separation of behavior and network simulation.
Therefore, we can specify realistic behavior models for cars
or pedestrians and integrate them with the network simulator.

Fig. 12. Simulation Area. 1 km × 1 km area in downtown Portland, OR.

We simulate an Advertisement application in a 1 km ×
1 km area in downtown Portland ( Figure 12 ). The main
components of the simulation are:

• Advertisement Application: We arbitrarily define regions
in the map and assign different task indices for those
regions. A base station (marked as a black circle in Figure
12) broadcasts the encoded task map to the network every
15 seconds. A car, upon receiving the map, decodes the
map and updates its task index. The car also schedules
map rebroadcasts. Together with the task map, the base
station also broadcasts a sale advertisement for a nearby
shopping mall (marked as a black square in Figure 12).

• Mobility Behavior: Cars are generated based on pre-
defined road density that is close to the real density.
A random entry point and a random destination are
generated for each car at initialization. Cars travel to their
destinations on the shortest path routes. However, upon
receiving a sale advertisement, a car may add the mall
address as an intermediate destination with a predefined
probability (10% in our simulation). A car arriving at the
mall stays at the mall for several minutes before leaving
for the final destination. After arriving at the destination,
the car is removed from simulation and a new car will be
generated randomly. This mobility behavior allows us to
simulate dynamic behavior inspired by a real scenario.

• Networking: Table IV shows the full network stack used
in the simulation. Cars communicate with each other and
with the base station using IEEE 802.11. The communi-
cation ranges are set to 100 meters for the cars and 300
meters for the base station. Both the cars and the base
station use UDP as their transport protocol and IP as the
network layer protocol. A car upon receiving the task map
schedules periodic map rebroadcasts with an interval of
5 seconds. However, if it hears a broadcast of the same
task within this interval, it suppresses its transmission
and doubles the broadcast period interval. The maximum

interval is set to 150 seconds.

Layer Class Description
Application Advertisement
Presentation STIF format Modification of GIF
Transport L4Protocol Wrapper class for UDP
Network L3Protocol IP V4
Routing MyRoutingDSR Dynamic source routing
Link (MAC) L2Proto80211 802.11
Physical DynamicWirelessLink

TABLE IV
DESCRIPTION OF NETWORKING STACK USED IN SIMULATION.

We analyze the (i) update latency versus number of nodes
(cars) in the network and (ii) the average number of nodes with
incorrect task indices versus map resolution. Experimental
results are shown in Sections V-C2 and V-C3. We also encode
task maps with different number of blocks and analyze the
map size and the time to decode a specific block. We also
define regions arbitrarily to assign task indices and analyze
the encoded map size versus the number tasks. Experimental
results are shown in Sections V-C5 and V-C4.

Finally, to investigate the third question, we define a number
of regions randomly on a map and encode the map using
Zoom. The number of regions are varied from 1 to 10. Using
Logical Neighborhoods, we define the region boundaries and
embed them in the predicate. Nodes with locations satisfy-
ing the predicate, i.e. their locations lie inside the regions’
boundaries, are members of the corresponding groups. We
compare the size of the Zoom STIF files to the size of
Logical Neighborhood predicates to find out which approach
requires fewer data transmissions. These experimental results
are discussed in section V-C6.

C. Results and Analysis

1) Task Decoding Error: Figure 13(a) plots the percentage
of error pixels (pixels containing more than one road seg-
ment) versus the map resolution. The number of error pixels
decreases when the map resolution increases. With resolution
2857 × 1917, which is equivalent to a 10 m× 10 m square
per pixel, the percentage of error pixels is almost zero. The
black and white version of the map is only 321 KB in size.
This is much smaller than the shapefile, which is 7MB. With
resolution 715 × 479, which is equivalent to a 40 m × 40
m square per pixel, the percentage of error pixels is around
5.5% while the encoded map size is only 34.5 KB. Hence,
the map-based approach in Zoom is suitable for representing
geographical regions and tasks.

Figure 13(b) shows the distribution of error pixels. As
expected, the higher the map resolution, the lower the error.
Nevertheless, most error pixels contain 2 to 5 road segments.

Figure 13(c) plots the distribution of error pixels for a map
of resolution 90 × 60. The whiter the color, the higher the
number of roads collided within the pixel. Most high error
pixels are distributed near the downtown and freeway inter-
section areas. This error distribution map is useful because we
can increase the map resolution to decrease the identification
error, when deploying a task map over a high error region.
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Fig. 13. a) Total Error Pixels versus Resolution: With size of 321 KB at resolution 2857 × 1917, a STIF image can uniquely describe every road segment.
b) Identification Error: Most error pixels contain 3 to 4 road segments. c) Distribution of Error Pixels: High error pixels (white color) are distributed near the
downtown and freeway intersection areas.

2) Update Latency for Different Number of Nodes: Figure
14(a) plots the number of nodes with incorrect task indices ver-
sus time for different network sizes. The simulation scenario
is an Advertisement in a 1 km × 1 km square in Portland,
OR. The base station broadcasts the encoded task map at the
15th second. In the first 15 seconds, no node has the right
task index. After the base station broadcasts the map, nodes
update their task indices and rebroadcast the map. Hence, the
error rate decreases quickly. However, due to nodes joining
and leaving the network dynamically, we can not achieve a
zero error rate. The error rate reaches a stable threshold after
a while. Also, the higher the density, the lower the error.

3) Update Latency for Different Map Resolutions: Figure
14(b) shows the percentage of nodes with incorrect task
indices versus time, with the task map encoded at different
resolutions. The simulation scenario is 1 km × 1 km square
in downtown Portland, Oregon. The task map is encoded at
191 × 155, 96 × 78, and 48 × 39 resulting in the sizes of 1.48
KB, 1.15 KB, and 0.975 KB respectively. The corresponding
area per square are 5 m × 5 m, 10 m × 10 m, and 20 m ×
20 m. The smaller the encoded map size, which correspond
to a larger geographical area per pixel, the higher the error.

4) Trade-off Between Compression and Decoding Speed in
ROI Cropping: Figure 14(c) plots the encoded map size of the
same resolution versus number of blocks within the map. The
original map size is 717 KB with resolution 1536 × 1536. The
map is divided into several blocks, with each block encoded
independently. The encoded map size decreases at first as the
map is divided into 4 blocks. After that, the map size increases
with the number of blocks. The peak at 4 blocks is because
in the original map, the limited size dictionary of repeated
patterns in LZW does not optimally capture the most frequent
patterns over the entire map.

Figure 15(a) plots the average decoding time for a randomly
chosen block. As we expected, the decoding time decreases
quickly as the map is divided into more blocks. One should
consider the trade-offs between the encoded map size ( Figure
14(c) ) and the decoding time desired ( see Figure 15(a) )
when applying Zoom to different hardware platforms.

5) Task Map Size versus Number of Regions: Figure 15(b)
plots the encoded map size versus the number of regions. The
map size grows in proportion to the number of regions. This
is reasonable as the number of recurrent patterns in the map

usually decreases when the number of distinct pixel values in
the map increases.

6) Encoded Map Size versus Logical Neighborhood Predi-
cate Size: Figure 15(c) plots both the size of the STIF maps
and the size of the Logical Neighborhood predicates when en-
coding different numbers of regions. The regions are selected
randomly and the number of regions are varied from 1 to
10. STIF maps always have smaller size compared to Logical
Neighborhood predicates. This implies that Zoom potentially
uses less bandwidth than Logical Neighborhood and sensors
in Zoom use less memory than in Logical Neighborhoods.

VI. CONCLUSION

We have presented Zoom, a multi-resolution tasking frame-
work for crowdsourced, geo-spatial heterogeneous sensor net-
works. Zoom’s innovation is to support heterogeneous devices
by decoupling the task information ( i.e. what task a sensor
node must perform ) from the task implementation ( code
). Zoom uses maps to represent task information and regions
and encodes them in our proposed Sensor Tasking Interchange
Format (STIF), making tasking intuitive for network operators.
The use of maps also allows a mobile sensor to quickly
obtain its task information without running complex geometric
algorithms to determine whether it belongs to a region or not.
We have also presented three resource adaptation techniques
to reduce memory, bandwidth and CPU usage in Zoom.

Our evaluation shows that Zoom is capable of tasking arbi-
trary groups of sensors in a large geographical network. With
an encoded map of size only 34.5 KB, Zoom can task a region
of 600 sq. km with only 2 % error. In addition, simulation of
a realistic traffic application over an area of 1 sq. km with a
task map of size 1.48 KB shows that more than 90 % of nodes
are tasked correctly. Finally, for the same task information,
Zoom’s encoded map size is always 50% smaller than the
predicate size in the state-of-the-art Logical Neighborhoods
approach. To the best of our knowledge, this is the first work
to propose an map based tasking framework for crowd-sourced
geospatial sensing systems. We believe that Zoom’s tasking
capability is a step toward providing structure in increasingly
unstructured mobile geo-spatial sensing systems.
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