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Abstract—The paradox of wireless sensor networks (WSNs)
is that the low-power, miniaturized sensors that can be deeply
embedded in the physical world, are too resource-constrained to
capture high frequency phenomena. In this paper, we propose
RHA, a robust hybrid architecture for information processing
to extend sensing capacity while conserving energy, storage and
bandwidth. We evaluate RHA with two real world applications,
bio-acoustic monitoring and spatial monitoring. RHA provides
accurate signal reconstruction with significant down sampling
compared to traditional multi-rate sampling, is robust to noise,
enables fast triggering and load balancing across sensors.

I. I NTRODUCTION

In the past decade, low-power sensor networks have been
deployed to monitor buildings, bridges, and vineyards. Current
WSNs can not adequately capture high frequency signals (eg.
acoustic) or large-scale spatial phenomena with high fidelity
(eg. city wide temperature). It is challenging to capture high
frequency signals with low-power sensors ormotes, because
classically sensors need to sample at twice the signal frequency
to accurately reconstruct a signal. Resource-limited sensors
can neither store nor transmit large data volumes.

Prior work has explored leveraging heterogeneous hardware
platforms [1], [2]. Tenet [2] argues that WSNs should be
asymmetrical in their task allocation, but do not consider
how to minimize samples taken by motes. Lance [3] reduces
transmissions by data prioritization, but does not reduce the
sampled data.

We propose RHA, a Robust Hybrid Architecture for WSNs.
RHA reduces the samples taken, stored and transmitted by
sensors. The key idea in RHA isconcurrent random sampling
based oncompressive sensingtheory, allowing most natural
signals to be reconstructed from a few measurements. RHA is
robust, adaptive, and simple. The paper’s contributions are:

A. A hybrid information processing architecture including:
(i) A concurrent random samplingscheme (CRS) for WSNs

that applies compressive sensing to extend the network sens-
ing capability. Unlike previous compressive sensing methods,
CRS does not require specialized hardware or cross-sensor
collaboration.

(ii) An adaptive compressive sampling algorithm(ACS) that
is simple to compute and addresses a key practical problem
in compressive sensing, that of dynamically determining the
minimum required samples without prior signal knowledge.

(iii) A hierarchical feature analysisscheme leveraging the
information in the samples and the devices’ computational
capabilities, to make decisions based on available features.

(iv) A hierarchical decision makingscheme based on CRS
to adjust the sensor sampling state (active, inactive) or rate
adaptively, reducing data transmitted.

B. Evaluation on two canonical case studies:
(i) Bio-acoustic monitoring: Cane-toad vocalizations can

be reconstructed using 10% of the measurements compared
to classical sampling. RHA can detect cane toads with high
accuracy even with unreconstructed signals.

(ii) Spatial monitoring: Even with only 10% of sensors
reporting, RHA can reconstruct a spatial field with low error.

Fig. 1. RHA Architecture

II. RHA

The information processing architecture has three tiers map-
ping to the three hardware tiers, illustrated in Figure I.
Tier 1: Low power sensors (e.g. MicaZ, Telos [4]).
Tier 2: Micro-servers to bridge the WSNs with the Internet.
Tier 3: Servers for complex operations and data archival.



A. Concurrent random sampling (CRS)

CRS (Section III) allows each mote to independently and
randomly sample a signal at a low rate while still preserving
signal information. However, there is a restriction on signal
representation. CRS can be applied at tier 1 at a low sampling
rate and at tier 2 at a high sampling rate. Letx(t) be the
continuous analog signal being sampled from the physical
world. With CRS, motes randomly sample this signal to
produce a discrete-time digital signalxrs

l [n] or xrs
h [n]. The

subscriptsl and h indicate a low sampling rate at the motes
and a higher sampling rate at the micro-servers respectively.
The superscriptrs indicates random sampling.

B. Adaptive Compressive Sampling (ACS)

ACS (Section IV) allows each mote to calculate while
sampling data, themeasurement normalized norm residual,
mnnr. We have studiedmnnr empirically and found that if
mnnr < 0.001, the signal is reconstructed exactly with a
high probability. Based onmnnr, sensors can determine how
many measurements are enough for reconstruction and avoid
redundant measurements.

C. Feature analysis

From the random samples obtained with CRS, the sensors
can perform simple analysis.

Simple Feature Analysis (SFA) at tier 1: The sensors can
calculate simple features, such as the histogram and the signal
envelope. SFA analyzes the inputxrs

l [n] and produces the
featuref(xrs

l [n]), which can be the estimated histogram or the
envelope ofx(t). Although the random samples are collected
at a low rate, these features are still representative of the
original signal and useful for simple decisions. Besides max,
min and average, the simple features discussed below can be
computed efficiently while sampling.

Histogram: The random samples of a signal estimate its
histogram well. Machine learning techniques often use the
histogram as a feature to classify signals. The algorithm to
estimate the histogram is very simple. Let(Smin, Smax) be
the range of the sample valuesxrs

l (n) and k be the number
of bins of the histogramy. Each sample value is checked to
determine the bin it lies in and the corresponding counter is
increased by 1 as follows.

Let w = (Smax − Smin)/k,
if Smin + (i− 1)× w ≤ xrs

l (n) < Smin + i× w,
i = 1...k, theny(i) = y(i) + 1.
Signal Envelope:The signal envelope is generally estimated

by applying a low-pass filter or smoothing the signal. A
simple computation windows the signal, taking the maximum
sample value in each non-overlapping window by subdividing
the recorded samples (x(n), 0 ≤ n ≤ N − 1) into K non-
overlapping smaller segments by

xi(n) = x(iD + n)w(n)
0 ≤ n ≤ L− 1, 0 ≤ i ≤ K − 1,
wherew(n) is basically a rectangular window of duration

L, andD is an offset distance. The envelope is estimated as:
y(i) = maxK−1

i=0 xi(n).

Complex Feature Analysis (CFA) at tier 2: Micro-servers
can sample a signal at a higher rate than sensors. Using their
greater computation power, they can extract simple features
(e.g. histogram) accurately, implement signal transformsand
perform complex classification using machine learning. CFA
analyzes the inputxrs

h [n] and producesf(xrs
h [n]). f(xrs

h [n])
can be the estimated histogram, envelope, frequency repre-
sentation of the signal, or the detection and classification
results. Micro-servers can also reconstruct the signal from
random samples. For a high frequency signal (e.g. 20 kHz),
the reconstruction is best done at a high end server.

D. Decision Making

Decisions about event occurrences are made at different tiers
depending on the available signal features.

1) Low Level Decision at tier 1:: Each sensor makes its
own decision independently, or by exchanging features withits
neighbors. The decision can be thought of as a functiondt of
the extracted featuresf . We use the subscriptt to indicate that
it is from tier 1 and it is responsible for triggering the micro-
servers. The decisionsdt(f) can be detection, classification or
measurement adjustment. The detection at this tier can havea
high false positive rate but should have a low false negative
rate. The idea is that the mote should not miss an event,i.e.,
it is alright to detect a false event and trigger the micro-server
in tier 2 to verify the decision.

Detection Sensors can make decisions based on simple
features such as maximum or average readings. If there is
a bird call, the maximum reading should be high.

ClassificationUsing features such as histograms and signal
envelopes, sensors can classify events (e.g. what bird types are
present). Applications may tolerate high false positives (but not
false negatives) that lead motes to needlessly trigger micro-
servers. For simplicity, and to minimize energy usage, each
sensor should make decisions independently.

Adjusting number of measurementsTo capture the original
signal using random sampling, the sensor can adjust the
sampling rate based on the calculatedmnnr, as will be
discussed in Section IV-C.

2) High Level Decision at tier 2:Micro-servers make
decisions using as input, tier 1 decisionsdt(f), features
extracted from random samples they have acquiredf(rrs

h [n]),
and information from other micro-servers. We represent this
decision asds(f) with the same notation as in a low level
decision except that the subscripts indicates that it is a
sampling decision, whether or not to start random sampling at
micro-servers.

From the motes’ decisions, they can (i) perform voting to
ensure consistency across decisions, (ii) decide to samplethe
signal using their own sensors and adapt the sampling rate for
events, (iii) decide whether they should use uniform Nyquist
rate sampling with simpler reconstruction instead of random
sampling. From raw data from motes and their conditions,
microservers can (i) decide how to optimize data collection,
considering data utility (eg. important features), and resource



usage, (ii) decide how to forward the samples to high end
servers for further analysis and storage.

E. Signal Reconstruction, Analysis and Archival

With CRS, the signal reconstruction requires a different
approach from uniform sampling. In brief, the reconstruction
requires solving an optimization problem to find the best
matched signalx[n] that produces the random samplesxrs

h [n].
Currently, this optimization is computationally expensive and
can be solved effectively only at a high end server. The
signal can be reconstructed using one of several optimization
techniques, known to be robust to noise [5]. Scientists are often
interested in replaying certain signal segments, comparing
current and past events. The reconstructed signal is a discrete-
time digital signalx[n], that can be analyzed with standard
signal processing techniques and stored for further use.

III. C ONCURRENTRANDOM SAMPLING

A. Compressive Sensing Overview

Our approach builds on compressive sensing, itself based on
an underlying sampling theory to enable signal reconstruction
from a few measurements [6]. Consider a signalf represented
in the standard basis as a vector of lengthn, wheref ∈ Rn. f
can also be represented in another bases such as Fast Fourier
Transform (FFT) using a coefficient vector̂f ∈ Rn. The basis
function can be characterized by an invertible matrixΨ ∈
Rn×n and the relation betweenf and f̂ can be stated as:

f = Ψf̂ and f̂ = Ψ−1f

The key idea is that if a signalf is sparse, i.e. it can be
expressed in some domain asf̂ in a few linear combinations
of basis functions (non-zero coefficients in̂f ), then we can
reconstruct the signal from a few measurements obtained from
either: random projectionand random sampling.
Random projection: Let f be the original signal represented

Notation Meaning
T Support set, indicating which
Ω A Set of all frequencies inf
f Original signal of lengthn
g(t) An estimate of f in time domain
ĝ f̂ Fourier representation ofg andf
ĝ(ω) Fourier coefficient ofg at frequencyω
M down sampling factor
m total number of measurements
N number of sensors
s jitter scaling factor

TABLE I
Notation used in the paper.

as a vector of lengthn. Them random measurements can be
obtained as a vectorh ∈ Rm by projectingf to a projection
matrix P of m by n random entries,i.e., h = Pf . Projection
can be obtained by special hardware [7]. Or by sampling the
signal first to compute a projection.

Random sampling: Random sampling takesm random
entries inf as a vector of random measurementsh ∈ Rm.

It does not explicitly do a random projection on the signal. It
is used in [8]. We apply random sampling to WSNs, an aspect
that hasn’t received much prior attention.

We restate Theorem 3.1[9] that presents compressive sens-
ing for time and frequency domains.

Theorem 3.1:[9] Suppose thatf ∈ Rn and is supported
on a set|T |. If we sample atm randomly selected frequency
locationsω1, ..., ωm, m ≥ C × |T | × log n, where C is a
constant. Solving the optimization problem

ming

∑n−1
t=0 |g(t)|

such that̂g(ω) = f̂(ω) for all ω ∈ Ω
will give f exactly with overwhelming probability.
This theorem states that if we have a sparse signal in

the time domain such as a spike train, we do not need to
sample it at the Nyquist rate. Instead, we need to collect
only a few random samples in the frequency domain. This
number is proportional tok log(n) where n is the signal
length andk, the number of non zero coefficients in the
time domain. In the past, to capture spike train signals, we
needed to sample at a very high frequency and collect a large
number of samples in the time domain. This theorem tells
us that a few samples in the frequency domain are enough
to reconstruct the signal. Although there may be measurement
noise in an application, another theoretical result statesthat the
reconstruction error is bounded and proportional to the noise
level in most cases [9]. In general, the theory is applicable
for any two incoherent domains, i.e.,one domain’s basis can
not be sparsely represented in the other domain, and for
compressible and noisy signals. We also apply this theory to
the spatial domain.

1) Sampling a High-Frequency Phenomena:Sensors ran-
domly sample a source and transmit data back to a sink.
Based on compressive sensing theory, we can reconstruct the
signal using these samples. The sampling time sequence is
determined by the following equation:

sampleT ime = M × randsample(n/M,m/N) + s ×
round(randn(m/N, 1)),

wheren is the signal length,M is the down sampling factor,
m is the total number of measurements,N is the number of
sensors, ands is the scaling factor that controls how large the
jitter (discussed shortly) is.M controls the minimum time
interval between each sample. Functionrandsample(a, b)
picks b arbitrary numbers with an independent and identical
distribution (i.i.d) from1 to a. Functionrandn(a, b) generates
an a × b matrix with random entries, chosen from a normal
distribution with zero mean and variance one.

We useN sensors to collectm random samples totally,
so each sensor must collectm/N random samples. It is
possible that a sensor must collect two random samples that
are extremely close in time (near Nyquist rate). We overcome
this requirement by generating a random sequence in a short
time period τ and dilating it to the full time scaleΓ. We
selectm/N sample times randomly from the time scaleτ , [1,
n/M ] and dilate the sample time to the time scaleΓ, [1, n]
by multiplying the sampling time byM . The sampling times
are now at leastM time units apart, ensuring that we sample



at a rateM times lower than the Nyquist rate. To increase the
sampling time randomness, we introduce thetime jitter, which
has a normal distribution at the sampling time. We generate
jitter usings× round(randn(m/N, 1)).
RandSam assumes that the WSN is dense and the signal

attenuation from the source to all adjacent sensors is the same.
1 Noise sources include analog to digital conversion noise and
inaccurate sampling time. However, they can be considered as
one and the Dantzig selector can reconstruct the signal with
bounded error.

2) Sampling a Spatially Correlated Phenomena:Consider
a phenomenon (e.g. monitoring building temperature) where
sensor readings are spatially correlated, implying that the data
is sparse in some domain (e.g. frequency domain).
RandSense algorithm works as follows. Within each sam-

pling period, a sensor generates a random number from1 to
n. If the number< k log(n), the sensor takes a measurement
and transmits it to the sink. Otherwise, it does nothing. The
k log(n) threshold ensures that statistically we have enough
measurements to reconstruct the phenomena. The network
collects only the minimum required measurements. In each
period, only a random subset of sensors, acting independently,
take and transmit measurements. Compressive sensing is very
robust to noise in individual sensor measurements, sensor
failures, or packet loss; losing some measurements does not
adversely affect the phenomenon reconstruction.

IV. A DAPTIVE COMPRESSIVESAMPLING

In Theorem 3.1, if the total number of measurements
m > C × |T | × log n, we can reconstruct the signal exactly.
Empirically from [9], if m > 4|T | we can reconstruct
the signal exactly.|T | can be obtained from prior signal
knowledge (e.g. Magnetic Resonance Imaging (MRI) images
are known to be sparse in the wavelet domain). In practice,
prior signal knowledge is unavailable, necessitating capture
of the whole signal to analyze its sparsity. For example,
when collecting acoustic signals in a forest, animal calls
may be superimposed. Even if we understand the acoustic
signatures of individual species, their combination is complex.
Resource-limited sensors can not sample at the Nyquist-rate
or reconstruct the signal. Therefore, determining the minimum
required measurements dynamically from the compressive
measurements is challenging in practice.

A. Measurement Normalized Norm Residual (MNNR)

We observe that themeasurement normalized norm residual
- mnnr is a good indicator of successful reconstruction rate.

mnnr =

||xrs[1..m+1]||2
m+1 − ||xrs[1..m]||2

n

||xrs[1..m + 1]||2
(1)

1This assumption is reasonable because we can have several sensors stacked
together as an array to record a signal. We believe that even with minor
variations in signal attenuation from a source to sensors, this algorithm may
still work because only the signal energy changes, the signal sparsity or
frequencies do not change. A complete analysis of the impact ofvarying
signal attenuation is beyond the scope of this paper.

where ||x[1..m]||2 =
√

x[1]2 + x[2]2 + ... + x[m]2 is the
norm 2 of vector||x|| andxrs is the random sample.

There is a strong relation between themnnr and the suc-
cessful reconstruction rate. As we increase the number of
measurements, thenormalized norm||xrs[1..m]||2

m
will decrease

and reach the signal normalized norm whenn approaches the
Nyquist-rate (see Figure 2). The normalized norm stabilizes
as m increases and the reconstruction error approaches zero.
Hence, the normalized norm residual may be used to indicate
successful reconstruction rate. The normalized norm residual is
again divided by the measurement norm||xrs[1..m]||2 to make
it unit-less and applicable to all signals. Figure 3(a) shows that
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whenmnnr < 0.001, the signal is reconstructed exactly with
high probability.

B. Calculating MNNR

We propose a simple, iterative algorithm to computemnnr
during sampling. It requires only 3 variables and 3 steps.

nrm← x[1]
m← 1
mnnr ← 0
while TRUE do

m← m + 1
x[m]← next sample

mnnr ←
√

nrm
2+x[m]2

m+1 −nrm

m√
nrm2+x[m]2

nrm←
√

nrm2 + x[m]2

if mnnr ≤ 0.001 then
break

end if
end while

C. Adaptive Sampling

Based onmnnr, sensors can dynamically update the min-
imum required random measurements. They can start with a
low sampling rate and increase it as needed. Oncemmnr
< 0.001, the sensor should fix the number of measurements
collected in a period. However, it should vary the sampling
rate slightly to detect any signal changes (eg. new bird calls).
Depending on the application, we can tailor the threshold to
increase the probability of exact reconstruction.

V. CASE STUDIES

We evaluate RHA for two applications: cane toad monitor-
ing and spatial monitoring of light intensity.



A. Cane-toad Monitoring

The main goal of this experiment is to investigate 1) how
well CRS can capture a high frequency signal and 2) how the
reconstruction error affects the classification results.

1) Experimental Setup:We use a laptop microphone to
randomly sample frog calls and reconstruct the signal using
the Dantzig selector, available inl1magic [10]. We use the
reconstructed frog vocalizations to classify the frog species.

2) Results:Figure 3(b) shows that the mean squared error
(MSE) of the reconstructed signals using CRS is approxi-
mately 50 % lower than those using multi-rate sub sampling
at the same rate. In multi-rate sub sampling, we assume the
sensors are perfectly synchronized in time, which is not always
feasible. Hence, CRS has the potential to further outperform
multi-rate sub sampling.

Table II shows the detection rates for the signal collected
using CRS with a different number of sensors sampling at
1 Khz. The frog classification accuracy appears to peak with
more than 2 sensors. The maximum number of detections (18),
matching the performance sampling at 10kHz, is achieved
when 4 sensors are sampling simultaneously.

Number of Sensors Number of Detections
(Cane toad)

Original Signal (10Khz) 18
1 10
2 15
3 15
4 18
5 15

TABLE II
Classification performance using signal collected using CRS.

Different number of sensors sample at 1Khz.

Figure 3(c) shows the detection latency distribution at motes
at Tier 1 with a simple matching algorithm [11] using signal
envelopes in Section II-C. 80% of the time, Tier 1 sensors can
detect a cane toad within one second. The stargates in Tier 2
can be triggered within one second of detection of a cane
toad. A cane toad often sings for about 30 seconds. Hence,
the stargates can capture major part of the cane toad song at
a higher frequency for classification.

Figure 4(a) compares the performance of Tier 1 and Tier
2. Both tiers return a similar true positive rate ( correct toad
classification ) but Tier 1 returns a higher false positive rate
and about an 18% false negative rate. This is a tradeoff with
using motes for detection.

B. Sampling a Spatial Phenomenon

Our second case study considers a spatial light field. We
choose light because it is easy to manipulate light sources for
controlled experimentation. The main goal of this experiment
is to investigate: 1) how RHA performance varies with the
number of sensors reporting data, 2) whether RHA is robust
to packet losses and node failures.

Since it is difficult to know the ground truth, we simulate
it based on collected sensor data. We deployed a network of

20 MicaZ sensors, collecting light measurements over a time
period. We then created a light intensity map by interpolating
the sensor data and consider it as the ground truth for the next
two experiments.

1) Experiment Setup:Each sensor has its own random
seed. Data sampling and transmission is controlled by the
RandSense algorithm. A threshold value controls how many
sensors report data within a sampling period. We simulate a
dense WSN with 75,000 sensors, corresponding to a 250x300
pixel image of the light map. We vary the threshold such that
the percentage of sensors reporting data varies from 2.5%,
5%, 10%, 20% to 33% of the total sensors. We used standard
reconstruction techniques discussed in [10].

2) Results: Figure 4(b) shows that the normalized mean
squared error (NMSE) of the reconstructed light map degrades
slowly when the percentage of measurements is between 10%
and 20%. This mean thatRandSense is very robust to
failures such as node failures or link failures.

To understand the network load distribution, we observe the
number of transmitted messages per sensor for 2000 epochs.
Only 10% of random sensors sense and report data within
each epoch. Figure 4(c) shows the distribution of transmitted
messages per sensor node. It is concentrated at 2000 messages
and the standard deviation is only 40 messages. This means
all sensors expend similar amounts of energy, i.e., the network
is load balanced and can have a longer lifetime.

VI. RELATED WORK

In-network data processing approaches collect raw data,
but compress, aggregate or prioritize the data transmittedto
the sink. Distributed Wavelet Transform[12] addresses data
compression rather than information processing, with the goal
of minimizing communication costs. Junction Tree[13] ensures
robust packet delivery for distributed inference, but does
not use hybrid hardware. [14], a compressive sensing based
approach, simultaneously computes random projections of the
sensor data and disseminates them using gossiping. The goal
is to reduce communication of Nyquist rate sampled data, as
opposed to facilitating subNyquist rate signal sampling for
low-power devices. [15] proposes a distributed compressed
sensing approach, wherein each sensor independently collects
random Gaussian measurements. This work relies on a ran-
dom projection of the signal source, which can be generated
by specialized hardware. Our approach is implementable on
existing hardware (eg. motes). Our work is closely related
to [16], a hardware platform that enables random sampling
of a signal source. [8] also considers sampling a signal at
a sub Nyquist rate but non-uniformly in time. Both works
focus either on extending the analog-to-digital conversion or
enabling direct analog-to-information conversion. Unlike our
work, these techniques are not intended for a distributed
environment.

VII. C ONCLUSION

We have proposed RHA, a robust hybrid sensor information
processing architecture to extend the network-wide sensing
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capacity and evaluated it on two canonical applications,
bioacoustic monitoring and and spatial monitoring. Its key
features include: (i) concurrent random sampling, enabling
high frequency signal capture and reconstruction with a down
sampling factor of nearly 10; (ii) hierarchical feature analysis,
enabling bioacoustic detection with less than 1 second latency
even with a down sampling factor of 100; (iii) hierarchical
decision making to significantly reduce false positives by
triggering higher capability sensors for verification; and(iv)
efficient load balancing across sensors with minimal cross-
coordination. To the best of our knowledge, this is the first
hybrid architecture based on compressive sensing for WSNs.
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