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Abstract—The paradox of wireless sensor networks (WSNs) (i) A hierarchical feature analysischeme leveraging the
is that the low-power, miniaturized sensors that can be deeply jnformation in the samples and the devices’ computational
embedded in the physical world, are too resource-constrained to capabilities, to make decisions based on available festure

capture high frequency phenomena. In this paper, we propose . . . . .
RHA, a robust hybrid architecture for information processing (iv) A hierarchical decision makingcheme based on CRS

to extend sensing capacity while conserving energy, storage andto adjust the sensor sampling state (active, inactive) & ra
bandwidth. We evaluate RHA with two real world applications, —adaptively, reducing data transmitted.
bio-acoustic monitoring and spatial monitoring. RHA provides B. Evaluation on two canonical case studies:

accurate signal reconstruction with significant down sampling N o . L L
compared to traditional multi-rate sampling, is robust to noise, (i) Bio-acoustic m_omtormg Cane-toad vocalizations can
enables fast triggering and load balancing across sensors. be reconstructed using 10% of the measurements compared
to classical sampling. RHA can detect cane toads with high
. INTRODUCTION accuracy even with unreconstructed signals.
In the past decade, low-power sensor networks have beefii) Spatial monitoring Even with only 10% of sensors

deployed to monitor buildings, bridges, and vineyards.ré€tr reporting, RHA can reconstruct a spatial field with low error
WSNSs can not adequately capture high frequency signals (eg.

acoustic) or large-scale spatial phenomena with high fidel R 3 x{n]

(eg. city wide temperature). It is challenging to capturghhi (Analysis & Archiving ja——( Signal reconsiruction )

frequency signals with low-power sensorsrmoptes because *=~ 1
classically sensors need to sample at twice the signal érexyu o™ n]) x»*[n]
to accurately reconstruct a signal. Resource-limited @sns
can neither store nor transmit large data volumes. i
Prior work has explored leveraging heterogeneous hardwi A"ffzo f(xn™[n]) Xn~n]
platforms [1], [2]. Tenet [2] argues that WSNs should brerossmvers o s o x(t)
asymmetrical in their task allocation, but do not conside oS o) S
how to minimize samples taken by motes. Lance [3] reduc mnnr dapﬁvmmpressi’:'s["] M! »
transmissions by data prioritization, but does not redinee t L S sendms
sampled data. ds(f) | [de) e
We propose RHA, a Bbust H/brid Architecture for WSNSs. P
RHA reduces the samples taken, stored and transmitted ___. x"[n]
sensors. The key idea in RHA @@ncurrent random Sampling o, o, (oot comemrmamaony X0
based oncompressive sensindpeory, allowing most natural ds(#) o
signals to be reconstructed from a few measurements. RHA MO e XN
robust, adaptive, and simple. The paper’s contributioes ar
A. A hybrid information processing architecture including Fig. 1. RHA Architecture
(i) A concurrent random samplingcheme (CRS) for WSNs
that applies compressive sensing to extend the network sens
ing capability. Unlike previous compressive sensing me#ho II. RHA
CRS does not require specialized hardware or cross-sensor
collaboration. The information processing architecture has three tiefs-ma

(i) An adaptive compressive sampling algoriti&CS) that Ping to the three hardware tiers, illustrated in Figure I.
is simple to compute and addresses a key practical probldiar 1. Low power sensors (e.g. MicaZ, Telos [4]).
in compressive sensing, that of dynamically determinirg tiier 22 Micro-servers to bridge the WSNs with the Internet.
minimum required samples without prior signal knowledge.Tier 3: Servers for complex operations and data archival.



A. Concurrent random sampling (CRS) Complex Feature Analysis (CFA) at tier Rlicro-servers

CRS (Section 111) allows each mote to independently arf®" sample a sig_nal at a higher rate than Sensors. Using their
randomly sample a signal at a low rate while still preservin?;r eater computation power, they can extract simple feature
signal information. However, there is a restriction on sign (€-g. histogram) accurately, implement signal transfoeme
representation. CRS can be applied at tier 1 at a low Samp“p@rform comp_lex classification using machine Iearn}mg. CFA
rate and at tier 2 at a high sampling rate. Let) be the analyzes the input;’[n] and producesf(z;’[n]). f(z}’[n])
continuous analog signal being sampled from the physicEn be the estimated histogram, envelope, frequency repre-
world. With CRS, motes randomly sample this signal t§entation pf the signal, or the detection and classmcatlon
produce a discrete-time digital signaj*[n] or 27*[n]. The results. Micro-servers can also reconstruct the signahfro
subscripts and 4 indicate a low sampling rate at the mote§andom samples. For a high frequency signal (e.g. 20 kHz),
and a higher sampling rate at the micro-servers respegtivdD€ reconstruction is best done at a high end server.

The superscript:s indicates random sampling.
D. Decision Making
B. Adaptive Compressive Sampling (ACS)

ACS (Section IV) allows each mote to calculate whil%

sampling data, theneasurement normalized norm residual

mnnr. We have studiednnnr empirically and found that if wn decision independently. or by exchanding features isith
mnnr < 0.001, the signal is reconstructed exactly with gwn decisio ependently, or by exchanging leatures
. o ; neighbors. The decision can be thought of as a funafjoof
high probability. Based omnnr, sensors can determine howt extracted feature& We use the subscrintto indicate that
many measurements are enough for reconstruction and av?l% X . u qé u e s |_|2) indi .
IS from tier 1 and it is responsible for triggering the naer

[
redundant measurements. - . e
servers. The decisionk(f) can be detection, classification or

C. Feature analysis measurement adjustment. The detection at this tier candave

From the random samples obtained with CRS, the sensBigh false positive rate but should have a low false negative
can perform simple analysis. rate. The idea is that the mote should not miss an evenf,

Simple Feature Analysis (SFA) at tier The sensors can ?t is_ alright to dgtect a falsg event and trigger the microsse
calculate simple features, such as the histogram and thalsign tier 2 to verify the decision. . .
envelope. SFA analyzes the inpuf[n] and produces the Detection Sensors can make decisions bqsed on S|mplg
featuref (x7*[n]), which can be the estimated histogram or thatures such as maximum or average readings. If there is
envelope ofz (). Although the random samples are collecte@ Pird call, the maximum reading should be high.
at a low rate, these features are still representative of theClassificationUsing features such as histograms and signal
original signal and useful for simple decisions. Besidex,maenvelopes, sensors can classify events (e.g. what bird gyee
min and average, the simple features discussed below canPEsent). Applications may tolerate high false posities (ot
computed efficiently while sampling. false negatives) that lead motes to needlessly triggeromicr

Histogram: The random samples of a signal estimate i@ervers. For simplicity, and to minimize energy usage, each
histogram well. Machine learning techniques often use ti§€nsor should make decisions independently.
histogram as a feature to classify signals. The algorithm toAdjusting number of measuremefis capture the original
estimate the histogram is very simple. L&fnin, Smas) be  Signal using random sampling, the sensor can adjust the
the range of the sample value$®(n) and k be the number sampling rate based on the calculatethnr, as will be
of bins of the histogramy. Each sample value is checked tgliscussed in Section IV-C.
determine the bin it lies in and the corresponding counter is2) High Level Decision at tier 2:Micro-servers make

Decisions about event occurrences are made at differest tie
epending on the available signal features.
1) Low Level Decision at tier 1: Each sensor makes its

increased by 1 as follows. decisions using as input, tier 1 decisiods(f), features
Let w = (Smaz — Smin)/k, extracted from random samples they have acqufied®[n]),
if Spin + (i —1) x w < 27°(n) < Spin +1 X w, and information from other micro-servers. We represerd thi
i=1..k, theny(i) = y(i) + 1. decision asd,(f) with the same notation as in a low level

Signal EnvelopeThe signal envelope is generally estimatedecision except that the subscriptindicates that it is a
by applying a low-pass filter or smoothing the signal. Aampling decision, whether or not to start random sampling a
simple computation windows the signal, taking the maximuimicro-servers.
sample value in each non-overlapping window by subdividing From the motes’ decisions, they can (i) perform voting to
the recorded samplesc((z),0 <n < N —1) into K non- ensure consistency across decisions, (ii) decide to sathele

overlapping smaller segments by signal using their own sensors and adapt the sampling rate fo
x;(n) = 2(iD + n)w(n) events, (iii) decide whether they should use uniform Nyguis
0<n<L-1,0<i<K-1, rate sampling with simpler reconstruction instead of rando

wherew(n) is basically a rectangular window of duratiorsampling. From raw data from motes and their conditions,
L, and D is an offset distance. The envelope is estimated amicroservers can (i) decide how to optimize data collegtion
y(i) = max’ ;! x(n). considering data utility (eg. important features), ancduese



usage, (ii) decide how to forward the samples to high entddoes not explicitly do a random projection on the signal. |

servers for further analysis and storage. is used in [8]. We apply random sampling to WSNs, an aspect

. . . : that hasn't received much prior attention.

E. Signal Reconstruction, Analysis and Archival We restate Theorem 3.1[9] that presents compressive sens-
With CRS, the signal reconstruction requires a differeffig for time and frequency domains.

approach from uniform sampling. In brief, the reconsttti  Theorem 3.1:[9] Suppose thatf € R™ and is supported

requires solving an optimization problem to find the begin a set|T’|. If we sample atn randomly selected frequency

matched signat(r] that produces the random sampi§$[n]. |ocationsw, ...,wm, m > C x |T| x logn, whereC is a

Currently, this optimization is computationally expemsand constant. Solving the optimization problem
can be solved effectively only at a high end server. The ming 377, g

signal can be reconstructed using one of several optimizati g,ch thatj(w) = f(w) for all w €
techniques, known to be robust to noise [5]. Scientists Hemo || give f exactly with overwhelming probability.
interested in replaying certain signal segments, comgarin This theorem states that if we have a sparse signal in
current and past events. The reconstructed signal is setéscrihe time domain such as a spike train, we do not need to
time digital signalz[r], that can be analyzed with standardample it at the Nyquist rate. Instead, we need to collect
signal processing techniques and stored for further use.  only a few random samples in the frequency domain. This
Il. CONCURRENTRANDOM SAMPLING number is proportional td:log(n) where n is the signal
. . . length andk, the number of non zero coefficients in the
A. Compressive Sensing Overview time domain. In the past, to capture spike train signals, we
Our approach builds on compressive sensing, itself basedfeded to sample at a very high frequency and collect a large
an underlying sampling theory to enable signal reconstmct number of samples in the time domain. This theorem tells
from a few measurements [6]. Consider a sighaepresented ys that a few samples in the frequency domain are enough
in the standard basis as a vector of lengthwheref € R". f  to reconstruct the signal. Although there may be measuremen
can also be represented in another bases such as Fast FOHER in an application, another theoretical result sthiisthe
Transform (FFT) using a coefficient vectre R". The basis reconstruction error is bounded and proportional to theeoi
function can be characterized by an invertible matixe |evel in most cases [9]. In general, the theory is applicable
R™™ and the relation betweefi and f can be stated as:  for any twoincoherent domains, i.eqgne domain’s basis can
f=Ufandf=0"1Ff not be sparsely rep.reser'ned in the other doma'in, and for
compressible and noisy signals. We also apply this theory to
The key idea is that if a signaf is sparse, i.e. it can be the spatial domain.
expressed in some domain Asn a few linear combinations 1) Sampling a High-Frequency Phenomer@ensors ran-
of basis functions (non-zero coefficients fi), then we can domly sample a source and transmit data back to a sink.
reconstruct the signal from a few measurements obtained fr@ased on compressive sensing theory, we can reconstruct the
either:random projectionand random sampling signal using these samples. The sampling time sequence is
Random projection: Let f be the original signal representedjetermined by the following equation:
sampleTime = M X randsample(n/M,m/N) + s x

Notation | Meanin
T Supportgset, indicating which Tound(ran.dn(m/].\f, 1)). . .
Q A Set of all frequencies irf wheren is the signal length)/ is the down sampling factor,
f Original signal of lengt m is the total number of measuremeni$,is the number of
g(t) An estimate of f in time domain sensors, and is the scaling factor that controls how large the
gf Fourier representation af and f jitter (discussed shortly) isM controls the minimum time
9(w) Fourier coefficient ofy at frequencyw interval between each sample. Functioandsample(a, b)
n]\f ?ociévl“nﬁmﬂ';“gf f;‘gg;uremems picks b arbitrary numbers with an independent and identical
N number of sensors distribution (i.i.d) from1 to a. Functionrandn(a, b) generates
s jitter scaling factor an a x b matrix with random entries, chosen from a normal
TABLE | distribution with zero mean and variance one.
Notation used in the paper. We use N sensors to collecin random samples totally,

so each sensor must colleet/N random samples. It is

possible that a sensor must collect two random samples that
as a vector of length. The m random measurements can bare extremely close in time (near Nyquist rate). We overcome
obtained as a vectdr € R™ by projecting f to a projection this requirement by generating a random sequence in a short
matrix P of m by n random entriesi.e., h = Pf. Projection time periodr and dilating it to the full time scald. We
can be obtained by special hardware [7]. Or by sampling teelectm /N sample times randomly from the time scale(1,
signal first to compute a projection. n/M] and dilate the sample time to the time scélg[1, n]

Random sampling Random sampling takes: random by multiplying the sampling time by/. The sampling times

entries in f as a vector of random measuremeht&E R™. are now at leasi/ time units apart, ensuring that we sample



at a rateM times lower than the Nyquist rate. To increase the where ||z[1..m]||z = \/a[1]2 2+ ... +2z[m]? is the
sampling time randomness, we introduce tiihge jitter, which norm 2 of vector||z|| andx"* is the random sample.
has a normal distribution at the sampling time. We generateThere is a strong relation between thenr and the suc-
jitter using s x round(randn(m/N,1)). cessful reconstruction rate. As we increase the number of
RandSam assumes that the WSN is dense and the sigmakasurements, thr@rmalized nor " [Lmlll2 \yjl| decrease
attenuation from the source to all adjacent sensors is tihe.saand reach the signal normalized norm wheapproaches the
1 Noise sources include analog to digital conversion noise aNyquist-rate (see Figure 2). The normalized norm stakilize
inaccurate sampling time. However, they can be considesedas m increases and the reconstruction error approaches zero.
one and the Dantzig selector can reconstruct the signal wiflence, the normalized norm residual may be used to indicate
bounded error. successful reconstruction rate. The normalized normuesid
2) Sampling a Spatially Correlated Phenomer@onsider again divided by the measurement ndfai®[1..m]||, to make
a phenomenon (e.g. monitoring building temperature) wheiteunit-less and applicable to all signals. Figure 3(a) shtirat
sensor readings are spatially correlated, implying thatddita

is sparse in some domain (e.g. frequency domain). 8 measurement norms
RandSense algorithm works as follows. Within each sam- ot
pling period, a sensor generates a random number frdm PR 752?5?2:“ EiTﬁ;”;;”"'”Wm
8 . == (signal norm)/m

n. If the number< klog(n), the sensor takes a measurement
and transmits it to the sink. Otherwise, it does nothing. The
klog(n) threshold ensures that statistically we have enough %0000~ 500

measurements to reconstruct the phenomena. The network

collects only the minimum required measurements. In eagi. 2. Measurement norm and signal norms versus number of nesasnts.
period, only a random subset of sensors, acting mdepellyderﬁ'gna' length = 1024 ar‘lzd 50 ranldo2m non-zero coefficients sMiement norm
take and transmit measurements. Compressive sensingyis VepP°Unded between 32 and 172

robust to noise in individual sensor measurements, sens%E

nmnnr < 0.001, the signal is reconstructed exactly with

failures, or packet loss; losing some measurements does .
probability.

adversely affect the phenomenon reconstruction.
B. Calculating MNNR

_ We propose a simple, iterative algorithm to compuitens
In Theorem 3.1, if the total number of measurementfiring sampling. It requires only 3 variables and 3 steps.
m > C x |T| x logn, we can reconstruct the signal exactly.

Empirically from [9], if m > 4|T| we can reconstruct
the signal exactly.|T| can be obtained from prior signal .. _

knowledge (e.g. Magnetic Resonance Imaging (MRI) images,, e TRUE do

are known to be sparse in the wavelet domain). In practice, .~ 1

prior signal knowledge is unavailable, necessitating wapt «[m] — next sample

of the whole signal to analyze its sparsity. For example, wrmZ 1 a(ml®  nrm
when collecting acoustic signals in a forest, animal calls mnnr «— el

A X . \/nrm2+w[m]2
may be superimposed. Even if we understand the acoustic nrm — /mrm? + z[m]?

IV. ADAPTIVE COMPRESSIVESAMPLING

nrm «— x[1]

m«— 1

signatures of individual species, their combination is ptax. it mnnr < 0.001then
Resource-limited sensors can not sample at the Nyquist-rat break '
or reconstruct the signal. Therefore, determining the imimn end if

required measurements dynamically from the compressiveend while
measurements is challenging in practice.
C. Adaptive Sampling
Based onmnnr, sensors can dynamically update the min-
We observe that thmeasurement normalized norm residuaimum required random measurements. They can start with a
- mnnris a good indicator of successful reconstruction ratelow sampling rate and increase it as needed. Omgenr
< 0.001, the sensor should fix the number of measurements
collected in a period. However, it should vary the sampling
rate slightly to detect any signal changes (eg. new birdsxall
Depending on the application, we can tailor the threshold to

1This assumption is reasonable because we can have severaissstacked increase the probability of exact reconstruction.
together as an array to record a signal. We believe that eutm minor
variations in signal attenuation from a source to senshis,algorithm may V. CASE STUDIES
still work because only the signal energy changes, the kigparsity or L . .
frequencies do not change. A complete analysis of the impasianfing We evaluate RHA for two applications: cane toad monitor-

signal attenuation is beyond the scope of this paper. ing and spatial monitoring of light intensity.

A. Measurement Normalized Norm Residual (MNNR)

[lz™[1.m+1][l2 _ [l="*[L..m]||2
m—+1 n
mnnr = 1
[lz7s[1..m + 1]||2 (1)




A. Cane-toad Monitoring 20 MicaZ sensors, collecting light measurements over a time

The main goal of this experiment is to investigate 1) hoReriod. We then created a light intensity map by interpogti
well CRS can capture a high frequency signal and 2) how tHee sensor data and consider it as the ground truth for the nex
reconstruction error affects the classification results. two experiments.

1) Experimental SetupWe use a laptop microphone to 1) Experiment Setup:Each sensor has its own random
randomly sample frog calls and reconstruct the signal usif§ed. Data sampling and transmission is controlled by the
the Dantzig selector, available idmagic [10]. We use the RandSense algorithm. A threshold value controls how many
reconstructed frog vocalizations to classify the frog sgec Sensors report data within a sampling period. We simulate a

2) Results:Figure 3(b) shows that the mean squared erréense WSN with 75,000 sensors, corresponding to a 250x300
(MSE) of the reconstructed signals using CRS is approxixel image of the light map. We vary the threshold such that
mately 50 % lower than those using multi-rate sub samplitge percentage of sensors reporting data varies from 2.5%,
at the same rate. In multi-rate sub sampling, we assume f##&, 10%, 20% to 33% of the total sensors. We used standard
sensors are perfectly synchronized in time, which is noagév reconstruction techniques discussed in [10].
feasible. Hence, CRS has the potential to further outperfor 2) Results: Figure 4(b) shows that the normalized mean
multi-rate sub sampling. squared error (NMSE) of the reconstructed light map degrade

Table 1l shows the detection rates for the signal collect&dowly when the percentage of measurements is between 10%
using CRS with a different number of sensors sampling and 20%. This mean thaRandSense is very robust to
1 Khz. The frog classification accuracy appears to peak wiffilures such as node failures or link failures.
more than 2 sensors. The maximum number of detections (18)To understand the network load distribution, we observe the
matching the performance sampling at 28 z, is achieved number of transmitted messages per sensor for 2000 epochs.

when 4 sensors are sampling simultaneously. Only 10% of random sensors sense and report data within
_ each epoch. Figure 4(c) shows the distribution of tranguahitt
Number of Sensors | Number of Detections messages per sensor node. It is concentrated at 2000 message
— : (Cane toad) and the standard deviation is only 40 messages. This means
Original Signal (10K hz) 18 L -
1 10 all sensors expend similar amounts of energy, i.e., thear&tw
2 15 is load balanced and can have a longer lifetime.
3 15
4 18 V1. RELATED WORK
5 15 In-network data processing approaches collect raw data,

Classificati . TABLE Il | collected Using CRS but compress, aggregate or prioritize the data transmitied
asslfication periormance using signal collected using . H ; :
Different number of sensors sample akhz. the sink. .D|str|buted Wayelet Trgnsform[lZ]_ addrgssesa dat
compression rather than information processing, with ted g
of minimizing communication costs. Junction Tree[13] eBsu

Figure 3(c) shows the detection latency distribution atemot"oPust packet delivery for distributed inference, but does
at Tier 1 with a simple matching algorithm [11] using signa©t use hybrid hardware. [14], a compressive sensing based
envelopes in Section II-C. 80% of the time, Tier 1 sensors c&RProach, simultaneously computes random projectionseof t
detect a cane toad within one second. The stargates in Tigt&'SOr data and disseminates them using gossiping. The goal
can be triggered within one second of detection of a caffel0 reduce communication of Nyquist rate sampled data, as
toad. A cane toad often sings for about 30 seconds. Henf@P0sed to facilitating subNyquist rate signal sampling fo
the stargates can capture major part of the cane toad sondPWrPower devices. [15] proposes a distributed compressed
a higher frequency for classification. sensing approach, wherein each sensor independentlgtsolle

Figure 4(a) compares the performance of Tier 1 and Tiggndom _Gagssmn mea;urements. This .work relies on a ran-
2. Both tiers return a similar true positive rate ( correatdo dom projection of the signal source, which can be generated
classification ) but Tier 1 returns a higher false positivie raPy Specialized hardware. Our approach is implementable on
and about an 18% false negative rate. This is a tradeoff wRKiSting hardware (eg. motes). Our work is closely related

using motes for detection. to [16]_, a hardware platform that_enables rar_1dom sz_ampling
) ) of a signal source. [8] also considers sampling a signal at
B. Sampling a Spatial Phenomenon a sub Nyquist rate but non-uniformly in time. Both works

Our second case study considers a spatial light field. iececus either on extending the analog-to-digital conversio
choose light because it is easy to manipulate light sourmes énabling direct analog-to-information conversion. Ueli@ur
controlled experimentation. The main goal of this experitnework, these techniques are not intended for a distributed
is to investigate: 1) how RHA performance varies with thenvironment.
number of sensors reporting data, 2) whether RHA is robust
to packet losses and node failures. VIl. CONCLUSION

Since it is difficult to know the ground truth, we simulate We have proposed RHA, a robust hybrid sensor information
it based on collected sensor data. We deployed a networkpobcessing architecture to extend the network-wide sgnsin
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capacity and evaluated it on two canonical applicationgy] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, DkHEs,
bioacoustic monitoring and and spatial monitoring. Its key
features include: (i) concurrent random sampling, engblin
high frequency signal capture and reconstruction with ardow

sampling factor of nearly 10; (ii) hierarchical feature kysés,

(8]

enabling bioacoustic detection with less than 1 seconddsgte
even with a down sampling factor of 100; (iii) hierarchical[9]
decision making to significantly reduce false positives by

triggering higher capability sensors for verification; afivg)
efficient load balancing across sensors with minimal cross-

[10

coordination. To the best of our knowledge, this is the first
hybrid architecture based on compressive sensing for WSNE!

(1]
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(4]
(5]
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