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ABSTRACT 
This paper describes the design and implementation of a multi-modal, multimedia capable sensor networking framework called 
SenseTK. SenseTK allows application writers to easily construct multi-modal, multimedia sensor networks that include both 
traditional scalar-based sensors as well as sensors capable of recording sound and video.  The distinguishing features of such 
systems include the need to push application processing deep within the sensor network, the need to bridge extremely low power 
and low computation devices, and the need to distribute and manage such systems.  This paper describes the design and 
implementation of SenseTK and provides several diverse examples to show the flexibility and unique aspects of SenseTK.  
Finally, we experimentally measure several aspects of SenseTK. 

Keywords: Video sensing, video applications, video adaptation. 

1. INTRODUCTION 
Over the last half decade, sensor networking technologies have deployed and demonstrated for a range of scientific, industry, and 
military applications.  For example, researchers at Intel have demonstrated a sensor system to do predictive maintenance on ship 
vessels as well as semiconductor plants [12].  As small computing devices continue to be developed, the ability to integrate more 
complex data types such as audio, images, and video are becoming possible. 

Multimodal and multimedia-based sensor networks are defined by a diversity of sensing modes and data types.  Multimodal 
sensing can involve both traditional scalar-based sensor technologies and more complex computing devices such as a video 
sensor.  Multimodal also can imply the integration of mobile components such as robots into a static scalar-based sensor 
network.  Multimedia sensor networks can combine audio, images, and video to provide sensing.  Several examples have been 
demonstrated in the past such as the Great Duck Island experiment (which used images and scalar sensors), cane toad monitoring 
in Australia (which used audio signal processing to distinguish types of toads), and Panoptes (which used video on low-power 
sensor platforms). 

There are a number of unique aspects of such multimodal and multimedia-based (MM) networks.  First, as the data types become 
more complex, the processing of the data becomes necessarily more application specific.  For example, in the cane toad 
monitoring example, the signal processing is based upon the cane toad’s vocal signature.  For video and image processing in 
such networks, the processing of the video will be even more specific to the application.  For example, a video camera pointed at 
the highway may want to convert the video into the speed of cars on the highway or detect cars on the side of the road. In 
another application, the processing might be completely different. Second, sensor networks pose a many-to-one information 
implosion problem.  Unlike video streaming systems which can deliver a single stream to many hosts through multicast, MM 
networks can potentially deliver many streams to a single client.  Thus, processing and adaptation of the data needs to occur deep 
within the sensor network for optimal power management and scalability.  Third, the diversity of computing devices means that 
programmatically and operationally, the system needs to be able to bridge a variety of hardware and software configurations.  
Finally, with the scale of such networks, the ability to easily program and retask a large number of sensors is necessary.  

While some primitive MM networks exist today, they are characterized by extremely brittle software infrastructures.  That is, 
changing the functionality of the system requires significant intervention on the user’s behalf, potentially requiring significant 
modifications to the software as well.  Second, such applications are typically written and optimized by the computer scientists 
that know the low level hardware and networking issues, rather than the application writer, who may not be a computer scientist 
at all.  The key limitation today’s MM networks is that there is no bridge between the application writers and the diverse low 
level sensor hardware.  While multimedia toolkits have been proposed in the past, they are not well suited for the unique 
challenges posed by sensor networks. 

In this paper, we describe the design and implementation of SenseTK, a toolkit that we have designed and implemented to help 
bridge the applications and the diversity of low-level hardware in sensor networking applications.  With the MM networks in 
mind, the toolkit was designed with a number of goals including deployability, programmability, management, and retaskability.  
We will describe the basic systems architecture of SenseTK and provide several examples that integrate audio, images, video, 
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and application-specific processing within the network.  We also describe the management as well as storage and retrieval 
aspects of SenseTK.    

The remainder of this paper is organized as follows.  In the next section, we will describe some of the background and related 
work necessary for the paper.  Section 3 further motivates SenseTK, describes the high-level design and implementation of the 
system, and describes several implementation algorithms.  The latter will demonstrate the power and ease of programming MM 
networks that SenseTK provides.  Section 4 shows some basic performance numbers for some of the example applications.  
Finally, we summarize our findings and provide directions for future research. 

1.1. Contributions of this paper 
We believe that SenseTK contributes a number of ideas and technologies to the state-of-the-art.  First, we believe that this is the 
first flexible and extensible framework with which to bridge low-level sensors and applications.  Second, the design of a low-
level Python-based framework we call Cascades for the networking and message passing system within SenseTK allows 
application writers to abstract many of the low level details (such as mote communication) as well as other details outside the 
scope of the application writer interest (such as image and video compression algorithms) into a much more accessible package.  
Finally, we have demonstrated a number of applications that can be built out of the SenseTK toolkit.   

2. BACKGROUND AND RELATED WORK 
The focus of this paper spans a large number of areas in sensor networking and programming, video streaming, video adaptation, 
multimedia toolkit design, and sensor hardware.  In this section, we review some of the background material most closely related 
to SenseTK.  We can add other references if the reviewers feel it is important enough.  We begin with sensor networking 
platforms and programming paradigms.  We then focus on basic multimedia toolkits and multimedia middleware. 

2.1. Sensor Networking Research 

2.1.1. Hardware Platform Technologies 
In the last half decade, a myriad of low-level sensor networking technologies have been developed.  There are a number of UC 
Berkeley motes developed with varying capabilities for use in sensor networking applications, including the WeC, Rene, Dot, 
Mica, MicaZ, Telos and XSM sensors [14]. The main characteristics of these sensors are that they have small amounts of 
memory, have very limited processing capabilities, and low-power operation.  Building on the Berkeley mote platform, there 
have been significant numbers of projects related to sensor networking technologies.  Much of the work has focused on 
providing efficient routing mechanisms and minimizing the power used to transmit packets throughout the network (e.g. collision 
avoidance algorithms).  While these sensors are used primarily for scalar sensing, some of these platforms can perform basic 
audio processing. 

More recently, low-power imaging and video sensor are starting to be demonstrated.  The Cyclops image sensor is a low-power 
image sensor that can be attached to a Crossbow Mica2 sensor [20].  The image sensor is capable of some computation and 
inference.  For example, it can be used to capture color histograms of image characteristics.  Because of its small size and limited 
capability, such a sensor is not intended for repeated image acquisition.  Generally, an image sensor that is capable of capturing, 
compressing, and transmitting images at a rate greater than several images per second can be considered a video sensor.  The 
Panoptes video sensor demonstrated the ability to capture, compress, and transmit video on low-power embedded devices [3].  
While requiring several watts of power, the video sensor was capable of capturing video in near real-time.  

The devices described in this section simply highlight the fact that video and imaging processing are becoming possible and that 
the diversity in hardware will probably continue, requiring the systems software to be able to deal with such diversity.  We refer 
to the higher-powered video sensors as Stargate-level devices because the Crossbow Stargate is currently the most power 
efficient embedded device capable of real-time video compression and is made by the company that makes most of the motes 
being used by the research community. 

2.1.2. Sensor Network Programming 
Early research focused on programming local support for sensor devices. Directed Diffusion[10] proposed  a distributed data-
centric communications paradigm for sensor networks, wherein sinks express interests  for data based on named attributes (that 
may include spatial context), and the matching sensor data is  routed to the nearest sink. Envirotrack[1], on the other hand, 
provides abstractions for naming physical objects in the environment, that can be used for building tracking applications. 

More recent work has focused on macro-programming, referring to the notion of programming the entire sensor network in a 
high-level language that specifies global behavior translated automatically into programs that run on individual sensor nodes. 
Early examples of this notion were TinyDB[24] and Cougar[2], which consider the sensor network as a database, and provide 



support for declarative queries for sensor data. This abstraction supports data collection in a sensor network, including data from 
user-specified geographic regions. 

Welsh and Mainland propose an Abstract Regions framework [27] to support more sophisticated sensor networks, featuring 
distributed actuation and control. This framework provides a more generic family of spatial operators that capture local 
communication within regions of the network, and allows for addressing nodes by region, as well as sharing data within a region. 
Examples of regions include k-nearest neighbors, spanning tree rooted at a node, etc. Kairos[9] and Hood[29] are other examples 
of region based programming paradigms. IrisNet[6] provides a query-based framework for building wide-area Internet-scale 
sensor networks of higher-level devices, such as webcams. Although queries can scale to very large networks, the implicit 
assumption is that users will be able to specify the geographic descriptors for each sensor device connected to the Internet. 

There are currently various software architectures available for interacting and communicating with sensor network devices, both 
with and without higher-capability platforms such as the Stargate Gateway device[21].  For example, the Tiny Application 
Sensor Kit (TASK)[23] uses TinyDB in its mote networks and DBMS systems on Stargate devices to provide a suite of data 
collection and monitoring tools; however, it does not provide tools for alternative sensor platforms or devices, nor does it allow 
for the creation of distributed applications on Stargate devices.  EmStar [7], a system which provides an application interface for 
low-power Linux devices (such as Stargate and iPaq), is generally effective in some application areas but also relatively 
inflexible.  The system is capable of running distributed heterogeneous sensing applications, but unlike Cascades operates 
primarily according to the UNIX application process model, where individual parts are implemented as separate system 
processes.  This is an effective model, but limits applications from directly extending to platforms such as Windows without 
significant modification.  This problem is further exacerbated by a proprietary IPC mechanism.  Other toolkits, such as 
MoteLab[28] and SNACK[8] only focus development on TinyOS-based[25] devices.  TinyDB is a good example of a TinyOS-
based device application that extends onto client platforms as well, with the primary goal of data aggregation and collection. 

2.2. Multimedia Middleware 
Over the last decade there have been a large number of efforts focused on providing toolkit and middleware support for 
multimedia authoring, streaming, content management and database storage.  Many of these toolkits provide much of the 
middleware but require a fairly experienced person to integrate the middleware into a usable application.   

There are two notable toolkits that have focused on allowing users to build distributed multimedia applications.  The Continuous 
Media Toolkit (CMT) allows users to create distributed streaming applications with basic control over the type of media that is 
being used [15].  CMT allows users to modify TCL/TK scripts in order to tailor the application to the user’s requirements. The 
TCL scripts are similar in vein to the SenseTK scripts.  However, given the more application specific processing, the SenseTK 
scripts tend to be slightly more data centric than the CMT scripts.  The Open Mash system [16] is successor to the CMT toolkit 
and has a much richer set of primitives and application possibilities than the CMT toolkit.  The toolkit is focused mostly on end-
host application development.  The main difference between Open Mash and SenseTK is that SenseTK necessarily has more of 
the details of the actual underlying system exposed to the application.  That is,  application writers need access to low-level 
scalar sensors.  Furthermore, the types of interaction with devices is also more involved.  It is expected that in large-scale 
deployments that a single node may process the data from a large number of nodes. 

3. SenseTK – A TOOLKIT FOR BUILDING MULTIMODAL, MULTIMEDIA SENSOR 
NETWORKING APPLICATIONS 

Before we describe SenseTK, there have been two notable sensor networking applications described in previous ACM 
Multimedia conferences that we should mention.  In Multimedia 2003, Feng et. al describe a video-based sensor networking 
platform that they designed an implemented [3].  The sample application they describe is a video surveillance applications that 
allows users to view video events that have occurred.  The processing happens at the video sensors and a buffering and 
adaptation algorithm is implemented in order to ensure that the system is scalable.  In ACM Multimedia 2005, Kulkarni et. al 
describe a hierarchical video system [13]. The proposed system combines low-level video cameras with fairly low quality video 
and higher-level, better quality, pan-tilt-zoom camera capabilities.  In this system, the low-level cameras can trigger the higher-
level video cameras. 

There are number of things to note about these applications.  First and foremost, they are working examples of multimedia-based 
sensor networking technologies.  Second, while they work for their targeted application, they are not retaskable.  That is, the 
application is tightly coupled with the hardware, making even trivial functional changes potentially difficult.  Third they are not 
really integrated with traditional sensor networking technologies such as the motes.  Finally, the systems are not really scalable 
given the amount of human intervention required to set-up the systems. 



3.1. Design of SenseTK 
At a high-level, SenseTK has three major components (i) scalar and video sensor software, (ii) management and retasking, and 
(iii) storage and retrieval.  The overall architecture is shown in Figure 1.  The scalar and video sensor software runs on the 
Crossbow Stargate-level devices.  The majority of the SenseTK toolkit consists of these components.  It provides the bridge 
between the scalar sensors and the higher-level video sensors.  The toolkit also consists of various compression algorithms and 
sensor network organization software.  As will be described shortly, this consists of higher-layer routing primitives that allow a 
Stargate to refer to motes in an abstract way.  We have also implemented a logical association framework that allow the sensors 
to automatically organize themselves into application meaningful ways by cross correlating scalar sensor and Stargate devices.   

The management layer takes care of dealing with Stargate level scripts.  As will be described shortly, this software allows a user 
to organize and group a number of stargate-level.  It also allows a user to deliver updated scripts to all the sensors or a selected 
subset at a click of a button. 

The storage and retrieval system allows a user to implement streaming retrieval applications that adaptively alter the video to fit 
within available bandwidth resources. 

In the remainder of this subsection, we will describe the components in more detail.  Readers interested in the scripts can skip to 
section 3.2. 

3.1.1. Connecting and Programming Multimodal Sensors 
The main contribution of SenseTK is the ability to create MM sensor networking applications with relatively small amount of 
code knowledge.  The cornerstone of SenseTK is the ability to integrate mote sensing technologies directly into the MM 
application.  SenseTK is built on top of a sensor networking application framework we have been developing that we call 
Cascades.  Cascades provides a wide variety of organizational an networking tasks connected via Python scripts.  SenseTK 
provides the framework around Cascades that makes it actually usable by application writers. 

Python was chosen for the Cascades design implementation due to its relative flexibility and simplicity, as well as benefits of 
reduced complexity and a fast-paced development cycle[26]. Python follows the philosophy of creating applications with 
“batteries included,” meaning that most applications can be written primarily from included modules/packages or freely available 
open-source modules/packages.  Cascades can be considered an extension to this, since it essentially provides the “batteries” for 
sensor networking applications.  Some very important tools (mentioned where they are used) were implemented in the Cascades 
system, keeping the actual Cascades code to a minimum. 

The primary challenge in designing a system such as Cascades is making it robust enough to cover a wide variety of application-
specific sensor networking needs (such as heterogeneity) without compromising simplicity or ease-of-use; the current state of the 
Cascades code base provides this.  A secondary but equally important challenge is making sure that reusable code not only 
comes naturally from developing applications around the Cascades framework, but is also readily available for development and 
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Figure 1.   This figure shows the overall architecture of the SenseTK toolkit. 



extension.  While writing code in Cascades is conducive to the production of reusable components which we have written many 
of, the components listed here are limited to essential lower-level aspects. 

With the aforementioned challenges in mind, designing an effective common paradigm among the base components becomes 
important.  After investigating structured systems such as the Click router[11] which provides a strict push/pull data flow model, 
it became clear that a loosely defined structure would be beneficial, especially for the purpose of maintaining flexibility.  The 
end result is what amounts to a function naming convention, where objects (i.e. modules or classes) can provide a Get function, 
which reads from an information source, and/or a Put function, which writes to an information destination.  This very general 
design helps maintain the independence of objects, therefore increasing portability and modifiability.  For example, an 
application may define a MonitorCamera module which monitors a video source for motion and reacts accordingly, requiring 
only an object with a Get function to retrieve video from.  Suppose Type1Camera was used in an older project, and after some 
time a new implementation requires MonitorCamera again but needs to use a newer Type2Camera.  With this design, 
Type2Camera can replace Type1Camera with no change to MonitorCamera’s logic.  Any further abstractions, such as 
MonitorCamera requiring and object of type Camera, are left as application-specific details.  The best part about this design 
is that it is completely optional, and extending it requires very little effort. 

The following sections briefly discuss the important lower-level features of Cascades and their operation.  The framework library 
is housed in a single Python package (which is really just a file system folder), consisting of “standard” packages, modules and 
functions.  Separate from the library is the application modules, which are run with a utility script in a user-defined location.  
Figure 2 gives a high-level view of the basic networking structure. 

Application

LD 

MAL Manager

Channels RPC
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Figure 2.  Cascades networking structure.  

3.1.2. RPC 
Remote procedure call mechanisms can have a wide variety of uses depending on the application.  Cascades provides two RPC 
mechanisms: “native” RPC, which uses Python serialization for communication, and XML-RPC which uses a language-
independent ASCII XML format.  Each of the implementations has different advantages and drawbacks.  Native RPC is fast and 
fully supports Python’s fundamental types, but lacks interoperability with other programming languages – a feature that may be 
desirable for communication with other software packages.  XML, on the other hand, is compatible between languages but 
exhibits much lower performance, especially on Stargate devices, and it also does not support all of Python’s data types.  An 
application that uses XML-RPC can be transparently converted to native RPC, but the opposite is not true because native RPC 
implementations might make use of data types not supported by XML-RPC.  In either case, SenseTK has both, allowing 
application writer’s to tailor the system to their applications. 

3.1.3. Channel 
A channel is defined in Cascades as a raw TCP/IP transport in which discrete items are sent and received.  The underlying 
protocol is binary, simple, and commonly used.  For each item, the sender sends the size of the data followed by the data itself.  
This module completely abstracts TCP/IP networking in such a way that the programmer needs to only either run a server or 
connect to one (both require no more than 3 lines of code), and subsequently communicate with the remote host.   

3.1.4. Filter 
A filter is an object that redirects a function call away from its intended target to one or more alternative functions.  Because 
Python treats functions as variables, their destinations can be easily modified.  Functionality for installation of an arbitrary 
number of cascading filter functions is provided, which can optionally discard the call to the original target.  When calling the 
original target function, semantics remain unchanged and the filter functions are called transparently. With this module, filters 
can be arbitrarily complex, such as filters acting on filters, while the functions themselves remain relatively simple in nature.   



3.1.5. Logging 
Having an easy-to-use logging facility is very helpful for debugging purposes, as well as for general application monitoring.  
Logging events and information in Cascades is as simple as calling a function corresponding to the desired “log level” of the 
message.  The log level can be configured to selectively report messages either to the screen, a file, or a remote log server.  This 
can be configured by the application writer to be optimized for their particular application. 

3.1.6. Logical Disassociation 
One of the main challenges in heterogeneous sensor networking applications is providing a logical organization of the sensor 
nodes.  To help solve this problem in a more scalable way, we have implemented a logical disassociation (LD) framework within 
SenseTK.  That is, in deploying the sensor network, nodes for logical groups based upon network connectivity.  The LD 
framework correlates phenomena within the sensor network, disassociating nodes that may be physically “connected” together 
but not logically meaningful.  The LD package implements the concept of LD as reusable abstract modules which further extend 
a message handler by ignoring messages from disassociated sensors, which are identified through a training phase in which 
events are generated and correlated between sensors.  Training and event classification modules are also provided. 

3.1.7. TinyOS 
Because TinyOS is the main operating system for scalar motes, we felt that it was important to provide access to low-level 
sensors through TinyOS.  This component has four important modules, all of which assist communication with TinyOS-based 
sensor devices. 

The Message module defines a TinyOS message object that contains general protocol-specific fields with error checking.  It also 
defines a message handler object that abstracts sending and receiving messages according to the paradigm described above. 

The serial module handles the (framed packet) communications protocol used to transmit TinyOS messages over a serial line.  
This is the heart of almost all communication with sensor devices because it is the easiest way to interface with motes and mote 
radio networks.  It provides a handler which is able to multiplex incoming data to multiple waiting threads, as well as send 
messages with an option to require an acknowledgement with a timeout.  

The Forward module is an extension to the Channel module that supports the communication protocol used in the 
SerialForwarder Java application included as part of the TinyOS distribution.  It defines custom interfaces (that appear identical 
to the original) needed to complete the initial “version handshake” done by SerialForwarder.  This module provides transparent 
connectivity with the existing tools for sending and receiving TinyOS messages over TCP/IP.  The server requires only a generic 
message handler, so any message source can be forwarded (for example, serial or another forward).  This module is mainly used 
by the SerialForwarder application module, which simply runs a forwarding server on the default port. 

The MAL (Mote Abstraction Layer) module contains an interface to local or remote relaying services, as well as the service 
implementation itself, all of which support relaying of mote-level messages among higher-level devices.  By using the MAL 
message handler, applications can access the extended capability of MAL without changes to existing code. 

3.1.8. Video 
This package provides the basic mechanisms by which application writers can start to expand sensing into higher-level devices.  
It includes modules for capturing and encoding frames of video.  Because several image and video compression algorithms have 
been provided by the community (e.g. DCT-optimized image processing from the Panoptes video sensor[3]), we have wrappered 
a JPEG module and and ffmpeg-based module for access to compression.  These are especially useful for non-domain scientists 
wishing to implement MM applications. 

The video capture module is written in C++, mostly for speed, and simply allows configuration of the device interface and 
capturing of frames with high-speed JPEG compression support.  Video frames can be directly manipulated in Python, so any 
custom detection or processing algorithms are simple array operations.  The encoder module was also written in C++ as a proxy 
to the functionality of the FFMpeg API[5] in order to provide high-speed MPEG video encoding. 

3.1.9. Manager 
The Manager module assists in increasing the programmability and retaskability of Cascades by providing an interface to 
distribute code and manage applications on several remote systems.  With a graphical user interface, users can select applications 
to run, which nodes to run them on, and what parameters to pass to each.  This application is an initial development of a system 
that could make programming for sensor system an option rather than a requirement, with the availability of previously 
developed code that can be “plugged in” to a custom application configuration.  The image in Figure 3 shows the management 
user interface that allows nodes to be remotely controlled. 

The top sub-window shows the stargate-level devices that are connected to the manager.  The right side of the window shows the 
name of the script that is currently running on the stargate-level device.  The managed button allows the user to “group” sensors 



Figure 3.   This figure shows the basic management interface in SenseTK. 

together that need to have the same scripts deployed on them.  The lower left window show the directory structure of the local 
file system, which is machine independent thanks to the Python interpreter being machine independent.  The lower right window 
shows the directory structure on the remote stargate.  The manager assumes that the code to be executed resides in a static 
location.  

3.1.10. Storage and Retrieval System 

We have also implemented a storage and retrieval mechanism for the clients.  The clients can access the video data remotely and 
have video displayed in a network-adaptive way.  The buffering and adaptation algorithm is similar to that proposed by Feng [4]. 
The buffering and adaptation algorithm can be used within the sensor software as well.  Because this software is similar to 
existing systems, we simply note that it exists and focus on the sensor specific code in the rest of the paper. 

3.2. Example Applications 
The difficulty in demonstrating the utility of carefully constructed toolkits is the low-level details get hidden and that many, 
many examples are needed in order to understand the impact of such a toolkit.  That is, the power of the toolkit is in what’s 
missing, rather than how complicated the programming can be.  In this section, we will describe several really simple 
applications as well as some more complex application-specific applications that we have implemented. 

3.2.1. Simple MM Sensor Networking Examples 
In this subsection, we will provide three relatively simple examples of applications built using SenseTK. As previously 
mentioned, each stargate-class device in the network can have a number of motes connected to it and can optionally have a video 
camera attached to it.  Each Stargate also runs a Python interpreter, which interprets the script that it needs to run.  The wrapper 
functions of our scripts allow for automatic reloading of scripts that have updated.  Thus, updating or changing the functionality 
of the system is a simple as replacing the script that it is running.  Figure 4 shows three simple example video sensor code 
examples that we have used in our demonstrations.  The bold outlined box shows the basic wrapper function of a video-based 



interconnect that we have implemented in SenseTK.  The key here is that the MainLoop function is called once per time unit1 
and can do any number of things, including the three example code segments shown in the figure.   

In example 1 of Figure 4, the script simply captures a frame of video from the camera, compresses the frame, and the sends it 
across the network.  In this example, we have used JPEG compression.  We have JPEG and MPEG compression implemented in 
the toolkit.  MPEG is provided through a wrapper function that we have implemented for FFMpeg.  Thus, changes to FFMpeg 
can be easily re-incorporated into the running system.  

In example 2 of Figure 4, we show how easy it is to use motes to trigger the video sensor.  In this case, the first line of code 
checks whether the mote is on the list of triggers - if it is, the camera begins recording video and continues to do so while motion 
is detected.  We have implemented it such that the trigger line can also be attached to a single mote as well.  The first byte of a 
mote message contains the mote ID, allowing the application to selectively listen or drop messages from motes that it is 
interested or not interested in, respectively.  

The final example of Figure 4 shows how a more advanced user can access the camera data directly and perform manipulations 
on it.  In this example, the data coming from the camera is in the YUV color space standard in many image and video 
representations.  The YUV color space represents luminosity (grayscale) and two chrominance components.     The example 
shown then removes the U and V colors so that the image sent across the network is then only a grayscale image.  For 
                                                                 
 

 # Basic python Script for 
#     stargate server 
... 
 while 1: 
    Lock.acquire()  
    try: 
      try: 
        # BASIC HANDLING LOOP 
        MainLoop(Handler)   
      except: 
        break 
    finally:  
        Lock.release() 
... 
def MainLoop(Handler): 
 

   # PUT CODE SEGMENTS HERE 

# EXAMPLE 1 
# Simple video python script 
# capture, compress, send 
  Frame = Cam.Capture() 
  Frame = Enc.Encode(Frame) 
  Remote.Put(Frame) 

# EXAMPLE 2 
# Mote activated video capture:   
#   Receive trigger from mote 
#   Capture video while motion 
  
  if ord(Msg.Data[0]) in Mote_List: 
    # Received valid mote message 
    while Cam.HasMotion(): 
      # record video while motion 
      Frame = Cam.Capture() 
      Frame = Enc.Encode(Frame) 
      Remote.Put(Frame)       

# EXAMPLE 3 
# Simple video manipulation:   
#      Color to grayscale 
 
# Capture frame into a Python object 
  Frame = array( 'c', Cam.Capture()) 
   
  # “Black” out U and V components 
  Frame[Width*Height:Width*Height*3/2] = \ 
      array('c', '\x80' *(Width*Height/2)) 
  # Encode and send the frame 
  Frame = Enc.Encode(Frame.tostring())) 
  Remote.Put(Frame) 

Figure 4.   Examples of basic multi-modal, multimedia sensing applications in SenseTK 

1 The time unit here is up to the writer’s discretion.  It can be once every frame or can be called once for a number of frames. 



deployments such as habitat monitoring, algorithms for detecting a particular species can be included either in the script or can 
call a module compiled in C that performs the detection.   

Note that in all these examples, many of the complicated details such as image compression can be hidden from the user, if so 
desired.  Thus, SenseTK can alleviate the implementer, who may not be a computer scientist, to take advantage of pre-defined 
and optimized modules.  One unanticipated benefit of our infrastructure is that we have found it incredibly easy to test and 
deploy new applications that involve motes, sound, and imaging sensors.  Changes involve simply changing the script and saving 
it.  Errors manifest themselves fairly quickly, especially when video processing is involved, which, in turn, allowed us to debug 
the code on-the-fly.  While it should not be used to replace good engineering practice, we have found it to be beneficial 
nevertheless. 

3.2.2. Integrating computer vision algorithms into SenseTK 
As an example of a more complex integration of code into SenseTK, we will describe a simple computer vision procesin 
algorithm integrated into SenseTK.  Optical flow is a computer vision algorithm used to analyze the motion of moving objects. It 
has been used widely in tracking and robotics. In Figure 6, we use optical flow to analyze the captured frames to get the object 
location and velocity.  In this example, the optical flow triggers video cameras to its left and right.  This allows video from 
correlated video sensors to be grouped in an application meaniful way. 

Figure 5 shows a face detection example.  This code uses machine learning to detect the regions of the image which contain 
human faces.  In the example, the algorithm calls CvDetectFace, which is a SenseTK wrapper for the Intel Open Source 
Computer Vision Library algorithm that detects faces within video.  For this paper, we assumed the existence of a trained neural 
network. Our experiments will show that the Stargate can process such algorithms.  Because of the processing speed, the 
buffering and adaptation system can be placed between the video capture and the face detection algorithm in order deal with 
bursty video sensor sources and the slower computer vision algorithms. 
 

while True:
  Frame = Capture() 

ce, if detected   # Returns cropped image of fa
DetectFace(Frame)   Frame = Cv

  if Frame: 
    break 
 
# Face detected - enco

ode(Frame) 
de & send it 

Data = Enc
Put(Data) 

 

Figure 5.  A simple use of the face detection algorithm.  Here, each frame is analyzed and the first frame containing a face is sent to the client. 

while True:
  # Capture some frames 
  Frames = Capture(30) 
 
  # Use OpenCV to detect motion vectors 
  Vectors = CvFlowAnalysis(Frames) 
 
  # Returns vectors, i.e. ((x, y), (vx, vy)) 
  # Process the information, determine 
  #   average direction of objects 
  Direction = ProcessVectors(Vectors) 
  # Will not be set if threshold condition 
  #   not met. 
 
  # Trigger adjacent cameras, which will 
  # do the same analysis being done here. 
  if Direction | DIR_LEFT: 
    TriggerNext_Left() 
  elif Direction | DIR_RIGHT: 
    TriggerNext_Right() 

 

Figure 6. Optical flow analysis example. OpenCV determines motion vectors for certain pixel groups and the app uses them to trigger other 
cameras. 

3.2.3. Integrating audio into SenseTK 
Because support for audio sampling is included, any available audio source can be integrated into an application within 
SenseTK.  For example, MicaZ motes can sample audio from the standard sensor board because it includes a microphone.  This 
data can be sent to a nearby Stargate for analysis, encoding, or triggering (as shown in Figure 7).  The FFMpeg interface module 
also provides access to its audio codecs, allowing for seamless encoding integration. 



# Record 100,000
Count = 100000 

 samples of audio from mote

# Get the frame size in samples 
FrameSize = Info.FrameSize 
 
while Count: 
  Msg = Handler.Get() 
  if not Msg or Msg.Source != AudioSource: 
    # Invalid message 
    continue 
 

ach)   # Save samples (one byte e
   Samples += len(Msg.Data)

 Count -= len(Msg.Data)  
 
  # Encode frames 
  while len(Samples) >= FrameSize: 
    Encoded = EncodeAudio(Samples[:
   Samples = Samples[FrameSize:] 

FrameSize]) 
 
 
# Store the data (ignores leftover samples) 
file('saved.mp2', 'wb').write(Encoded) 

 

Figure 7. Example audio application.  Audio data is received from a mote and encoded in frames of samples.  For recording, no further 
processing is required. Because the data is raw, it can be passed to a FFT function for analysis or signal detection if necessary. 

4. EXPERIMENTATION 
Python is written in highly optimized C code, so it is usually fast for most reasonable applications.  Anecdotal evidence supports 
the performance capabilities of Python for a wide variety of applications, as well as roughly a substantial increase in 
performance over version 2.2, the previous major revision with significant differences.  One of Python’s greatest strengths lies in 
its extensibility through C/C++ modules – therefore, any Cascades code that does or might cause a performance strain can be 
written in C/C++.  Python is lacking in performance with respect to some noticeable specifics, such as multithreading and 
average function call overhead time (which is relatively poor but not crippling).  Fortunately, profiling and optimizing Python 
code is also a trivial task, thus alleviating most, if not all bottlenecks.  In this section, we compare the performance of similar 
applications written in Python and C.  We also inspect the performance of various computer vision algorithms (implemented 
primarily in C, but with some Python wrappers) when run on a stargate device. 

Figure 8 compares the performance of Python and C for three different scenarios on a stargate device.  The first scenario is a 
direct video capture (no data saved), which is synonymous to reading a file descriptor in Linux, where the Python code calls into 
a C module to capture video and the C code directly captures it.  Because the capture code in C is the exact same for both 
applications, the overhead shown is purely the cost of running the Python code and calling into the C module.  The second row, 
however, includes a conversion to grayscale that manipulates the contents of each frame in Python and C, respectively.  It shows 
a situation where video data can be directly manipulated in Python without a large cost, although the algorithm is rather simple.  
The third row depicts the performance when each frame is being compared to the last – this case has more extensive image 
manipulation, but does not perform too poorly. 

 160x120 320x240 
 Python C Python C 

Capture 29.47 fps 29.64 fps 16.48 fps 16.58 fps 

Process 28.95 fps 29.39 fps 16.02 fps 16.35 fps 

Difference 28.08 fps 28.25 fps 15.80 fps 15.88 fps 

Figure 8. Performance of Python vs. C for video processing on a stargate. 

Figure 9 show the performance of some OpenCV algorithms run on a Stargate device.  The statistics for capturing and saving to 
disk are different from above, since OpenCV has its own mechanism for both.  The optical flow algorithm picks a user-defined 
number of points that have the highest probability to be in motion within the image. The larger the number, the longer the 
computation takes. For the results given, we chose 100 points, a reasonable choice for 160x120 video.  The running times for 
optical flow and face detection are not very impressive at the moment; optimization did not yield any better results, largely due 
to the hardware limitations.  As mentioned in the previous section, adaptive buffering mechanisms can alleviate the performance 
problems by processing events when no other events are occurring, i.e. during idle time.  This would especially help in the case 
of the last experiment, which uses a face detection algorithm (a trained neural network) on each frame to determine a region of 
interest within the image. 

 

 



 160x120 320x240 
Capture 29.5 fps 16.5 fps 

Capture + Save 4.89 fps 1.89 fps 

BG Differencing 6.17 fps 6.11 fps 

Optical Flow 0.11 fps 0.06 fps 

Face Detection 0.06 fps 0.01 fps 

Figure 9. OpenCV algorithm performance on the Stargate (100 feature points for optical flow) 

Figure 10 depicts the bandwidth difference between normal (full frame) capturing versus cropped (face only) capturing.  In the 
cropped capturing experiments, the video is analyzed and sent only if the presence of an object is detected. Furthermore, it only 
transmits the region that has the event (Region of Interest, or ROI) and ignores all other surroundings. Hence, it saves bandwidth 
by limiting transmission to detected events, and creates further savings by sending only the important part of the image (the 
face). 
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Figure 10. Full image capturing vs  event based face recognition capturing. 

5. CONCLUSION 
In this paper, we have described the design and implementation of SenseTK, a multi-modal and multimedia-based sensor 
networking framework.  We showed how SenseTK allows application writers to easily construct multi-modal, multimedia sensor 
networks that include both traditional scalar-based sensors as well as sensors capable of recording sound and video.  We also 
described the design and implementation of SenseTK and provided several diverse examples to show the flexibility and unique 
aspects of the system.  Finally, we measured several aspects of SenseTK and showed its ability to perform well.  We hope that 
this framework will become a well-known tool for multimedia sensor networks.  To aid more common use, we hope to develop a 
large base of reusable modules that will further assist the creation of diverse and innovative applications. 
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