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ABSTRACT 
Complex heterogeneous sensor networks that include both 

traditional scalar and richer video data are becoming possible. 
With such technologies comes the task of making them useful 
to the applications that rely on them. Unfortunately, such ap-
plications are extremely diverse in the interaction require-
ments of the system components. This paper argues that the 
system software for such sensor systems needs to balance 
optimization for performance and providing a flexible inter-
face that can be tailored to the requirements of the user appli-
cation. We propose Cascades, a cascading filter mechanism 
that can allow users to quickly compose and re-task diverse 
sensor systems (which include both scalar and video-based 
sensors) with highly optimized application-specific algo-
rithms.  

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed Applications 

General Terms 
Algorithms, Management, Performance, Design. 

Keywords 
Video sensors, sensor programming, sensor management. 

1. INTRODUCTION 
As sensor networking technologies continue to develop, a 

number of trends are starting to emerge. First, the diversity of 
sensor hardware is ever increasing, both in size and processing 
power. Smaller and more power efficient sensors are being 
developed to allow for more ubiquitous deployment. At the 
same time, “larger” sensors are being developed to support 
higher-level computation within the sensor network. Second, 
the diversity in sensing modalities is also increasing. The abil-

ity to capture a plethora of scalar data (such as temperature, 
sensor, and humidity) as well as data such as audio, images, 
infrared imaging, and video are becoming possible. Finally, 
the interaction and complexity between components within the 
sensor system will continue to increase. The interactions will 
most likely need to be tailored to a specific scientific applica-
tion. 

We believe that there are several common mechanisms 
that are still needed to support next generation sensor system 
software that include multimedia data types such as audio, 
imaging, or video. These include: 

• Mechanisms to support diversity in sensor hardware, in-
cluding those that capture non-traditional data such as im-
ages or video 

• Mechanisms to easily program, deploy, and re-task diverse 
sensor networking technologies 

• Mechanisms to support in-network, application-specific ag-
gregation and adaptation of data 

Unfortunately, many times the systems software and mid-
dleware deployed on such computing infrastructure is caught 
in the middle, trying to optimize the performance of the sys-
tem while providing the flexibility, programmability, and ab-
stractions needed by the applications.  

In this paper, we argue for systems software that abstracts 
the hardware just enough to allow users to construct sensing 
systems with higher-layer abstractions that are composable 
and tailorable to a specific application’s needs. We describe an 
architecture, which we term Cascades, that provides a number 
of properties to the application. First, it provides a high-level 
way in which application can specify the operation of the sen-
sor system. This includes how the data should be managed 
and prioritized while it is being collected. Second, it allows 
the user to specify application-specific algorithms (optimized 
in the program language of their choice) to operate on the data 
within the network. For example, a particular sensor applica-
tion may have a specific image processing algorithm or com-
pression mechanism in mind. Finally, it provides a way in 
which heterogeneous sensors can be brought together while 
providing reasonable performance to the application. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
NOSSDAV’05, June 13-14, 2005, Stevenson, Washington, USA. 
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00. 



In the following section, we briefly highlight the diversity 
and the systems software requirements to support such appli-
cations. In Section 3, we describe two sample video-based 
sensor networking applications. In Section 4, we propose our 
Cascades architecture. Section 5 provides an overview of the 
related work. Finally, we provide some directions for future 
research and conclude the paper. 

2. THE VIDEO SENSING LANDSCAPE 
In this section, we briefly describe some of the issues that 

need to be addressed for heterogeneous video sensor network-
ing applications and the ramifications on the implementation 
of the systems software necessary to support the system. In 
particular, we provide the two extremes in which we believe 
the software will ultimately lie between. 

Heterogeneity: The systems software will need to support a 
diversity of sensor hardware. To maximize efficiency, the 
systems software can export the bare minimum abstraction of 
the underlying hardware (e.g. TinyOS) but making it hard to 
manage, program, and connect with other hardware in an ap-
plication-specific way. At the other extreme, one could pro-
vide a virtual machine interface to all hardware [9]. This ap-
proach makes the programming and management of the sys-
tem more efficient. Given its higher overhead, however, it 
may not even be possible to push the abstraction to the smaller 
devices. Furthermore, providing virtual machine abstractions 
may be very inefficient for large data streams such as video 
because performance features such as memory mapping I/O 
devices may not be allowed. 

Composability: Undoubtedly, the actual operation of the sys-
tem will need to be tailored to a specific application’s re-
quirements. We expect that the sensor system will provide (i) 
a number of pre-defined components that can be used, (ii) 
mechanisms to support the addition of new components, and 
(iii) the ability to combine the components in a meaningful 
way. At the one extreme, composability can be accomplished 
through pre-defined code segments that are compiled together 
into a single monolithic executable, allowing the system to run 
as efficiently as possible, while making changes to a running 
system more difficult. At the other end of the spectrum, one 
could imagine using a shell-level scripting program to com-
pose such as system together from a number of smaller execu-
tables. While making it easier to distribute smaller sub-
components, the system may suffer from a large amount of 
overhead in switching between address spaces and marshal-
ling of data between executables. 

Adaptability: The system will need to adapt to a number of 
conditions including the available computation, networking 
availability, and power. For example, an embedded device 
may be able to capture video but may be constrained in its 
ability to compress or transmit it. To provide the most effi-
cient operation, one could tune the sensor software to capture, 
compress, and transmit as much information as the smallest 
bottleneck in the system can handle. Furthermore, one could 

hard code exactly how the system should respond to a number 
of external events such as network congestion and variable 
power generation (e.g. solar panel). Clearly such a system 
would be hard to retask or specialize to a new application. At 
the other end of the spectrum, the individual components 
could “self-adapt” or infer the amount of data that ought to 
generated, stored, or thrown away through indirect measures 
(e.g. the network buffer is getting full). While such a system 
may not be optimal in its operation, it is easier to maintain and 
tune in place. 

System performance: The optimization of data flow through 
a sensor can have a tremendous impact on its power usage and 
its performance. As an example, consider the Panoptes video 
sensor [2]. Using a plethora of optimizations including mem-
ory mapping the camera device into the address space, using 
compression across the USB 1.0 interconnect, and using the 
Intel Performance Primitives, the sensor is able to achieve the 
capture and compression of approximately 24 320x240 frames 
per second on a 3 Watt, 200-MHz embedded device. The Intel 
Performance Primitives nearly tripled the frame rate achiev-
able for DCT-based video compression. These primitives, 
however, are designed for only one processor architecture. As 
a result, one can highly optimize the code for a particular 
hardware platform and camera combination, but it may not be 
suitable for any other hardware and camera combination. Us-
ing generic interfaces without much optimization yields only a 
handful of frames per second with nearly the same code.  

Clearly, the creation of next generation sensor system will 
need to manage the conflicting goals of performance and 
management. We will propose an architecture for such a sys-
tem in Section 4. 

3. DIVERSITY IN SENSOR NETWORK 
APPLICATIONS 

To motivate our architecture, we briefly highlight two sen-
sor networking applications that require heterogeneous sets of 
sensors that include video. 

Advanced Health Care Delivery: Biomedical Engineers 
are interested in understanding the causes of the onset of de-
mentia in elderly people. The goal of their work is to record 
the movements and actions of the subjects in-situ, combine it 
with other data such as weight and vital signs, and use this to 
detect long-term changes in behavior and the possibility of the 
onset of dementia [3]. With early detection, the quality of life 
of a person can be extended while simultaneously reducing 
the cost of care.  

To capture macroscopic actions, the researchers use arrays 
of scalar-based sensors to capture the actions of the subjects. 
Such data is fraught with errors from trying to distinguish the 
subject from other objects such as their pets. In this context, a 
single video-based sensor can augment the scalar sensors to 
help determine the presence of the targeted resident. The 
video sensor will allow for actions to be more easily and accu-
rately captured for the scientists. This, however, requires a 



mechanism by which they can easily combine both sensor and 
video data in an application specific way. For example, to 
measure gait speed, the scalar sensors may be used to accu-
rately measure the resident’s speed, while the video sensor 
may be used to distinguish between humans and pets. In the 
same home, a video sensor may be used to record gestures or 
actions (e.g. cooking in the kitchen). 

Environmental Monitoring: Environmental scientists and 
oceanographers are interested in the evolution of near shore 
phenomena along the coastal margin. The oceanographers 
have developed techniques to use imaging data to understand 
the evolution of sandbars underneath the water’s surface off of 
the coast. While they could use a massive array of in-water 
scalar sensors, one video sensor and scalar environmental 
readings can provide the same information for their research 
with significant infrastructure cost savings, ease of deploy-
ment, and reduced maintenance costs [10].  

Currently, their video sensor deployment requires power 
and networking close by. They would ultimately like to install 
a video-based sensor every quarter mile along the entire Ore-
gon coast, requiring some 1200 sensors networked together, 
surviving on power generated from the coastal winds or solar 
power. This will require both advances in basic sensor net-
working technologies as well as power-adaptive video capture 
and transmission mechanisms. In addition, they would like a 
mechanism to coordinate several sensors together to capture 
events such as rip currents. 

4. CASCADES: A HIGH-LEVEL,  
COMPOSABLE FILTERING AND  
ADAPTATION INFRATRUCURE 

We propose an architecture to support the diversity of sen-
sor networking applications, while providing reasonable sys-
tems-level performance. We considered a number of options 
using the issues we outlined in Section 2 in mind. Sensor code 
compiled into one executable was ruled out because updating 
the functionality of a video sensor would require a significant 
amount of wireless bandwidth to be used to distribute all the 
code, whether it changed or not. At the other extreme, one 
could use shell-level scripting, connecting individually com-
piled pieces of code to be brought together. This solution was 
also ruled out as not having high enough performance. The 
other two alternatives were a high-level scripting language 
like TCL or a lower-level scripting language like Python. The 
key advantage of such languages is that they are interpreted 
scripting languages, allowing users to specify rather complex 
systems with minimal code. Furthermore, they allow pro-
grams written in high-level languages such as C or C++ to be 
called as part of the script. This allows a majority of computa-
tionally intensive code (such as video processing algorithms) 
to be written in a highly optimized way. 

TCL-based multimedia systems have been built and dem-
onstrated. The Continuous Media Toolkit (CMT) from Berke-
ley is one such example [6]. Using their CMT API, one can 

create a streaming video session with relatively few lines of 
code (< 10 for a streaming video-only application). The key 
here is that much of the functionality in the CMT toolkit is 
nicely encapsulated into a number of objects that can then be 
put together through the TCL script. We believe that for the 
low-power video sensor networking applications the function-
ality to manage and filter data needs to be pushed as far to the 
edge of the network as possible. As this functionality needs to 
be tailored to the application, a slightly lower level mecha-
nism to dynamically connect components together was 
needed. 

Our architecture uses Python-based interfaces to connect 
filters together. The basic concept of building a system out of 
TCL and Python are similar. We chose Python for several 
reasons. First, it provides more complex data structures than 
TCL. Second, it is more efficient than TCL, which is ex-
tremely important for the power-constrained sensor systems. 
Third, Python provides the ability to add or change the behav-
ior of parts of the system while it is running. As a result, for 
the parts of the system that are connected via Python, re-
tasking the system involves distributed the new code segment 
and updating the script so that it points to the new code (e.g. a 
new video compression algorithm)1. Fourth, Python interfaces 
also provide the opportunity to provide type checking of the 
data so that the components that are plugged together can be 
verified for compatibility. Finally, it is easier to construct 
more complicated programs in Python, giving the user more 
control over the system rather than hiding many details. The 
last point is both a positive and negative. In the hands of more 
experienced programmers, Python is easier to adapt to appli-
cation specifics. We have implemented the video sensor code 
to have its various components (capture, filter, compression, 
and buffering) connected via Python. The Python script for 
this is approximately 150 lines of code. Obviously the code is 
somewhat more complex than the type of system specified in 
the CMT API, however, it provides much finer grain control 
of the code within the sensor. 

4.1 Constructing Cascades 
The primary mechanism to support the management and 

integration of heterogeneous data are cascading filters. This 
basically extends the functionality that we have implemented 
in the video sensors. Filters are user-supplied or toolkit-
derived functions that allow the sensor system to tailor its data 
for the user application. The idea of each filter is that it allows 
the processing of the data within the filter to be accomplished 
with a highly optimized piece of code (rather than an inter-
preted language). There are several basic filters that we envi-
sion: 

• Efilters are the primary mechanism by which the handling 
of faulty sensors can be specified. Faulty readings can occur 
from biofouling of the sensors in outdoor scenarios. These 

                                                                 
1 This assumes that the Python script periodically checks whether 

or not the script has been updated. 



filters can consist of standard statistical filtering techniques 
in a default-model as well as for the application user to 
specify the exact way in which the faulty data may be han-
dled.  

• Dfilters are used to manage scalar data within the sensor 
network. They take one or more streams of scalar data and 
produce an output of one or more data streams as well as 
meta-information about the sensor data. As an example, one 
filter might calculate the average value measured per hour, 
either for a single sensor or a group of sensors. The filter 
might also add meta-information such as timing information 
or relational information between sensors. The sensor out-
put can then be used by other filters. As we will describe 
later,  

• Vfilters are used to manage video data being collected by 
video sensors. Vfilters might consist of application specific 
video processing algorithms or off-the-shelf components. 
Application-specific algorithms may include image process-
ing techniques for the environmental monitoring example 
previously described. An off-the-shelf component might in-
clude a compression algorithm or video adaptation algo-
rithm within the network. 

• Ufilters are user specified filters that allow the user to spec-
ify the integration of data from the other types of filters. 
These can include annotation of video streams using scalar 
sensor data. 

The overall Cascades architecture is shown in Figure 1. We 
expect that the filters can then be cascaded together using Py-
thon-based interfaces between filters. The actual hardware 
devices are abstracted just enough to provide data into one of 
the filters. For example, scalar data sensors will have the op-
erating system of their choice running on the system and will 
talk upstream to a node (such as a Crossbow Stargate device) 
that will provide the Python-based abstraction. For video sen-
sors, the camera device is abstracted enough to provide access 
to the raw frames. 

4.2 Python Details 
4.2.1 Marshalling Data in Python 

While Python provides a great deal of flexibility in its 
structure and the ability to dynamically alter the algorithms 
running on the sensor, it does incur some overhead. This 
overhead is primarily in the marshalling of the data across the 
interfaces. Because we are trying to build sensors that can be 
easily composed together, the interfaces need to be necessarily 
generic in nature, providing a “least common denominator” 
handling of the data.  

We have implemented the key components within the 
video sensor software to be connected via Python. The com-
ponents we currently have specified are video capture, video 
filtering, video compression, and video adaptation. Between 
each component, we have created data_frames that each hold 
information regarding one frame of data. Because each com-
ponent understands what a data_frame is, composing new 
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FIGURE 1: This figure shows an example of the overall architecture for our proposed sensor 
networking middleware.  The nodes labeled Stargate are slightly more powerful, in-network, sensor 
nodes that can both capture video and be used to manage a number of scalar sensor nodes. 
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compression or image processing algorithms is fairly easy. 
Our experiments have shown that the overhead of Python in 
this context ranges from 3-5%. We believe that this is reason-
able, given the additional flexibility that is gained. 

4.2.2 Constructing Complex Systems 
We have recently demonstrated a video sensor based upon 

the low-power (< 2 Watt) Crossbow Stargate device. The 
Stargate device is meant to act as a gateway for low level sen-
sors such as the motes. It has a 400 MHz Intel XScale proces-
sor, 64 Mbytes of memory, and runs at approximately 2 
Watts. Python and the video sensor compression code easily 
fit within the memory available on the device.  

Unfortunately, Python is too large to run on the scalar sen-
sors which typically have only kilobytes of available memory. 
In order to construct larger systems together, we believe that 
such systems will ultimately have a multi-tiered architecture 
that have both low-level sensors and higher-powered sensors 
(e.g. video sensors) that are capable of aggregating data. We 
believe that the scalar sensors can be abstracted to the point 
that they can be plugged, as input, into the Cascades systems. 
Furthermore, the scalar sensors can be brought together with 
traditional data gathering techniques (e.g. TinyDB or Directed 
Diffusion) if so desired. Finally, as the Crossbow Stargate 
devices are meant to bring such devices together, we expect 
that providing basic abstraction over the smallest devices will 
not adversely affect system performance. 

4.3 AN EXAMPLE SYSTEM 
As a small example of our envisioned system in use, sup-

pose we have a sensor system that processes video data, cre-
ates metadata required to answer a user query, and attempts to 
archive as much of the video for storage as it can. In this sce-

nario, a filter may create metadata to answer a stream query. 
This may also involve the transmission of part or all of the 
video for the period to the upstream node for processing of the 
upstream query. We have shown a sample filter flow that we 
would expect to use in Figure 2. To support such data man-
agement, however, the user or application needs to specify 
how and what data should be dropped in the event that insuf-
ficient network or power resources exist to fully capture the 
entire stream. We expect that this will be highly application 
specific. Of course, many other types of video management 
policies may need to be implemented for a particular applica-
tion and the middleware ought to be flexible enough to sup-
port such policies. We envision that the specification of how 
the video data should be prioritized and dropped will be speci-
fied within the Python script. The specification of which data 
is required by various stream queries will be accomplished 
through the filters that we have previously described. Note 
that the video filters shown can be augmented with scalar sen-
sor data to turn on and off video processing. 

One thing we have not yet addressed is the coordination 
among various filters. Without distributed coordination, du-
plication of data may occur if the system is not carefully con-
structed. 

5. RELATED WORK 
Several sensor platforms have been developed with vary-

ing capabilities for use in sensor networking applications, 
including the Berkeley mote family of WeC, Rene, Dot, Mica, 
MicaZ, and XSM sensors [7], image-based sensors such as 
Cyclops (based on the Mica2 sensor) [8] and the Panoptes 
video sensor (based on the Crossbow Stargate device [2]. 
These developments just highlight the fact that the systems 
software will have to evolve to support a diversity of sensors. 
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Figure 2:  This figure shows an example filter mechanism we expect to be able to support.  The top 
video filter selects video necessary for the query (either as a result or input to another filter).  The 
query filter generates metadata and passes on the video images.  The lower archival filter is 
responsible for archival of the video data and is responsible for thinning the stream if insufficient 
resources exist.  Other equivalent filters are possible.  For example, the user may combine the query 
filter and the selection filter at the top. 



Techniques such as Directed Diffusion [5] or TinyDB [4] 
are used to provide aggregation for traditional scalar-based 
sensor networks. In contrast to Directed Diffusion, Cascades 
enables a whole-network reconfigurable deployment of filters, 
instead of pre-deployment programming of individual sensors. 
Thus, Cascades can provide better programmability and ag-
gregation. Cascades shares the programmability objectives of 
TinyDB, but can process data streams and task sensor nodes 
in more flexible ways. These distinctions are significant be-
cause they enable us to support a more diverse set of sensor 
devices while also providing programmability and flexibility. 
Cascades can also be used with Diffusion or TinyDB. For 
example, one can control a herd of motes via TinyDB, and use 
TinyDB’s data stream output as an input to a Cascade filter 

There are many stream query processing systems for sen-
sor networks including Cougar, Telegraph, Stream, and 
Aurora/Borealis [1]. One key difference between the existing 
stream processing work and Cascades is the inclusion of video 
processing and filtering within the sensor substrate as well as 
application-specific data handling and adaptation in the event 
of insufficient resources exist. We believe that much of the 
functionality of such stream processing engines can be incor-
porated into the filtering mechanisms we propose. 

Finally, we note that finding efficient “plug and play” ar-
chitectures for multimedia has been the focus of some previ-
ous research. The Continuous Media Toolkit (CMT) from 
Berkeley focuses on the rapid development and deployment of 
distributed streaming applications [6]. The CMT toolkit is a 
Tcl/Tk-based system that allows the users to construct stream-
ing applications through scripts that combine lower-level 
components together. The Cascades approach is similar in 
vein to the CMT toolkit. The sensor networks we envision, 
however, will force the scripting languages to be more com-
plex in it management of data between components. We be-
lieve that Python is more usable in this context because it pro-
vides real data structures to the scripts and runs faster than 
Tcl. The data structures are necessary to support the move-
ment of data between the filters. 
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7. CONCLUSION AND FUTURE WORK 
In this paper, we have outlined a potential architecture to 

support diversity and programmability in heterogeneous sen-
sor networks that include both scalar and video data. As sen-
sor networks continue to evolve, the systems software that 
supports such applications needs to evolve while continuing to 
provide highly optimized and efficient operation. Python-
based cascading filters can effectively manage the trade-off of 
highly optimized systems and the need for to tailor the system 
to the user application.  

There are still a number of open issues that we are work-
ing to address with Cascades. Currently, there is no explicit 
mechanism to adapt computation to conserve power. Unfortu-
nately, this requires coordination among filters. Another ave-
nue of future work is managing power on a larger time-frame. 
For example, in the oceanographic example, it may be more 
beneficial to store data during the day and only transmit at 
night (while no video capture is happening).  
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