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1 Introduction
The Columbia River (CoRie) Observation Network in-

cludes an extensive array of fixed stations monitoring the
Columbia River estuary and nearby coastal ocean. At each
station, variable combinations of in-situ sensors measureone
or more physical properties of water or atmosphere. Using
a multi-scale data assimilation model, the CORIE modeling
system integrates models and field controls to produce a sim-
ulation of 3D circulation, in a region centered in the estu-
ary and plume. The CORIE data assimilation framework [1]
combines observational data with numerical data models to
produce an estimated system state for the physical process.
To augment the fixed observational network, additional data
is collected during periodical cruises of a mobile sensor sta-
tion. Because these cruises are expensive and rare, an impor-
tant goal for scientists is to sample data at points that most
reduce the uncertainty of the data assimilation model. Thisis
challenging, since the estuary environment is very dynamic,
and therefore the optimal cruise path cannot be determined
in advance. The goal of our system is to move the mobile sta-
tion as the data assimilation proceeds in order to maximally
reduce the uncertainty in the data assimilation process.

In this work, we propose anadaptive samplingalgorithm
to guide a mobile cruise to collect data that reduces uncer-
tainty in the estimation. Using the linear observation feature
in the circulation model, the algorithm generates in advance
observation matrices for all points (grid point) that modelthe
CORIE physical map. During the estimation, the algorithm
searches for the point that can reduce the most uncertainty.
The algorithm is fast and can reduce the uncertainty by 7%
compared to random data collection.
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2 CORIE Data Assimilation Framework
The CORIE data assimilation framework is based on the

Sigma point Kalman filter [2] on reduced state space. The
dimension reduction is illustrated in the following equation.

xf = PO×xs+µ+ξ (1)

where

• xf is the system state in the full space.

• PO is the projection matrix.

• xs is the system state in the reduced space.

• µ is the ensemble mean of the full system state.

• ξ is the noise due to the dimension reduction.
Let

• t is the time step after taking the measurement.

• t− is the time step before taking the measurement.

• xs(t
−

t+1) is the predicted system state before taking the
measurement.

• w is the weight.

• P̂xx is the predicted state covariance matrix.

• K is the Kalman gain.

• Hs is the observation matrix in the reduced space.

• ŷ,y are the estimated and the true measurement.
The sigma point Kalman filter has two main steps, time up-
date and measurement update. In the time update step, the
filter predicts the system state and uncertainty using a dy-
namic model of the physical process.
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In the measurement update, the predicted system state is ad-
justed based on the actual measurement.
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xs(ti+1) = xs(t(i +1)−)−K(ti+1)(y(ti+1)− ŷ(ti+1)) (14)

The predicted covariance matrix is calculated as follows
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The trace ofP̂xx(ti+1) tells us how uncertain the estimated
system state is. The larger the trace, the more uncertain the
estimated system is. We would like to reduce the uncertainty
in the estimation by minimizing the trace ofP̂xx(ti+1).

3 Problem Formulation
Since the observation is linear time variant, we can sub-

stitute
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in the equation 15 above to achieve
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We can formulate the problem of adaptive sampling to re-
duce estimated uncertainty as
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4 Algorithm
The model for the Columbia river consists of a set of grid

points. The observation function from each grid point is
constant and linear in the system state. Hence, we can search
all the grid points and calculate the estimated uncertainty
without doing the estimation. The algorithm has two phases

Offline We generate the observation matrices for all grid
points. These matrices are not changed. Hence, we can store
them in advance.

OnlineIn the data assimilation, before taking a new mea-
surement, we loop through all the grid points, merge the ob-
servation matrixHs and calculate the trace of the predicted
covariance matrix. The point that results in the lowest trace
will be the sampling point of the next time step.

5 Results
Figure 1 shows the traces of the covariance matrices of

our sampling scheme and the random sampling scheme,
where the cruise randomly move to a location to take a mea-
surement. The simulation is based on data collected over two
days. The error trace of our sampling scheme stays lower
than the other most of the time. On average, the uncertainty
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Figure 1. Error traces of different sampling schemes

of our adaptive sampling scheme is reduced by 7% compared
to the random sampling scheme. The actual computation
time to do the search is only15seconds.

6 Future Work
In the future, we would like to consider the correlation

between the estimated covariance and the true covariance to
develop a sampling scheme that reduce both uncertainty and
error. We also would like to extend the algorithm to multiple
cruises.
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