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Mobile CrowdSensing

Raw data:  
GPS, 

audio, 
images
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Example: Waze

Drive, collect 
road goodies, 
earn bonus 
points
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What could go wrong?
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What could go wrong?

Users could 
collect road 
goodies 
without 
actually being 
there!

7



Copyright ©2015 Nirupama Bulusu 

Do we really care?
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“What happens when an app becomes so popular it 
is basically a public utility? For a school project, 
Shir Yadid  and Meital Ben-Sinai, fourth year 
students at Technion, hacked the incredibly 

popular Waze GPS map, an Israeli made 
smartphone app that provides directions and 

alerts drivers to traffic and accidents. The 
students created a virtual traffic jam to show how 

malicious hackers might create a real one.”
–Kelsey Atherton, Popular Science, March 2014.
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The Problem

Online applications that encourage open 
participation/contribution remain 
vulnerable to spurious information.
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The Problem
Fabricated data in crowd-sourced sensing 
applications 

How can a data consumer - receiving 
data from sensors not under its control - 
trust that the data is a true 
representation of the real-world 
phenomenon being sensed?
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My Work
Urban - Monitoring Noise 
Pollution (2009 - ) [Rana10] 

Commerce - Price Dispersion 
Monitoring (2007 - ) 
[Bulusu08] 

Current Focus 

Mobile Health - Lung Sound 
Assessment, Health Trend 
Finder
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This Talk

Trust 

Time permitting 

Privacy 

Collaboration
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Trust & Privacy 
(Joint Work with Akshay Dua, 

Wu-chang Feng & Wen Hu) 
[Dua09, Dua14]
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Existing Approaches

Reputation Ratings 

Anomaly Detection 

Device Monitoring
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Reputation Ratings
Users rate each other; 
information from 
users with higher 
ratings considered 
more trustworthy 

Related Work: 
[Ganeriwal et al. 
2008], [Jang and 
Ismail 2002], [Liang 
and Shi 2008]
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Reputation Ratings
Issues: 

Assumes a model 
where users 
interact with 
each other. 

Assumes users can 
correctly judge 
the integrity of 
information.
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Anomaly Detection
Ignore data that 
does not look 
normal 

References: 
[Chitradevi et al. 2010] 
[Chatzigiannakis and 
Papavassiliou 2007] 
[Rassam et al 2012] 
[Livani and Abadi 2010]
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Anomaly Detection
Issues 

can be duped 
by a 
participant 
that emulates 
multiple 
colluding data 
sources
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Anomaly Detection
Issues 

accuracy 
depends on 
number and 
distribution 
of data 
sources
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Anomaly Detection

Issues 

may 
categorize 
new 
information 
as anomalous
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Device Monitoring
[Modine 2007] [Schramm 2007] 

Scan device to ensure only expected process 
and data exist 

Issues: 

Intrusive 

Prone to False Positives
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Design Goals

Goals Reputation 
Ratings

Anomaly 
Detection

Device 
Monitoring

Ideal 
Solution

Independent 
Verification

Emulation + 
Collusion

Non-
intrusive
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Solution Approach

First address the data integrity problem 

Then add privacy as a constraint
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The Trust-but-Verify Model
Trust the sources, but probabilistically verify the 
information they send
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The Trust-but-Verify Model
Goal: Develop verification function to enable C to check 
z.

s1
A

s2

C

AggregatorData Sources Consumer

y1

y2

x1

x2

Process &  
Aggregate

Aggregate  
across  
sources

Z

Prove z  
is correct

Generation Functions
Verification Strategy
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Applying Trust-but-Verify

Step 1: Identify the data to verify 

Sensory information collected from 
the environment

32
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Applying Trust-but-Verify

Step 1: Identify the data to verify 

Step 2: Identify generation functions 

Functions in the sensor’s device 
drivers

33
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Applying Trust-but-Verify
Step 1: Identify the data to verify 

Step 2: Identify generation functions 

Step 3: Build verification functions 

How do I convince the data consumer 
that the functions in the sensor’s 
device drivers were faithfully executed?

34
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Build a “closed box” 
Trustworthy Sensing Platform

35

Sensing Platform Consumer
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Build a “closed box” 
Trustworthy Sensing Platform

Establish a Trusted-Third-Party (TTP) 
inside sensing platform
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Build a “closed box” 
Trustworthy Sensing Platform

Establish a Trusted-Third-Party (TTP) 
inside sensing platform

39
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Build a “closed box” 
Trustworthy Sensing Platform

Trust in the platform induces trust in the 
faithful execution of the generation 
functions

40

Sensing Platform Consumer
1. Prove Platform Integrity

3. Measurement

TTP

2. Measure
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The Trusted Sensing 
Peripheral

TTP: Trusted Platform Module (TPM): Enables trusted boot [Trusted Computing Group]  

Fleck: Provides secure execution [Francillon and Castelluccia [2008]] 41



Time Required for 
Platform Attestation

Task Compute Time 
(sec)

Transmit Time 
(sec)

Single 
Attestation 1.72 (+/- 0.01) 0.3 (+/- 0.1)

Attestation: TPM’s RSA signature over 
SHA digest of instruction memory 

Sensing platform: 8 KB of memory; 8 
MHz Atmega micro controller
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Summary
Problem: How can a data consumer - receiving data from sensors 
that are not under its control - trust that the data is a true 
representation of the real-world phenomenon being sensed? 

Solution: Build a separate trustworthy sensing platform that 
cannot be altered or modified 

Limitations 

Does not prevent PHYSICAL collusion among users 

Can be fooled by doctored sensing environment 

A separate platform users must carry around
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Privacy in Mobile 
CrowdSensing

Transformed  
data ResultRaw data

Trusted intermediary computes privacy 
transformation 

Example: location cloaking or averaging 
[Gruteser and Grunwald 2003], [Rastogi and 
Nath 2010], [Shi et al. 2011]



Privacy in Mobile 
CrowdSensing

Transformed  
data ResultRaw data

But now, consumer does not know if                                                                 
data was transformed correctly
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Privacy in Mobile 
CrowdSensing

Trusted intermediary computes privacy 
transformation 

Example: location cloaking or averaging 
[Gruteser and Grunwald 2003], [Rastogi 
and Nath 2010], [Shi et al. 2011] 

But now, consumer does not know if data 
was transformed correctly

51
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Related Work
Location Privacy and Integrity are not generally 
addressed together 

PoolView [Ganti et al 2008] 

Compute community statistics using perturbed data 
(e.g. average wight or speed) 

No location privacy - data collection locations 
known 

no integrity - statistics computed by trusted parties
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Related Work
Location Privacy and Integrity are not 
generally addressed together 

VPriv [Popa et al 2009]: Compute tolls 
over location paths 

Integrity & weak privacy: 
Pseudonymous locations in the clear
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Related Work
Location Privacy and Integrity are not 
generally addressed together 

PrivStats: privacy-preserving data 
aggregation with accountability [Popa et 
al. 2011] 

No location privacy: Data collection 
locations known
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Applying Trust-but Verify: 
Integrity with Privacy

Identify data to verify 

Output of privacy transformation 

Identify generation functions 

Privacy transformation 

Identify verification functions 

How to convince the data consumer that the privacy 
transformation was executed faithfully while 
preserving data source privacy?
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Homomorphic 
Commitments

Idea: Check computations over inputs using functions of 
inputs 

Example 

Blake receives the sum 5 from Eve. This is the sum of 
inputs from Alice and Bob. 

Blake wants to know if Eve added these inputs 
faithfully. 

But Alice and Bob do not want to reveal their inputs to 
Blake.

56



Copyright ©2015 Nirupama Bulusu 

Homomorphic 
Commitments: The Idea
Insecure version 

Alice sends f(3) = 23, Bob sends f(2) = 
22 to Blake 

Blake checks: f(3) x f(2) = f (5) 

Indeed, 23 x 22 = 25; Blake is happy!
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Assumed System Model

Privacy-preserving Transformation: Mean of Inputs [Popa et al. 2011], [Rastogi and Nath 2010], [Shi et 
al. 2011], [Ganti et al. 2008] 

n >= k for k-anonymity [Samarati and Sweeney 1998] 

Inferences from (xj, yj, dj) would apply to any of the k sources

s1 A

s2

C

AggregatorData Sources Consumer

(x1j, y1j, d1j)

(x2j, y2j, d2j)
(xj, yj, dj)
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LocationProof: Normal 
Operation 

Consider 

k sources 

publishing xij: longitude of source i at 
time instance j
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LocationProof: C 
challenges A

60

si A C

interval j:

sense xij 
si -> A: xij 

b= xij

xj = Sum xij 
A -> C: xj

rj = xj/k



Copyright ©2015 Nirupama Bulusu 

How Long Before a 
Fabrication is Detected
p: C’s checking probability  

q: Probability with which A corrupts 
aggregates 

Expected number of successes before first  
failure (1 - pq)/pq
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Data Source Overhead

62

Android TSP

Current 144 mA 55 mA

Time 2.325 msec (+/- 
1.26) 3.44 sec (+/- 0.03)

Energy 
Consumption 1.2 mJ 5 Joules
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Summary: Privacy-preserving, 
High-Integrity CrowdSensing

Problem 

How to achieve simultaneous data integrity and privacy 

Solution 

Use homomorphic commitments as a building block 

Limitations 

Supports additive transformations only 

Does not indicate location spread (future work)

63



Collaboration 
(Joint Work with Rajib Rana, 

Wen Hu, Chun-tung Chou & 
Salil Kanhere [Rana10])
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Noise Map

65
23

Existing maps are simulation generated. Can not  
be used for local action plans. 



Objectives

24

Reconstruction of Temporal-Spatial  
Noise Profile from Incomplete Audio 

Samples Collected 
via Mobile CrowdSourcing.

PDA Based Sound  
Level Meter



Calibration

25

< 2 dBA over 3 days
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Challenges
Incomplete Sampling 

insufficient samples 

samples missing from area of interest 

irregular sampling (oversampled and under-sampled areas) 

sampling frequency may change with time of day 

Bandwidth limitations 

Approach - compressed sensing (random projection)

68
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Compressibility of Spatio-Temporal 
Noise Profile

R
M

S 
er

ro
r

0

1.25

2.5

3.75

5

% of K-largest Coefficients
0.976562 12.793 24.6094 36.4258 48.2422 60.0586 71.875 83.6914 95.5078

DCT Haar Wavelet
Fourier
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System Architecture
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Data Aggregation

Random Projection (DCT Gaussian) 

Raw Data (DCT Data) 
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Experimental Results

30



Experimental Results

Reconstruction Error
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Summary
Mobile Phones as Sound Level Meters 

compressibility of spatio-temporal noise profile 

data aggregation using Random Projections 

mobile phone based sound level meter accurate 

Adaptive sampling 

better or equivalent reconstruction with fewer 
samples
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