Advanced Functional Programming

Tim Sheard
Portland State University
Lecture 2: More about Type Classes
-Implementing Type Classes

- Higher Order Types
-Multi-parameter Type Classes

Advanced Functional Programming

I mplementing Type Classes

- I know of two methods for implementing type classes
- Using the "Dictionary Passing Transform"
- Passing runtime representation of type information.

Source \& 2 strategies

class Equal a where equal :: a -> a -> Bool class Nat a where $\begin{aligned} & \text { inc }:: \mathrm{a} \mathrm{->} \mathrm{a} \\ & \text { dec :: a -> a } \\ & \text { zero :: a -> Bool } \end{aligned}$	```data EqualL a = EqualL { equalM :: a -> a -> Bool } data NatL a = NatL { incM :: a -> a , decM :: a -> a , zeroM :: a -> Bool }```	$\begin{aligned} & \text { equalX :: Rep a -> a -> a -> } \\ & \text { Bool } \\ & \text { incX :: Rep a -> a -> a } \\ & \text { decX :: Rep a -> a -> a } \\ & \text { zeroX :: Rep a -> a -> Bool } \end{aligned}$
```f0 :: (Equal a, Nat a) => a -> a f0 x = if zero x && equal x x then inc x else dec x```	```f1 :: EqualL a -> NatL a -> a -> a f1 el nl x = if zeroM nl x && equalM el x x then incM nl x else decM nl x```	```f2 :: Rep a -> a -> a f2 rx= if zeroX rx && equalXrxx then incX rx else decX rx```



Advanced Functional Programming

## I nstance declarations

## data $N=Z \mid S N$

instance Equal N where
equal Z Z = True
equal ( $\mathrm{S} x$ ) ( $\mathrm{S} y$ ) = equal $\mathrm{x} y$
equal _ _ False
instance Nat $N$ where
inc $x=S$
$\operatorname{dec}(S x)=x$
zero $Z=$ True
zero (S _) = False

## Become record definitions

```
instance_l3 :: EqualL N
instance_l3 = EqualL { equalM = equal } where
 equal Z Z = True
 equal (S x) (S y) = equal x y
 equal _ _ = False
instance_14 :: NatL N
instance_l4 =
 NatL {incM = inc, decM = dec, zeroM = zero } where
 inc x = S x
 dec (S x) = x
 zero Z = True
 zero (S _) = False
```


## Dependent classes

instance Equal a => Equal [a] where equal [] [] = True equal (x :xs) (y:ys) = equal $x$ y \&\& equal xs ms equal _ _ F False
instance Nat a => Nat [a] where
inc xs = map inc xs
dec xs = map dec xs
zero xs = all zero xs

## become functions between records

instance_15 :: EqualL a -> EqualL [a]
instance_l5 lib = EqualL \{ equalM = equal \} where equal [] [] = True
equal (x:xs) (y:ys) = equalM lib $x$ y \&\& equal xs ys equal _ _ False
instance_16 :: NatL a -> NatL [a]
instance_16 lib = NatL \{ incM = inc, decM =dec, zeroM = zero \} where
inc xs $=\operatorname{map}(i n c M$ lib) xs
dec xs = map (decM lib) xs
zero xs = all (zeroM lib) xs

## In run-time type passing

Collect all the instances together to make one function which has an extra arg which is the representation of the type this function is specialized on.

```
incX (Int p) x = to p (inc (from p x)) where inc x = x+1
incX (N p) x = to p (inc (from p x)) where inc x = S x
incX (List a p) x = to p (inc (from p x)) where inc xs = map (incX a) xs
decX (Int p) x = to p (dec (from p x)) where dec x = x+1
decX (N p) x = to p (dec (from p x)) where dec x = S x
decX (List a p) x = to p (dec (from p x)) where dec xs = map (decX a) xs
zeroX (Int p) x = zero (from p x) where zero 0 = True
 zero n = False
zerox (N p) x = zero (from p x) where zero z = True
 zero (S _) = False
zerox (List a p) x = zero (from p x) where zero xs = all (zeroX a) xs
```

```
data Proof a b = Ep{from :: a->b, to:: b->a}
```

data Rep t


## Note how recursive calls at different types are calls to the runtime passing versions with new type-rep arguments.

```
equalX (Int p) x y = h equal p x y where equal x y = x==y
equalX (N p) }\quad\textrm{f}y=h\mathrm{ equal p x y where equal z z = True
 equal (S x) (S y) = equal x y
 equal _ _ = False
equalX (List a p) x y = h equal p x y where equal [] [] = True
 equal (x:xs) (y:ys) =
 equalX a x y && equal xs ys
 equal _ _ = False
h equal p x y = equal (from p x) (from p y)
```


## Higher Order types

Type constructors are higher order since they take types as input and return types as output.
Some type constructors (and also some class definitions) are even higher order, since they take type constructors as arguments.

Haskell's Kind system
A Kind is haskell's way of "typing" types
Ordinary types have kind
Int : :
[ String ] :: *
Type constructors have kind * -> *


## The Functor Class

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

Note how the class Functor requires a type constructor of kind * -> * as an argument.
The method fmap abstracts the operation of applying a function on every parametric Argument.

Type T a $=\begin{gathered}\text { a } \\ \mathbf{a} \quad \mathbf{a}\end{gathered}$


## More than just types

Laws for Functor. Most class definitions have some implicit laws that all instances should obey. The laws for Functor are:
fmap id = id
fmap (f.g) $=f$ map $f$. fmap $g$

Advanced Functional Programming

## Built in Higher Order Types

Special syntax for built in type constructors
(->) :: * -> * -> *
[] :: * -> *
(,) :: * -> * -> *
(, , ) :: * -> * -> * -> *
type Arrow = (->) Int Int type List = [] Int type Pair = (, ) Int Int type Triple $=(,$,$) Int Int Int$

## I nstances of class functor

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Functor Tree where fmap $f($ Leaf $x$ ) $=$ Leaf ( $f$ x) fmap $f$ (Branch $x$ y) $=$ Branch (fmap f x) (fmap fy)
instance Functor ((,) c) where fmap $f(x, y)=(x, f y)$

## More Instances

instance Functor [] where fmap f [] = []
fmap $f(x: x s)=f x$ : fmap $f$ xs
instance Functor Maybe where fmap f Nothing = Nothing fmap f (Just $x$ ) $=$ Just (f $x$ )

## Other uses of Higher order T.C.'s

data Tree t a $=$ Tip a | Node (t (Tree ta))
ti = Node [Tip 3, Tip 0] Main> :t ti t1 : : Tree [] Int
data $\operatorname{Bin} \mathrm{x}=$ Two x x
t2 $=$ Node (Two(Tip 5) (Tip 21)) Main> :t th
th : : Tree Bin Int

## Advanced Functional Programming <br> What is the kind of Tree?

Tree is a binary type constructor It's kind will be something like:
? -> ? -> *

The first argument to Tree is itself a type constructor, the second is just an ordinary type.

Tree :: ( * -> *) -> * -> *

Advanced Functional Programming

## Another Higher Order Class

class Monad $m$ where

Note m is a type constructor (>>=) : : ma->(a->mb) $->m b$
(>>) :: ma->mb->mb
return :: a -> m a
fail : : String -> m a
$p \gg q=p \gg=1$ _ $\rightarrow$ q fail $s=$ error $s$

We pronounce >>= as "bind" and >> as "sequence"

## Default methods

Note that Monad has two default definitions

$$
\begin{aligned}
& p_{q} \gg q=p \gg=\backslash--> \\
& \text { fail } s=\text { error } s
\end{aligned}
$$

These are the definitions that are usually correct, so when making an instance of class Monad, only two defintions (>>=> and (return) are usually given.

## Do notation shorthand

## The Do notation is shorthand for the infix operator >>=

$$
\begin{aligned}
& \text { do e }=> \\
& \text { do }\{\text { er ; er; ... ; en\} ~ = > ~ } \\
& \text { er >> do \{ er ; ... ;en\} ~ } \\
& \text { do }\{x<-e ; f\} \Rightarrow \quad e \gg=(\backslash x->f) \\
& \text { where } x \text { is a variable } \\
& \text { do \{ pat <- er ; er ; ... ; en \} ~ = > ~ } \\
& \text { let ok pat = do \{ er; ... ; en \} ~ } \\
& \text { ok _ = fail "some error message" } \\
& \text { in er >>= ok }
\end{aligned}
$$

## Monad's and Actions

- We've always used the do notation to indicate an impure computation that performs an actions and then returns a value.
- We can use monads to "invent" our own kinds of actions.
- To define a new monad we need to supply a monad instance declaration.
Example: The action is potential failure instance Monad Maybe where

Just $x \gg=k=k x$
Nothing >>= $k=$ Nothing
return $=$ Just

## Example

find :: Eq a => a -> [(a,b)] -> Maybe b
find $x$ [] = Nothing
find $x$ ( $(y, a): y s)=$
if $x==y$ then Just a else find $x$ ys
test a c x = do \{ b <- find a x; return (c+b) \}

What is the type of test? What does it return if the find fails?

## Multi-parameter Type Classes

- A relationship between two types
class (Monad m,Same ref) => Mutable ref $m$ where put :: ref a -> a -> m () get :: ref a -> m a new :: a -> m (ref a)
class Same ref where same :: ref a -> ref a -> Bool


## An Instance

## instance

Mutable (STRef a) (ST a) where put = writeSTRef get = readSTRef new $=$ newSTRef

## instance Same (STRef a) where

same x y = x==y

## Advanced Functional Programming <br> Another I nstance

## instance Mutable IORef IO where new $=$ newIORef get = readIORef put = writeIORef

## instance Same IORef where

 same $x$ y $=x==y$Advanced Functional Programming

## Another Multi-parameter Type Class

```
class Name term name where
 isName :: term -> Maybe name
 fromName :: name -> term
type Var = String
data Term0 =
 Add0 Term0 Term0
 | Const0 Int
 | Lambda0 Var Term0
 | App0 Term0 Term0
 | Var0 Var
instance Name Term0 Var where
 isName (Var0 s) = Just s
 isName _ = Nothing
 fromName s = Var0 s
```


## Yet Another

class Mult a b c where times :: a -> b -> c
instance Mult Int Int Int where times $x$ y $=x$ * $y$
instance Ix a =>
Mult Int (Array a Int) (Array a Int) where times $x$ y $=$ fmap ( ${ }^{*} x$ ) $y$

## An Example Use

- Unification of types is used for type inference.
data Type ref $m$ where
Tvar :: (Mutable ref m ) => ref (Maybe (Type ref m)) -> Type ref m
Tgen:: Int -> Type ref m
Tarrow: :Type ref m -> Type ref m -> Type ref m
Ttuple:: [Type ref m] -> Type ref m
Tcon:: String -> [Type ref m] -> Type ref m


## Advanced Functional Programming <br> Questions

## What are the types of the constructors

## Tvar : :

Tgen : :

Tarrow : :

## Useful Function

Run down a chain of Type TVar references making them all point to the last item in the chain.


## Prune

```
prune :: (Monad m, Mutable ref m) =>
 Type ref m -> m (Type ref m)
prune (typ @ (Tvar ref)) =
 do { m <- get ref
 ; case m of
 Just t -> do { newt <- prune t
 ; put ref (Just newt)
 ; return newt
 }
 Nothing -> return typ}
prune x = return x
```


## Does a reference occur in a type?

```
occursIn :: Mutable ref m =>
 ref (Maybe (Type ref m)) -> Type ref m -> m Bool
occursIn ref1 t =
do { t2 <- prune t
; case t2 of
 Tvar ref2 -> return (same ref1 ref2)
 Tgen n -> return False
 Tarrow a b ->
 do { x <- occursIn ref1 a
 ; if x then return True
 else occursIn ref1 b }
 Ttuple xs ->
 do { bs <- sequence(map (occursIn ref1) xs)
 ; return(any id bs)}
 Tcon c xs ->
 do { bs <- sequence(map (occursIn ref1) xs)
 ; return(any id bs) }
 }
```


## Unify

unify :: Mutable ref m =>
(Type ref m -> Type ref m -> m [String]) ->
Type ref m -> Type ref m $->\mathrm{m}$ [String]
unify occursAction $x$ y $=$
do \{ t1 <- prune $x$
; t2 <- prune y
; case (t1,t2) of
(Tvar r1,Tvar r2) ->
if same r1 r2
then return []
else do \{ put r1 (Just t2); return []\}
(Tvar r1,_) ->
do \{ b <- occursin r1 t2
; if b then occursAction t1 t2
else do \{ put r1 (Just t2)
; return [] \}
\}

## Unify continued

```
unify occursAction x y =
 do { t1 <- prune x
 ; t2 <- prune y
 ; case (t1,t2) of
(_,Tvar r2) -> unify occursAction t2 t1
(Tgen n,Tgen m) ->
 if n==m then return []
 else return ["generic error"]
(Tarrow a b,Tarrow x y) ->
 do { e1 <- unify occursAction a x
 ; e2 <- unify occursAction b y
 ; return (e1 ++ e2)
 }
(_,-) -> return ["shape match error"]
}
```


## Generic Monad Functions

$$
\begin{aligned}
& \text { sequence :: Monad } m=>[m a]->m[a] \\
& \text { sequence }=\text { fold mons (return []) } \\
& \text { where mons } p q= \\
& \text { do }\{x<-p \\
& ; x \operatorname{xs}<-q \\
& ; \operatorname{return}(x: x s) \\
& \}
\end{aligned}
$$

map :: Monad m => (a -> mb) -> [a] -> m [b] $\operatorname{mapM} f$ as $=$ sequence (map $f$ as)

