
CS 311: Computational Structures

James Hook

November 29, 2012

1 Overview

1.1 Course Goals (from course description)

Introduces the foundations of computing. Regular languages and finite au-
tomata. Context-free languages and pushdown automata. Turing machines and
equivalent models of computation. Computability. Introduction to complexity.

The main goal of the course is that students obtain those skills in the the-
oretical foundations of computing that are used in the study and practice of
computer science. A second goal is that students become familiar with Prolog
as an experimental tool for testing properties of computational structures.

Upon the successful completion of this course students will be able to:

1. Find regular grammars and context-free grammars for simple languages
whose strings are described by given properties.

2. Apply algorithms to: transform regular expressions to NFAs, NFAs to
DFAs, and DFAs to minimum-state DFAs; construct regular expressions
from NFAs or DFAs; and transform between regular grammars and NFAs.

3. Apply algorithms to transform: between PDAs that accept by final state
and those that accept by empty stack; and between context-free grammars
and PDAs that accept by empty stack.

4. Describe LL(k) grammars; perform factorization if possible to reduce the
size of k; and write recursive descent procedures and parse tables for simple
LL(1) grammars.

5. Transform grammars by removing all left recursion and by removing all
possible productions that have the empty string on the right side.

6. Apply pumping lemmas to prove that some simple languages are not reg-
ular or not context-free.

7. State the Church-Turing Thesis and solve simple problems with each of
the following models of computation: Turing machines (single-tape and
multi-tape); while-loop programs; partial recursive functions; Markov al-
gorithms; Post algorithms; and Post systems.

1

8. Describe the concepts of unsolvable and partially solvable; state the halt-
ing problem and prove that it is unsolvable and partially solvable; and use
diagonalization to prove that the set of total computable functions cannot
be enumerated.

9. Describe the hierarchy of languages and give examples of languages at
each level that do not belong in a lower level.

10. Describe the complexity classes P, NP, and PSPACE.

Note: Not all topics will receive equal priority.

1.2 Outline

In this course offering I expect to present topics in approximately this order.
I have do not yet have a detailed schedule. Professor Sheard and I are trying
to focus the course on computational problems in an attempt to ground the
subject in its motivation and application.

1. Computation, Algorithms, and Languages.

(a) Binary addition as a calculation

(b) Representing the calculation as a machine

(c) Binary addition as a language

(d) Languages as a lens to view computation

(e) Making addition “faster”

2. Regular languages

(a) Describing Finite Automata: From cartoons to structures

(b) Non-deterministic finite automata

(c) Equivalence of DFAs and NFAs

(d) Language level properties (Closure properties)

(e) The regular languages

(f) Applications of regular languages

(g) Fast addition revisited: can we speed up all DFAs?

(h) Properties revisited: using language properties to show that some
languages are not regular

3. Context-free languages

(a) Recognizing palindromes

(b) Push-down automata

(c) Describing languages with context-free grammars

(d) Ambiguity

2

(e) PDAs can parse CFGs

(f) The vocabulary of parsing (top-down, bottom-up)

4. Computability

(a) A LISP-like language

(b) A self-interpreter

Perhaps use: http://www.paulgraham.com/rootsoflisp.html

5. Computability unplugged

(a) When people were computers, reprise.

(b) Turing’s machine

(c) Simple Turing machine programming

(d) Variations on Turing machines

2 Lecture I: On Computation and Languages

2.1 Binary Addition

How do computers add numbers? The most common representation of numbers
in computers is as a fixed width string of bits. For example, the simple sum
2 + 3 = 5 is represented in binary as 010 + 011 = 101.

There are two standard circuits for addition: the ripple-carry adder and the
carry-lookahead adder. The ripple-carry adder is simpler, uses less hardware,
but introduces greater delay. The carry-lookahead adder is more complicated,
but introduces less delay. We first consider the ripple-carry adder.

The first problem to consider is how to add two bits. The first few cases are
obvious:

0 + 0 = 0 (1)

0 + 1 = 1 (2)

1 + 0 = 1 (3)

1 + 1 = ? (4)

The last case is the interesting case because it generates a carry. So to charac-
terize the sum of two bits we need two bits of result, the sum and the carry. We
can represent that in the following truth table:

a b s c
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

3

Exercise 2.1 What logical functions describe the calculation of s and c?

s = (5)

c = (6)

h(a, b) = (s, c) (7)

Now that we have described how to add 1-bit numbers, can we add 2-bit
numbers? Suppose a = a1a0 and b = b1b0. We can use the adder function above
to compute the sum and carry of a0 and b0, but then we must combine three
numbers c, a1, and b1 to get the final answer. For this reason the simple adder
above is generally called a half-adder. We need instead a full-adder:

a b cin s cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

(8)

Exercise 2.2 Build a full-adder out of two half-adders. What additional logic
is necessary? Can you write down logical formulas to compute s and cout from
a, b, and cin?

s = (9)

cout = (10)

f(a, b, cin) = let (s′, c′) = h(a, b)
(s′′, c′′) = h(s′, cin)

in (s′′,)

(11)

From the full adder, we can build an adder for any fixed number of bits. To
illustrate this, consider a 4 bit adder. Given a = a3a2a1a0 and b = b3b2b1b0,
compute s = s3s2s1s0, where s = a + b mod 24. Since we want to “ripple” the
carry all the way through the computation, we will fix c0 = 0 as the “carry in”
of the sum a0 and b0. We will label the “carry out” of ai and bi as ci+1, which
is the “carry in” of bits ai+1 and bi+1. We can then build the 4 bit adder out
of full adders as follows:

c0 = 0

(s0, c1) = f(a0, b0, c0)

(s1, c2) = f(a1, b1, c1)

(s2, c3) = f(a2, b2, c2)

(s3, c4) = f(a3, b3, c2)

4

Exercise 2.3 Draw this as a circuit (you can assume a full adder as a circuit
element). Convince yourself that you can build an adder of any fixed width in
this manner.

If you want to guarantee that there is no carry out, how many bits are needed
to represent the sum of two n-bit numbers?

2.2 Reflection

At this point we have described completely a very simple computation that is
performed by every digital device. How can we talk about this calculation?
How hard is it? How fast is it? How good is it? Is it biased towards sequential
computation? Or is it essentially parallel?

Models of computation give a vocabulary to discuss some of these issues.
This class is about models of computation. We will use this example to introduce
a few key ideas about models.

The first observation is that we have described addition as a computation.
We have given rules to calculate an output from inputs in a series of steps. Each
step is well defined, and is easily checked.

The second, is that when we are thinking of circuits, the natural model
of execution is parallel. In the circuit diagram you created in Exercise 2.3
you can imagine all the inputs a0, b0, a1, b1, . . . , a3, b3 arriving at once, and the
calculation flowing through the computational units as soon as all inputs are
available.

Now look at the pattern of availability. Since the carry out of one bit is
the carry in of the next most significant bit, no two full-adders ever operate at
the same time. This circuit does not really achieve useful parallel execution.
Only one full adder can be used at a time, since it must wait for the carry to
be output from the previous stage. So if it takes one “adder delay” to compute
each bit, then the total time to compute the 4-bit sum is 4 adder delays. It
should be clear that this generalizes to any width. So an n-bit (ripple-carry)
adder will take n adder delays to compute the answer.

This is an example of a combinatorial circuit model. A combinatorial circuit
is an acyclic graph where every computational unit can be defined as a function
by a truth-table mapping inputs to outputs. In particular, all computational
element are stateless.

In a combinatorial circuit, the inputs are sources in the graph (nodes with
no input edges). The outputs are sinks (nodes with no output edges).1 For
combinatorial circuits, the time to calculate the answer is the depth of the
graph, that is, the length of the longest path from a source to a sink. If each
full adder is considered 1 unit, then the depth of an n-bit adder is n.

Another measure of combinatorial circuits (and other parallel models) is how
much work they do. The work of a parallel computation is the number of steps

1See Hein Section 1.4.1 for basic graph definitions. Note that an acyclic graph is a directed
graph in which there are no cycles. A source is a node in a digraph with indegree 0. A sink
is a node in a digraph with outdegree 0.

5

it takes to simulate it sequentially. The ripple-carry adder is very work efficient.
It can add n-bit numbers doing approximately n full-adder work steps.

This raises the question: Is it possible to add n-bit numbers with a circuit of
depth less than n? We will find that there are circuits that add numbers with
less depth. The carry-lookahead adder, which we will discuss in the future, uses
approximately log2 n depth. However, it requires more than n work steps.

Studying models of computation will let us talk about concepts like:

• Is a problem inherently sequential?

• Can it be made parallel?

• When can we calculate a parallel computation from a sequential one?

• How can we characterize the trade-offs between solutions? (space vs. time,
depth vs. work)

In this class we will introduce a few classic models of computation. These
computational models will classify most computational problems, and articulate
key features of their computational solutions.

2.3 Describing Addition by a Machine

In our description of circuits we described computation as a directed graph
of circuit elements. In this section we begin to express this computation in a
different form. We want to build a machine, called a Mealy machine, that will
take as input the bit pairs to be added and produce as output the sum. So if
we are doing 2 + 3, which as 4 bit binary numbers is 0010 + 0011, we wish to
get the answer 5, which is 0101. Since we need to start with the low-order bits,
we will actually compute our numbers “backwards”, that is we will start with
the rightmost bits, 0 and 1, which we write (0, 1), and proceed to the leftmost
bits. More formally, the input to our machine representing the problem above
is:

(0, 1)(1, 1)(0, 0)(0, 0)

From this we wish to calculate the answer, lowest-order bit first:

1010

Mealy machines are a kind of finite state machines with output. Finite state
machines are the simplest machines we study. Finite state machines can be
described by giving a finite graph of the states, and labeling each transition
with the input and output symbols that occur on that transition.

For the addition machine we will have two states, corresponding to the value
of the carry, c. The states are 0 (no carry) and 1 (carry). We start in state 0
(no carry).

In state 0, when we read the first symbol, (0, 1), we output a 1, since 0+1 = 1.
As there was no carry, we stay in the same state 0.

6

On the second symbol, (1, 1), we output a 0, since 1 + 1 = 0 with a carry.
So we transition to state 1.

On the third symbol, (0, 0), we output a 1, since 0 + 0 = 0, but we had
a carry in. Since we output the 1 we clear the carry, returning to state 0 (no
carry).

We can represent this machine as a graph:
We can also represent this machine by giving the following specification,

which we call M :

S = {0, 1} States (finite set)
A = {0, 1} × {0, 1} Input Alphabet (finite set)
B = {0, 1} Output Alphabet (finite set)
T (0, (0, 0)) = 0 Transition function
T (0, (0, 1)) = 0
T (0, (1, 0)) = 0
T (0, (1, 1)) = 1
T (1, (0, 0)) = 0
T (1, (0, 1)) = 1
T (1, (1, 0)) = 1
T (1, (1, 1)) = 1
O(0, (0, 0)) = 0 Output function
O(0, (0, 1)) = 1
O(0, (1, 0)) = 1
O(0, (1, 1)) = 0
O(1, (0, 0)) = 1
O(1, (0, 1)) = 0
O(1, (1, 0)) = 0
O(1, (1, 1)) = 1
0 Start state

(12)

Note that this can be seen as a very simple kind of programming language
for specifying Mealy machines. To give the machine, we list

1. a finite set of states, S,

2. a finite input alphabet, A,

3. a finite output alphabet, B,

4. a transition function, T , of type S ×A→ S,

5. an output function, O, of type S ×A→ B, and

6. a start state.

These elements become part of the formal definition of a Mealy machine intro-
duced in the next section.

7

Given the definition of the machine M , we can now calculate its behavior on
the input string (0, 1)(1, 1)(0, 0)(0, 0) by using the transition function T applied
to the start state to construct a state sequence:

T (0, (0, 1)) = 0
T (0, (1, 1)) = 1
T (1, (0, 0)) = 0
T (0, (0, 0)) = 0

From the state sequence and the input we construct the output with O:

O(0, (0, 1)) = 1
O(0, (1, 1)) = 0
O(1, (0, 0)) = 1
O(0, (0, 0)) = 0

Exercise 2.4 Calculate the following sums:

1. 0 + 0

2. 7 + 7

3. 5 + 2

4. 7 + 1

For each calculation give the binary representation of the numbers, the sequence
of bit-pairs that are input to the machine (low order first), the sequence of states,
the output sequence, and the decimal number represented by the output sequence.

2.4 Reasoning about machines

Having built the Mealy machine for addition, how do we gain confidence that
it behaves as we expect? In this section we will explore how we can make
the principles that informed our design more explicit, and how to use clear
definitions to reason about the specific machine we have constructed. As we do
this, we will lay the foundation for one of the recurring themes of the course:
what we can learn about how hard a problem is by the kinds of machines that
can solve it.

The first step in building confidence in the machine we constructed is to
directly express the properties that informed its design. When we introduced the
machine we explicitly stated that the machine state represents the carry state of
the computation: 0 for no carry, 1 for carry. The transition and output functions
are consistent with the specification of the full adder (Equation 8). This can
be made even more explicit by giving equations that capture the properties. To
express the equations we label the state c:

T (c, (a, b)) = c+ a+ b div 2 (13)

O(c, (a, b)) = c+ a+ b mod 2 (14)

8

The operation a div b represents the greatest integer less than or equal to the
quotient a/b. So 3 div 2 = 1, 2 div 2 = 1, 1 div 2 = 0 and 0 div 2 = 0. 2

Exercise 2.5 Verify these formulas by inspection of the definition of T and O
in the definition of M in Equation 12.

What property characterizes correctness of the machine? The original spec-
ification was of addition. Naively we might want the property:

Proposition 2.1 (Naive Add) If a = anan−1 . . . a0 and b = bnbn−1 . . . b0
then M on input (a0, b0)(a1, b1) . . . (an, bn) generates output s0s1 . . . sn and s =
snsn−1 . . . s0 represents the sum a+ b.

In the rest of this section we will review key concepts from set theory and logic
that will enable us to state this precisely, and in a manner that address issues
to the carry.

2.4.1 Alphabets, Strings, and Languages

All of the models of computation that are considered in this class characterize
problems in terms of their symbolic representation. The basic symbols will be
drawn from a finite set, called an alphabet.

Definition 2.2 (Alphabet) An alphabet A is a finite, non-empty set.

Any finite set will do. In the addition problem it was natural to take binary
digits {0, 1} as an alphabet. In some programming language contexts it may
be desirable to regard keywords like “if” or “then” as single symbols in the
alphabet. For some hardware-inspired problems we may want to regard bytes
(units of 8 bits) as an alphabet.

What isn’t an alphabet? We can’t take the set of natural numbers as an
alphabet because it is not a finite set.

Given an alphabet, we combine symbols to form strings. Informally, a string
is just an ordered sequence of symbols. Taking binary digits as the alphabet
the following are strings: 0, 1, 00, 01, 10, 11, Strings can be concatenated
to form other strings, for example, if we concatenate 00 with 11 we get 0011.
Sometimes we will explicitly indicate concatenation with a binary operator, ◦,
such as 00 ◦ 11 = 0011. However, like multiplication in standard algebra this
occurs so frequently that when two symbols representing strings are written
next to each other concatenation is implied. That is, if x = 00 and y = 11 then
xy = x ◦ y = 0011.

When we define strings we explicitly include the empty string, which Hein
writes Λ (other texts write ε, and in lecture I may occasionally fall into that old
habit). The empty string is a left and right identity of concatenation. That is,
for any string x, x = Λ ◦ x = x ◦ Λ.

To build all the machinery we just described, we use the tools of set theory.
First, following Hein Section 3.1.2, we define the strings over an alphabet by
induction:

2See Hein, example 3.20 for an alternative presentation.

9

Definition 2.3 (Strings over A) The set of strings over a finite alphabet A
is denoted A?. It is defined inductively as follows:

• The empty string, Λ, is a string.

• If s ∈ A? and a ∈ A then as ∈ A?.

In computer science we will frequently encounter situations where we want
to name a set of strings. We call a set of strings a language. For example, the
following are all languages over {0, 1}?:

1. The string 01.

2. The set of strings that represent the number 2 in binary.

3. The set of strings that represent even numbers in binary.

4. The set of all strings of binary digits.

5. The set of strings that represent odd numbers.

6. The empty set.

7. The set of binary numbers that can be represented in 8 bits.

We will frequently make reference to the concept of language.

2.5 References

Hein discusses half-adders, full-adders, and Digital Circuits in Section 10.2.2.
on pages 640 through 644.

3 Lecture 2: Finite Automata in More Detail

3.1 Lexical analysis of numbers

In the first lecture some of the examples were derived from the calculation of
number from the digit sequence that represents it. In general, an n digit number
can be written

dn−1dn−2 . . . d0

The value of the number in base b is given by∑
i∈0..n−1

dib
i

This form isn’t very convenient for calculation. To write a program (or build a
machine) to read digit sequences and compute values, it is helpful to factor this
in the style of Horner’s method (http://en.wikipedia.org/wiki/Horner’s_
method) This can be refactored as:

d0 + b(d1 + b(d2 + b(· · ·+ bdn−1)))

10

We can calculate this efficiently as we scan the digits a1a2 . . . an as follows:

v0 = 0

vi+1 = ai+1 + bvi

When this acts on the input it generates the number represented by the digits
as vn. For example, 120 in base 3 is interpreted:

v0 = 0

v1 = 1 + 3v0 = 1

v2 = 2 + 3v1 = 5

v3 = 0 + 3v2 = 15

This method of calculating the value of a number can be used to build finite
automata that accumulate values with modular arithmetic. For example, in
lecture we built a machine that accepts even numbers written in base 3. This
machine has two states, 0 and 1, representing the two equivalence classes of
numbers mod 2. It has an input alphabet with three symbols 0, 1, 2. The
transition function is T (s, a) = a+3×s mod 2. The start state is state 0. Since
we wanted even numbers, we designate state 0 as the final state. This machine
was presented graphically in lecture on Tuesday.

Since the pattern of defining a machine is common, we define a notation for
it. Making DFAs precise is the subject of the next section.

3.2 Definition of Deterministic Finite Automata

Definition 3.1 (DFA) A Deterministic Finite Automaton (DFA) is defined
by a 5-tuple, 〈S,A, T, s, F 〉, where S is a finite, non-empty set (states), A is a
finite non-empty set (alphabet), T : S ×A→ S (the transition function), s ∈ S
(start state), and F ⊆ S (final states).

In this form, we define the machine for even numbers base three as:

M = 〈{0, 1}, {0, 1, 2}, T, 0, {0}〉 where T (s, a) = a+ 3× s mod 2

DFAs define languages by the set of strings they accept. We make that
concept precise with the following definition:3

Definition 3.2 (DFA Acceptance) A DFA M = 〈S,A, T, s, F 〉 accepts a
string w = a1a2 . . . an if there is a sequence of states r0, r1, . . . , rn such that:

1. r0 = s

2. For each i ∈ {0, . . . , n− 1}, T (ri, ai+1) = ri+1

3. rn ∈ F
3This definition is similar to Hein, page 722, but most closely follows Sipser’s text.

11

To illustrate this, consider the action of M on the string 121. Since T is a
function, the input and the start state completely determine the state sequence
(this will not be the case for all models we study). We calculate it as follows:

r0 = 0

r1 = T (0, 1) = 1

r2 = T (1, 2) = 1

r3 = T (1, 1) = 0

Now we verify the three properties of acceptance: (1) follows immediately by
choice of r0. (2) is established by the calculation of r1 to r3. (3) is established
since 0 ∈ {0}. Hence M accepts 121.

Exercise 3.1 Experiment with the definition on some more strings. Try:

1. Λ

2. 0

3. 1

4. 12

5. 11

6. 111

Having defined the action of a DFA on a string, we can now talk about the
language defined by a DFA.

Definition 3.3 The language defined by DFA M , written L(M), is the set of
strings accepted by M . That is:

L(M) = {w|M accepts w}

Exercise 3.2 Construct DFAs for the following languages:

1. The empty language.

2. The language of all strings, A?.

3. Bit strings starting with 1.

4. Bit strings ending with 0.

5. Bit strings starting with 1 or ending with 0.

6. Bit strings starting with 1 and ending with 0.

7. Bit strings containing the substring 011. Test this one on 01011.

12

3.3 Mealy definitions

Definition 3.4 (Mealy Machine) A Mealy machine is a 6-tuple, M = 〈S,A,B, T,O, s〉
where S,A, and B are finite, non-empty sets, (states, input alphabet, and output
alphabet respectively), T : S ×A→ S is the transition function, O : S ×A→ B
is the output function, and s ∈ S is the start state.

Mealy machines are string transducers. That is, they define a mapping from
strings over A to strings over B.

Definition 3.5 (Mealy output) A Mealy machine M = 〈S,A,B, T,O, s〉 out-
puts w = b1b2 . . . bn on input x = a1a2 . . . an if there is a sequence of states
r0, r1, . . . rn such that

1. r0 = s

2. T (ri, ai+1) = ri+1 for 0 ≤ i < n

3. O(ri, ai+1) = bi+1 for 0 ≤ i < n

Exercise 3.3 Illustrate the definition of output of a Mealy machine on an ex-
ample from Lecture 1.

3.4 Correctness of Mealy Machine for addition

3.4.1 Some preliminaries

Since the addition machine processes strings of digits low-order bit first, we need
a function that scans a string with this interpretation. This function is defined
by the recursion principle on strings introduced by Hein in Section 3.2.2.

num Λ = 0

num ax = a+ 2× num x where a ∈ A and x ∈ A?

To get strings of digits from strings of pairs of digits we define two more
helper functions:

fst Λ = Λ

fst (a, b)x = a(fst x)

snd Λ = Λ

snd (a, b)x = b(snd x)

To project a string of bit pairs as a number we combine these with the
shorthand notation of indexed brackets ([·]a):

[x]a = num (fst x)

[x]b = num (snd x)

13

Exercise 3.4 Build an input string for the addition machine representing a few
simple sums, perhaps 2 + 5 and 3 + 5. Verify that you can recover the intended
arguments by calculation from the input string and the projections above.

Calculate the output string generated by the Mealy machine for addition, M ,
developed in Exercise 2.5. Confirm that it computes the sum.

Exercise 3.5 Verify the equation v = (v mod 2) + 2(v div 2).

The desired correctness property can be stated:

Proposition 3.6 If M on input x outputs w then [x]a+[x]b = num w mod 2|x|.

We want to prove this property by induction on the input string, x. If we
try this the base case will work, since

[Λ]a + [Λ]b = 0 + 0 = 0 = num Λ

However, we fail to be able to prove the step since we can’t apply the induction
hypothesis in the case where a carry is generated (that is, on the input symbol
(1, 1).

To overcome this, we must generalize the proposition:

Proposition 3.7 If M in state c on input x outputs w then c + [x]a + [x]b =
num w mod 2|x|.

The proof is by induction on x.
Base case: x = Λ. In this case we must show c+[Λ]a+[Λ]b = num Λ mod 20.

Since 20 = 1 and all numbers are congruent to 0 mod 1, this equation is trivially
satisfied.

Step case: x = (a, b)x′. For the step we must prove c + [x]a + [x]b =
num w mod 2|x| given that for any c′, c′ + [x′]a + [x′]b = num w′ mod 2|x

′|,
where w = dw′.

Since the machine begins in state c, we can compute the next state, c′ using
the transition function: c′ = T (c, (a, b)) = c + a + b div 2. Similarly we can
compute the output d = O(c, (a, b)) = c + a + b mod 2. This lets us reason as
follows:

c+ [x]a + [x]b = c+ [(a, b)x′]a + [(a, b)x′]b mod 2|x|

= c+ (a+ 2[x′]a) + (b+ 2[x′]b) mod 2|x|

= c+ a+ b+ 2([x′]a + [x′]b) mod 2|x|

= (c+ a+ b mod 2) + 2(c+ a+ b div 2) + 2([x′]a + [x′]b) mod 2|x|

= d+ 2c′ + 2([x′]a + [x′]b) mod 2|x|

= d+ 2(c′ + [x′]a + [x′]b) mod 2|x|

= d+ 2(num w′) mod 2|x|

= num (dw′) mod 2|x|

= num w mod 2|x|

14

Note that although the induction hypothesis used a different modulus, since it
was used in a context multiplied by 2 the modular reasoning is sound. This
calculation establishes the desired property, completing the proof.

Exercise 3.6 Annotate every line of the equational calculation with the rule
that justifies it.

Exercise 3.7 Having proved Proposition 3.7, show that the original property in
Proposition 3.6 holds.

3.5 Other Sources

Sipser, Introduction to the theory of Computation, Second Edition, gives a very
concise and elegant presentation of this material.

Hopcroft, Motwani, and Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Second Edition, presents a detailed development.

Both texts are excellent.

4 Lecture 3: Simple Closure Properties

In Lecture 2 we saw that we can talk about the language recognized by a DFA.
Such languages are called regular.

Definition 4.1 A language is regular if it is accepted by a DFA.

In this lecture we explore the structure of the regular languages as a class of
languages. In particular, we are focusing on operations on languages (not just
strings). We are asking what operators on languages, when applied to regular
languages, will yield a regular language. Such properties are called closure
properties. For example, we say that the regular languages are closed under
complement because if L is a regular language then the complement of L is
regular.

4.1 DFAs under Complement, Union and Intersection

Complement

Definition 4.2 If L is a language over A, i.e. L ⊆ A?, then the complement
of L, L̄ is {x ∈ A?|x /∈ L}.

Proposition 4.3 If L is a regular language then L̄ is a regular language.

Proof: Since L is regular, L = L(M) for some DFA M = 〈S,A, T, s, F 〉.
Construct M ′ to recognize L̄ by taking the final states to be the relative com-
plement of F with respect to S. That is, M ′ = 〈S,A, T, s, (S − F)〉.

Before proving that L(M ′) = L̄, note that for a DFA the state is uniquely
determined by the start state and the input.

15

To show L(M ′) = L̄, we will show that L(M ′) ⊆ L̄ and L(M ′) ⊇ L̄. Consider
x ∈ L(M ′). By definition there is a sequence of states satisfying acceptance
ending in a state rn in S − F . On input x machine M reaches the same state.
Since rn /∈ F machine M rejects x.

Similarly, consider x ∈ L̄. Since x is in L̄ we know that there is not a
sequence of states for machine M witnessing acceptance. Furthermore, since
the sequence of states is uniquely determined and T is total, there is a sequence
r0, r1, . . . , rn that satisfy conditions 1 and 2 of acceptance but not 3. Specifically
rn /∈ F . Hence, rn ∈ S − F . Hence M ′ accepts x, as required.

This completes the proof.

Intersection The next operator we consider is the intersection of two regular
languages. We want to show that if L1 and L2 are regular languages then L1∩L2

is regular.
The basic idea is that we will take two DFAs, M1 and M ′ for L1 and L2

respectively, and construct a new machine N to recognize the intersection. Ma-
chine N will essentially simulate both M1 and M2 step by step. It will accept
if both machines accept.

To implement the simulation we will build the states of N out of ordered
pairs of states of M1 and M2.

More formally: Since L1 and L2 are regular languages, there are DFAs
M1 = 〈S1, A, T1, s1, F1〉 and M2 = 〈S2, A, T2, s2, F2〉 such that L1 = L(M1) and
L2 = L(M2). Construct a DFA N = 〈S1 × S2, A, T, 〈s1, s2〉, F1 × F2〉, where
T (〈r1, r2〉, a) = 〈T1(r1, a), T2(r2, a)〉.

Claim: L(N) = L1 ∩ L2. We show this equality by showing the two con-
tainments:

Subclaim 1: L(N) ⊆ L1 ∩ L2. Consider x ∈ L(N). By definition, there
exists a sequence of states 〈r10, r20〉, 〈r11, r21〉, . . . , 〈r1n, r2n〉. That satisfies the
three conditions of acceptance: (1) 〈r10, r20〉 = 〈s1, s2〉, (2) all transitions obey
function T , and (3) 〈r1n, r2n〉 ∈ F1 × F2. From this, we conclude that x ∈
L(M1) and x ∈ L(M2) since the state sequence r10, r11, . . . , r1n satisfies the
conditions for acceptance of M1 and the state sequence r20, r21, . . . , r2n satisfies
the conditions for acceptance of M2.

Subclaim 2: L1∩L2 ⊆ L(N). Consider x ∈ L1∩L2. In that case x ∈ L(M1)
and x ∈ L(M2). The definition of acceptance gives state sequences witnessing
acceptance, r10, r11, . . . , r1n and r20, r21, . . . , r2n. These can be combined into
the state sequence for N : 〈r10, r20〉, 〈r11, r21〉, . . . , 〈r1n, r2n〉. Hence, x ∈ L(N),
as required.

The proofs of the subclaims establish the claim. This completes the proof
that the regular languages are closed under intersection.

Union The construction for intersection can easily be adapted to compute
the union of two languages, L1 and L2. The simulation machinery is identical.
The only change is the set of final states. In this case the goal is to accept if
either machine accepts, not both. This changes the selection of the final states

16

for N to states that have a final state of M1 or a final state of M2. In symbols,
F1 × S2 ∪ S1 × F2.

Exercise 4.1 Complete the details of the construction and proof that the regular
languages are closed under union.

4.2 Nondeterminism and Λ transitions

The next closure operation we wish to consider is the concatenation of languages.

Definition 4.4 The concatenation of languages L1 and L2, written L1 ◦L2, or
when clear from context L1L2, is {xy|x ∈ L1, y ∈ L2}.

Exercise 4.2 1. If L1 is the language consisting exactly of the empty string
what is L1 ◦ L2?

2. If L1 is the empty language what is L1 ◦ L2.

Although it is possible to build a concatenation operation directly on DFAs,
it is inconvenient. The construction is significantly simpler if we relax the tran-
sition relation from a function to a relation. With this change the start state
and input no longer uniquely determine the state. We construct NFAs in two
steps:

Definition 4.5 (NFA version 1) A Nondeterministic Finite Automaton (NFA)
is defined by a 5-tuple, 〈S,A, T, s, F 〉, where S is a finite, non-empty set (states),
A is a finite non-empty set (alphabet), T : S × A → power (S) (the transition
relation), s ∈ S (start state), and F ⊆ S (final states).4

The only change from the definition of a DFA is the type of the transition
function. It now returns a (possibly empty) set of states. It is no longer a total
function.

Definition 4.6 (NFA version 1 Acceptance) An NFA M = 〈S,A, T, s, F 〉
accepts a string w = a1a2 . . . an if there is a sequence of states r0, r1, . . . , rn such
that:

1. r0 = s

2. For each i ∈ {0, . . . , n− 1}, ri+1 ∈ T (ri, ai+1)

3. rn ∈ F

Again, the only change in the definition of acceptance is related to the tran-
sition function. However, notice that now the state is no longer uniquely deter-
mined by the machine and the input.

4Following Hein (page 17) I’m using power (X) for the power set of set X. Other common
notations are P(X) and 2X .

17

Exercise 4.3 1. Build an NFA that accepts strings over {0, 1} with a 1 two
symbols from the right. For example, accept 100.

2. Illustrate the definition of acceptance on the strings 111, 00100, and 111111.

An additional convenience mechanism can be added to non-deterministic
automata, allowing transitions to be made without consuming any input. These
transitions are called Λ-transitions (also known as ε-transitions in some texts).
This change is also made by changing the type of the transition function, T .
For NFAs with Λ transitions the T now accepts a symbol from A or a Λ. This
is written T : S × (A ∪ {Λ})→ power (S).

This change requires we revise the definition of acceptance to allow transi-
tions on Λ’s as well as on elements of A.

The complete definitions are repeated here:

Definition 4.7 (NFA) A Nondeterministic Finite Automaton (NFA) is de-
fined by a 5-tuple, 〈S,A, T, s, F 〉, where S is a finite, non-empty set (states),
A is a finite non-empty set (alphabet), T : S × (A ∪ {Λ}) → power (S) (the
transition relation), s ∈ S (start state), and F ⊆ S (final states).

Definition 4.8 (NFA Acceptance) An NFA M = 〈S,A, T, s, F 〉 accepts a
string w = a1a2 . . . an, where ai ∈ A ∪ {Λ}, if there is a sequence of states
r0, r1, . . . , rn such that:

1. r0 = s

2. For each i ∈ {0, . . . , n− 1}, ri+1 ∈ T (ri, ai+1)

3. rn ∈ F

Exercise 4.4 1. Draw the NFA M = 〈{0, 1}, {a, b}, T, 0, {1}〉 where T (0,Λ) =
{1}.

2. Illustrate the definition of acceptance by showing M accepts Λ.

3. What does the machine do on input a?

Exercise 4.5 Construct an NFA that accepts stings over {a, b} that end with
an a followed by five other symbols. Illustrate on a few examples. Can you build
a DFA for this language? Would it be more complicated?

Exercise 4.6 Construct an NFA to recognize strings with the substring abb.
How does this compare to the DFA? Is it necessary to manage failure transitions
explicitly?

18

4.3 Concatenation and Iteration

We have not yet proven any relationship between the languages we can recognize
with NFAs and the languages we can recognize with DFAs, although it should
be obvious that any language recognized by a DFA can be recognized by an
NFA since DFAs are just very boring NFAs.

Before we address this issue, we show that languages defined by NFAs are
closed under two important operations, concatenation and iteration. In lecture
I will do this with pictures and cartoons. In these notes I’m including a few
details of the construction.

The idea of the concatenation construction is to build a machine for L1 ◦L2

from a machine for L1 and a machine for L2 by adding Λ transitions from the
final states of the first to the start state of the second, and keep the final states
of the second as the final states of the concatenation machine.

Proposition 4.9 If L1 and L2 are languages accepted by an NFA then L1 ◦L2

is a language accepted by an NFA.

Proof: Since L1 and L2 are accepted by NFAs, there are machines M1 and
M2 (with disjoint sets of states) accepting them. Let Mi = 〈Si, A, Ti, si, Fi〉.
Construct a machine N to recognize the concatenation as follows: N = 〈S1 ∪
S2, A, T, s1, F2〉 where T is defined:

T (r, a) = T1(r, a) if r ∈ S1 − F1 (1)
T (r, a) = T1(r, a) if r ∈ F1 and a 6= Λ (1)
T (r,Λ) = T1(r,Λ) ∪ {s2} if r ∈ F1 (2)
T (r, a) = T2(r, a) if r ∈ S2 (3)

Claim: L(N) = L(M1) ◦ L(M2)
Subclaim 1: L(N) ⊆ L(M1) ◦ L(M2)
Consider x ∈ L(N). By definition, there is a sequence of states r0, r1, . . . , rn

witnessing acceptance of x = a1a2 . . . an, where ai ∈ A ∪ {Λ}. By property 1
of acceptance, we have r0 = s1. By property 2 we know that all transitions
satisfy T . By property 3 we know that rn ∈ F2. By construction of T we
observe that transitions of type (1) map from S1 to S1, transitions of type (3)
map from S2 to S2. Transitions of type (2) are all Λ transitions. They can
either be from S1 to S1 by transitions consistent with T1 or from S1 to S2 by
the transitions explicitly added by the construction. Hence, any state transition
sequence will consist of some number of type (1) or type (2) transitions within
S1, a final type (2) transition to state s2 (in S2), followed by some number of
type (3) transitions within S2. Let i be the index of the last state from S1.
Then ri ∈ F1 and ri+1 = s2. Let x1 = a1a2 . . . ai and x2 = ai+2ai+3 . . . an.
Note that x = x1Λx2 = x1x2. Now observe that x1 ∈ L(M1) because every
transition is a T1 transition, the start state is s1 and the ri ∈ F1. Similarly,
note that x2 ∈ L(M2) because every transition is a T2 transition, the start state
is s2 and rn ∈ F2.

Subclaim 2: L(M1) ◦ L(M2) ⊆ L(N)

19

Proof: TBD.
Establishing the claim completes the proof of the proposition.

Iteration

Definition 4.10 The iteration or Kleene Closure of a language L, written L?,
is defined inductively:

1. Λ ∈ L?

2. If x ∈ L and y ∈ L? then xy ∈ L?

Exercise 4.7 Describe Kleene Closure of the following languages over {a, b}:

1. {a}

2. {aa}

3. {a, b}

4. ∅

5. {Λ}

Proposition 4.11 If L is accepted by an NFA then L? is accepted by an NFA

Proof: TBD.

4.4 NFAs and DFAs take 1

Sketch intuition for simulation of an NFA by a DFA. Key idea: Keep track of
the set of states that the NFA may have reached on an input string.

5 Lecture 4: Proofs About Constructions

5.1 NFAs and DFAs define same class of languages

5.2 Regular Expressions: Starting from the closure prop-
erties

5.3 NFAs for all Regular Expressions

6 Lecture 5: Regular Expressions

6.1 Calculating Regular Expressions from NFAs

Basic idea: Define an algorithm that starts with an NFA and calculates a regular
expression incrementally. To do this, we need a new model that is like an NFA
with Λ transitions, only even more general. This model allows arbitrary regular
expressions to label transitions.

Generalized NFA

20

1. Finite set of states, including at least two: the start and final state.

2. Finite alphabet

3. Transitions are a directed graph on states. The start state has indegree
zero (it is a source). The final state has outdegree zero (it is a sink).
All other possible edges exist and are labeled with a regular expression,
possibly ∅.

Exercise 6.1 Adapt the definition of acceptance to the generalized NFA model.

6.2 Minimization of DFAs

See Hein 11.3.3.

Definition 6.1 Two strings x and y are indistinguishable with respect to the
language L, written x ≡L y if ∀z.xz ∈ L↔ yz ∈ L.

Fact: ≡L is an equivalence relation.
Fact: if L is recognized by DFA M and T (s, x) = T (s, y) (where s is the

start state of M), then x ≡L y.
What about the other way? Can we build a machine out of an equivalence

relation?
Not always, but if there are only finitely many equivalence classes we can!
Quotient construction. Equivalence classes Hein 4.2.2.

7 Lecture 7: Regular and Non-regular Languages

This lecture explores the questions:

1. Are all languages regular?

2. How can we show a language is not regular?

Counting argument: How many languages? How many DFAs? Given that
we need at least one DFA per language we know that non-regular languages
exist.

Building on Minimization: Recall last time that we gave a general construc-
tion for a DFA for a language L with a finite number of equivalence classes with
respect to ≡L. What if there are an infinite number? We did not prove it, but
it will turn out that in such cases the language is not regular. (This actually
follows from the argument sketched in lecture that the partition of A? induced
by the set of strings that reach each state must be a refinement of A?/ ≡L.)

What about {anbn|n ≥ 0}? Is it regular? Can you find strings that distin-
guish ai and aj whenever i 6= j?

21

7.1 Pumping Lemma

The pumping lemma is a tool that captures a property of every regular language.
It can often be used to prove that a language is not regular by showing that a
language does not have the “pumping” property.

7.1.1 Warm up

If I have a language L that is accepted by a DFA M with k states, how many
tests do I need to perform to determine if L is infinite?

Do I learn anything from tests on strings that are shorter than k symbols?
Do I learn anything from tests on strings that take k or more symbols?
If I start with strings of length k and test all strings, when can I stop testing

and have confidence that all tests will fail?

7.1.2 Pumping idea

Any DFA with k states that accepts a string of length k or greater must repeat
at least one state in the sequence of states visited. That is, if M accepts u and
|u| ≥ k, then u can be decomposed into x, y, and z such that

1. u = xyz

2. There is a state r such that T (s, x) = r, T (r, y) = r, and T (r, z) = t for
some t ∈ F .

In this case, M accepts xyiz for all natural numbers i.

Exercise 7.1 Find a string of length 3 or greater that is accepted by the mod
3 counter constructed earlier. Identify states and strings satisfying the property
above.

The pumping lemma generalizes this property.
The challenge of generalizing this property is that in general we don’t know

what the number k is. We just know that there is some such number. This
number is informally called the “pumping length”.

Theorem 7.1 For any regular language L, there exists a natural number m,
such that for any string u, |u| ≥ m implies that there exist strings x, y, and z
such that

1. u = xyz

2. y 6= Λ (or equivalently |y| > 0)

3. |xy| ≤ m

4. xykz ∈ L for all k ≥ 0

Notational aside: Hein uses s where I use u, but s is used for the start state of
a generic machine M so I am adopting a different convention.

22

7.2 Proof of Pumping Lemma

Since L is a regular language, there is some machine M = 〈S,A, T, s, F 〉 that
recognizes it. Let the pumping length, m, be |S|. Consider a string u = u1 . . . un,
u ∈ L of length n, where n ≥ m. Since u ∈ L there exists a sequence of states
r0, r1, . . . , rn such that (1) r0 = s, (2) ri+1 = T (ri, ui+1), and rn ∈ F . Consider
the first m+ 1 states in this sequence, r0, . . . , rm. By the pigeon hole principle
there must be a repeated state in this sequence. Let i and j be the indexes
of distinct occurrences of a repeated state. Furthermore pick i < j. Take
x = u1 . . . ui, y = ui+1 . . . uj and z = uj+1 . . . un. We verify that the conditions
of the pumping lemma are verified as follows:

1. u = xyz. Note that xyz = u1 . . . uiui+1 . . . ujuj+1 . . . un which is exactly
the string u, as required.

2. |y| > 0. Since i 6= j, there is at least one symbol in the string y =
ui+1 . . . uj , as required.

3. |xy| ≤ m. From the choice of x and y we establish that |xy| = j. Since i
and j are taken from the first m + 1 states in the accepting sequence for
u, we establish that j ≤ m as required.

4. xykz ∈ L for any k. This follows from the following two facts: (1) for
any k, T (s, xyk) = rj and (2) T (rj , z) = rn. We will prove the first by
induction. The second is a consequence of the choice of z.

Proof of (1): Basis: k = 0. In this case T (s, xy0) = T (s, x) = ri, but by
choice of i and j, ri = rj as required. Step: show T (s, xyk+1) = rj given
T (s, xyk) = rj . So T (s, xyk+1) = T (s, xyky) = T (T (s, xyk), y). Applying
the induction hypothesis this becomes T (rj , y). Since ri = rj we have
T (rj , y) = T (ri, y) = rj as required. This completes the inductive proof
of the condition and the proof of the lemma.

7.3 Applications of Pumping Lemma

Example 7.2 Use the Pumping Lemma to show L = {anbn|n ≥ 0} is not
regular.

Assume for the sake of contradiction that L is regular. Since L is regular
there must be a pumping length m as given by the Pumping Lemma. Consider
the string u = ambm. Since |u| ≥ m, there are substrings x, y, and z satisfying
the conditions of the pumping lemma. By property 3 (|xy| ≤ m) and choice of
u we know that strings x and y are both in a?. By property 2 (|y| > 0) we know
that y is non-trivial. Thus we can conclude there are integers j, k, and l such
that:

x = aj

y = ak

z = albm

where m = j + k + l
l > 0

23

Consider the string xy2z. By property 4, xy2z ∈ L. However xy2z = aja2kalbm =
am+kbm. Since k > 0, m 6= m+ k, hence xy2z 6∈ L. This is a contradiction.

Having obtained a contradiction we reject the supposition that L is regular.
This concludes the proof that L is not regular.

8 Lecture 8: Mealy Revisited

In this section we return to the Mealy machine for addition introduced in Sec-
tion 3.4. When we introduced addition in Section 2.3 we described a circuit that
computed the sum of two binary numbers one digit at a time, propagating the
carry out of one position to the carry in of the next. We noted that this propa-
gation was the critical path in the time necessary for the hardware to compute
the sum. In Section 2.1 we argued that to compute a sum of n-bits it takes n
“adder delays.”

When we introduced this form of the adder, called the ripple-carry adder,
we noted that there was an adder that introduced less delay, but did more
redundant work. That adder algorithm is called the carry lookahead adder. It
will use log2 n delays to compute the sum of two n bit numbers. In this section
we show how to derive the carry lookahead algorithm from the Mealy machine
for addition.

A diagram of a carry lookahead adder can be found here: http://www.aoki.
ecei.tohoku.ac.jp/arith/mg/image/bcla.gif.

Throughout this section the goal will be to build a hardware implementation
of a fixed width adder for n bits. At times we will assume we are trying to
calculate bit 17 of the sum of two 16 bit numbers (with the implicit assumption
that there are leading zero bits on the 16 bit numbers). As before we assume
we see the least significant bit first and the most significant bit last. (This is in
reverse of standard conventions for doing arithmetic by hand.)

8.1 Speeding up Addition

Recall the definition of a Mealy machine. It includes two functions, the tran-
sition function T , that maps states and input symbols to new states, and the
output function O that maps states and input symbols to output symbols.

If we want to know what the 17th output symbol is, all we need to calculate
is the 16th state, which we could do using just T and the first 16 inputs, and
then apply the output function.

Writing symbolically and generalizing we get:

T : S ×A→ S

O : S ×A→ B

r0 = s

ri+1 = T (ri, ai+1)

bi+1 = O(ri, ai+1)

24

We can extend T to act on strings with the following definition:

T̂ (r,Λ) = r

T̂ (r, ax) = T̂ (T (r, a), x)

This lets us rewrite the computation of the output symbols as:

bi+1 = O(T̂ (s, a1 . . . ai), ai+1)

Expressing the problem in this form suggests that a good strategy to be able
to quickly compute, say, b17, will come from finding a way to quickly compute
T̂ (s, a1 . . . a16).

8.1.1 Knowns and unknowns

Recall that for addition the input symbols are pairs of binary digits, that is
A = {0, 1} × {0, 1}. To enhance readability we will write the pair of bits (a, b)

as

[
a
b

]
. When we have strings of bit pairs (a1, b1) . . . (an, bn) we will write

that as

[
a1 . . . an
b1 . . . bn

]
.

When we think of the circuit computing addition, we assume that it “sees”
the input in parallel. That is, all input symbols are available with zero delay.
However, in the carry chain adder each full adder must wait for the carry-in to
come from the lower order bits before it can generate the sum and carry-out.

To avoid the carry-propagation delay we change the representation of the
transition function. We use an isomorphic type that separates the information
available immediately (the input symbols) from the information available after
a delay (the previous state). The type of the new transition function is given
as:

T ′ : A→ (S → S)

We expect T ′ to satisfy:

T ′(a) = f where f(s) = T (s, a) (15)

For the adder, what does S → S look like? Recall S = {0, 1}, so S → S is
all functions from {0, 1} to itself. There are four such functions:

Ix = x

X0 = 1

X1 = 0

0x = 0

1x = 1

Now we can define T ′:

T ′(

[
0
0

]
) = 0

25

T ′(

[
0
1

]
) = I

T ′(

[
1
0

]
) = I

T ′(

[
1
1

]
) = 1

Exercise 8.1 Verify that T ′ satisfies Equation 15.

Exercise 8.2 Compute the fourth digit of the sum 2 + 7 using this method.

8.1.2 Composition

Another key to speeding up the calculation is to find ways to combine partial
results. Having changed representations to T ′, we can now ask how a group of
bits will change the state. We see this by extending T ′ to strings of bits:

T̂ ′(Λ) = I

T̂ ′(ax) = T ′(a) ; T̂ ′(x)

The symbol ; represents function composition in “diagrammatic” order, that is
(f ; g)(x) = g(f(x)). Why is this called diagrammatic order? Because if we
draw a directed graph where the nodes are sets and the edges are functions this
is the order in which the functions appear in the diagram. The other notation
for composition, generally written f ◦ g, is called non-diagrammatic order. It is
defined as (f ◦ g)(x) = f(g(x)). So f ; g = g ◦ f .

Why use diagrammatic order here? Because it will keep the inputs in logical
order. Consider T̂ ′(a1a2 . . . an). Using diagrammatic order we can write this as
T ′(a1) ; T ′(a2) ; . . . ; T ′(an). In non-diagrammatic order it would be reversed.
That is, T ′(an) ◦ . . . ◦ T ′(a2) ◦ T ′(a1).

The next step in developing the algorithm is to realize that we can compute
the function that results from composing functions without knowing the input.
That is, we can know f ; I = f . Similarly we know f ; 0 = 0. The following
table computes all compositions in {0, 1} → {0, 1}:

; I X 0 1
I I X 0 1
X X I 0 1
0 0 1 0 1
1 1 0 0 1

Given that we can compute the composition of functions without knowing
their inputs, this gives us a way to combine information about the inputs be-
fore we know what the carry in is. Furthermore, since function composition is
associative, that is:

f ; (g ; h) = (f ; g) ; h

we can be strategic about how we combine functions. An immediate consequence
of this is that we can decompose a string in any manner we wish:

26

Exercise 8.3 Prove by induction that T̂ ′(xy) = T̂ ′(x) ; T̂ ′(y).

Example 8.4 Consider adding eight bit binary numbers 01001101 and 01100001.
By our convention this is represented:[

10110010
10000110

]
Compute the 8th bit of the answer as follows:

s8 = O(c7,

[
0
0

]
)

c7 = T̂ (0,

[
1011001
1000011

]
)

= (T̂ ′(

[
1011001
1000011

]
))(0)

= (T̂ ′(

[
1011
1000

]
) ; T̂ ′(

[
001
011

]
))(0)

= ((T̂ ′(

[
10
10

]
) ; T̂ ′(

[
11
00

]
)) ; (T̂ ′(

[
00
01

]
) ; T̂ ′(

[
1
1

]
)))(0)

= (((T̂ ′(

[
1
1

]
) ; T̂ ′(

[
0
0

]
)) ; (T̂ ′(

[
1
0

]
) ; T̂ ′(

[
1
0

]
))) ; ((T̂ ′(

[
0
0

]
) ; T̂ ′(

[
0
1

]
)) ; (T̂ ′(

[
1
1

]
))))(0)

= (((1 ; 0) ; (I ; I)) ; ((0 ; I) ; (1)))(0)

= ((0 ; I) ; (0 ; 1))(0)

= (0 ; 1)(0)

= 1(0)

= 1

s8 = O(1,

[
0
0

]
)

= 1

In this calculation we see that with the right problem decomposition, the state
change function for a group of k bits can be calculated in log2 k compositions.

If we imagine hardware based on this principle, given two n bit number with
all bits available at once we can calculate bit k of the output as follows:

• At the first stage convert to the function symbol corresponding to the
input (T ′ai).

• At the next log2 k stages combine the function symbols according to the
function composition table above to obtain T̂ ′(a1 . . . ak−1).

• Obtain rk−1 by applying the resulting function to 0

• Compute O(rk−1, ak)

27

This notional circuit has depth log2 k + 3. All data dependencies are from one
stage to a later stage—the circuit never has to wait for data from within a stage.
Hence the total cumulative delay is log2 k + 3 computation delays.

8.1.3 Representing I, X, 0, and 1

How should the function symbols I, X, 0 and 1 be represented? For the addition
algorithm first note that X is never used. In the traditional presentation of this
algorithm the three functions that occur are represented by two bits, one called
carry generate (g), and the other called carry propagate (p). The equivalence
is given by:

f g p
I 0 1
0 0 0
1 1 0

Exercise 8.5 Given f1 represented by (g1, p1) and f2 represented by (g2, p2)
give logical formulae to compute the representation of f1 ; f2, (g, p).

Exercise 8.6 For each stage in the notional hardware algorithm above, identify
what Boolean logic computations are required to compute that stage.

8.1.4 Reusing results

But how much work is done?
So far each bit in the sum is computed independently. In this version of

the algorithm nothing learned about bit 5 is used when computing bit 6. This
is very wasteful, and is based on unrealistic assumptions about being able to
duplicate values an arbitrary number of times without cost.

The final step towards realistic carry-lookahead addition algorithms is to
organize the reuse of partial results. There are several well known hardware
algorithms that achieve significant reuse of partial results. These algorithms
are collectively called parallel prefix computation algorithms.

The parallel prefix problem is a generalization of the addition problem. It is
stated as follows: Given an associative operator � and a list of inputs a1 . . . an
compute

b1 = a1

b2 = a1 � a2
...

bn = a1 � a2 � . . .� an

This class of problems was identified by Ladner and Fischer in their 1980 paper
in the Journal of the ACM (Vol 27, No. 4, pp. 831–838). http://dx.doi.org/
10.1145/322217.322232

28

Some more recent work on parallel prefix is linked to from Mary Sheeran’s
home page: http://www.cse.chalmers.se/~ms/. This includes here recent
article in the Journal of Functional Programming, Functional and dynamic
programming in the design of parallel prefix networks, JFP 21(1). http://

journals.cambridge.org/repo_A82t9U3O.

8.2 Closing comments

The construction works for any Mealy machine. Since the state space is finite,
S → S will have a finite representation.

This means, for example, the Instruction Length Decoder (ILD) developed
in the first homework can be implemented with this technique. This allows
hardware to pull in a full cache line and identify all instructions and operands
with a circuit of depth proportional to the log of the size of the cache line.

9 Context Free Grammars

9.1 General Grammars

Note general definition of a grammar in Hein in Section 3.3.

Definition 9.1 A grammar G is specified by a tuple 〈N,T, S, P 〉 where

1. N is a finite set of nonterminal symbols (alphabet)

2. T is a finite set of terminal symbols

3. S ∈ T is a designated start symbol

4. P is a finite set of productions of the form α → β, where α and β are
strings over N ∪ T .

Define derivation for general grammar (Hein 3.3.3).

Definition 9.2 If x and y are strings over N ∪ T and α→ β ∈ P then xαy ⇒
xβy. The relation ⇒ is called the derivation relation.

Following standard conventions: ⇒ represents derives in exactly one step,
⇒+ represents derives in one or more steps, and ⇒? represents derives in zero
or more steps.

Leftmost derivation mentioned in context of general grammar (Hein p. 184).
In the notes I will use the symbol ⇒L for the leftmost derivation relation.

Language of a grammar (Hein p. 184).

Definition 9.3 If G = 〈N,T, S, P 〉 is a grammar, then the language of the
grammar is the set:

L(G) = {s ∈ T ?|S ⇒+ s}

29

9.2 Context Free Grammars

Definition 9.4 A Context Free Grammar is a restriction on general grammar
in which productions are of the form V → β for V ∈ N .

Definition 9.5 A language M over T ? is context free if M = L(G) for some
context free grammar G.

Exercise 9.1 State the corresponding restriction for a Regular Grammar.

Exercise 9.2 Give a more specific definition of leftmost derivation (⇒L)for
Context Free Grammars.

Exercise 9.3 Prove that for any CFG grammar S ⇒? x if and only if S ⇒?
L x.

Problem 9.4 Can you construct a general grammar that does not have prop-
erty 9.3?

Definition 9.6 A CFG G derives a string x ambiguously if there are two
distinct leftmost derivations. A grammar G is ambiguous if there is a string
x ∈ L(G) that is derived ambiguously.

Note: ambiguity is a property of the grammar, not the language. There
are some context free languages for which all grammars are ambiguous. Such
languages are called inherently ambiguous. They will not be discussed in this
class.

9.3 Closure Properties

Note that the Context Free Languages are closed under union, concatenation,
and Kleene star.

10 Push Down Automata

The basic idea of a push down automaton is to retain the finite control of the
finite automata, but add a single stack to function as a store. Notationally there
are several ways to do this.

It will turn out that the expressive power of deterministic PDAs and non-
deterministic PDAs will be different. We will focus primarily on the nondeter-
ministic PDAs; we will eventually show that they describe exactly the context
free languages.

Hein takes an approach that names the stack operations and introduces the
idea of a “PDA instruction” to describe how the stack and states change to-
gether. Although the notation looks quite different, Hopcroft, Motwani, and
Ullman use an isomorphic formulation of PDAs. Sipser is a little more mini-
malist. The power point materials accompanying the lecture follow Hopcoft et
al.. I will attempt to follow Hein.

30

Motivating example: build a machine to recognize {anbn|n ≥ 0}. The key
idea will be to count the number of a’s by pushing a marker on the stack for each
a. We will then want to verify that the number of b’s corresponds by popping
the markers as the b’s are read. To get exactly the number of a’s we will want
to have a distinct marker at the bottom of the stack.

To build this we need to:

1. Mark the bottom of the stack: let’s mark the bottom with the stack symbol
$.

2. Count the number of a’s by pushing a symbol, I choose †.

3. We will transition to a different state to count the b’s.

4. After consuming a b for every †, transition to an accept state without
consuming any input.

To do this, we need a way to talk about state transitions that are coupled with
stack transformations.

The basic stack operations are pop, to remove a symbol, nop, to do nothing,
and push b to add the symbol b to the top of the stack.

The basic move a PDA is described by what Hein calls an “instruction”. An
instruction is a tuple that includes: the source state, p, an input symbol (or Λ),
a, a stack symbol b, a stack operation, O, and a target state q. This instruction
is written (p, a, b, O, q).

Example 10.1 Draw a cartoon for the machine.

Definition 10.1 A Push Down Automaton (PDA) is specified by a 7 tuple
〈S,A,B, I, E, s, F 〉 where:

1. S is the set of states (finite, non-empty)

2. A is the input alphabet (finite, non-empty)

3. B is the stack alphabet (finite, non-empty)

4. I is the “instruction set”, a subset of S × (A ∪ {Λ})× B × StkCalls× S,
where StkCalls = {nop, pop} ∪ {push b|b ∈ B}.

5. E ∈ B is the initial stack symbol

6. s ∈ S is the start state

7. F ⊆ S is the set of final states

Definition 10.2 Instantaneous Descriptions

Definition 10.3 Acceptance by Final State

31

11 Primitive and Partial Recursive Functions

The primitive and partial recursive functions approach computability from a
different point of view than the Turing machine. Much like the regular expres-
sions, we will develop an inductive definition of functions. In this case, it will be
an inductive definition of functions from natural numbers to natural numbers.

We will first study the primitive recursive functions. All functions in this
class will be obviously computable, that is, you could write a program in your
favorite programming language that reads the description of a function and
computes its value on any input. They will also be total, that is, they will be
defined on all inputs.

The second class we will study are the partial recursive functions. Like the
primitive recursive functions, they will all be computable. However they will
not all be total. It will be possible to write functions that cannot be computed
on some inputs.

When defining both classes of functions we will pay careful attention to
how many arguments each function takes. We will call a function that takes n
arguments as an n-place function or a function of arity n.

11.1 Terminating Recursion

In homework and exams we have seen the following definition of addition:

Z + y = y

S(x) + y = S(x+ y)

This is a good recursive definition. It defines + as a total function. For any pair
of natural numbers x and y, the computation x+ y will terminate. Specifically,
it will require x applications of the second rule and 1 application of the first
rule.

An example of a bad definition of a function is:

f(x) = f(x)

This equation does not define the function f . If we treat this as a rewrite rule,
where the left hand side is rewritten to the right hand side, we can apply this an
infinite number of times without making any progress toward an answer. While
this equation is a bad definition, it is a reasonable property. All functions satisfy
this property.

The rule for primitive recursive functions captures a particular style of good
definitions on the natural numbers. This style says that any function f defined
by two equations:

f(Z, x1, . . . , xk) = eZ

f(S(n), x1, . . . , xk) = eS

is a good definition provided:

32

1. The expression eZ only mentions variables x1, . . . , xk and makes no refer-
ence to f .

2. The expression eS only mentions variables n, x1, . . . , xk, and there is at
most one recursive call to f which is exactly of the form f(n, x1, . . . , xk).

Note this is consistent with the style of definition Hein presents in Section 3.2.
The primitive recursion rule enforces this style of definition by requiring that

the expressions eZ and eS be characterized by two functions, h and g. The user
no longer has the freedom to write down the recursive calls. Instead they just
provide these functions, and they are automatically plugged into the following
definition schema:

f(Z, x1, . . . , xk) = h(x1, . . . , xk)

f(S(n), x1, . . . , xk) = g(n, f(n, x1, . . . , xk), x1, . . . , xk)

Returning to the definition of +, the first equation needs to satisfy h+(x1) =
x1. So h+ must be the identity function. The second equation needs to satisfy

g+(n, n+ x1, x1) = S(n+ x1)

This yields the function:
g+(a, b, c) = S(b)

In this manner we will say that + is defined by primitive recursion using
these two functions h+ and g+. Note that + is a 2-place function, h+ is a
1-place function, and g+ is a 3-place function. This pattern will generalize. To
define a k-place function f we will need a k−1 place function h and a k+1-place
function g.

11.2 Primitive Recursive Functions

There are five rules for defining the primitive recursive functions. The first three
define a set of basic primitive functions. The last two rules explain how to build
functions by combining other functions.

I. Zero For every arity k there is a constant function Z satisfying Z(x1, . . . , xk) =
0.

II. Successor There is a 1-place function, S, that computes the successor.
That is, S satisfies S(x) = x+ 1.

III. Projection For every arity k there are k projection functions, P1, . . . , Pk

satisfying: Pi(x1, . . . , xi, . . . xk) = xi.

33

IV. Composition (or Substitution) An arity k function, f , can be com-
bined with k functions of arity l, g1, . . . , gk to produce a new arity l function,
C f [g1, . . . , gk], satisfying:

C f [g1, . . . , gk](x1, . . . , xl) = f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl))

V. Primitive Recursion Given a k place function h and a k+2 place function
g, the k + 1 place function f defined by primitive recursion, written PR h g,
satisfies:

f(0, x1, . . . , xk) = h(x1, . . . , xk)

f(n+ 1, x1, . . . , xk) = g(n, f(n, x1, . . . , xk), x1, . . . , xk)

11.3 Discussion and Exercises

Note that the official definitions of the functions do not have variable names.
They are almost like an assembly language for functions.

Exercise 11.1 Compute the following:

1. P2(1, 2, 3)

2. Z(21, 17, 42)

3. S(13)

4. (C S [Z])(1, 2, 3)

5. (PR Z Z)(3)

6. (PR Z (C S (P1)))(3)

Exercise 11.2 Use rules I, II, III, and IV to do the following:

1. Use composition, successor, and zero to define the constant function 2.

2. What is the identity function?

3. Assuming f is a 2-place function build a new 1-place function g that ap-
plies f to two copies of its argument. That is g(x) = f(x, x).

4. Assuming f is a 2-place function, build a new 5-place function g that
applies f to its second and fourth arguments. That is g(x1, x2, x3, x4, x5) =
f(x2, x4).

5. Assuming f is a 2-place function build a new 2-place function g that ap-
plies f with its arguments reversed. That is g(x, y) = f(y, x).

6. Construct the 3-place function g+ used in the definition of + in the pre-
vious section.

34

Exercise 11.3 Complete the definition of + by applying rule V to the appro-
priate results from the previous exercise.

Exercise 11.4 Multiplication can be defined as follows:

Z × y = Z

S(n)× y = y + (n× y)

Construct the Primitive Recursive function that implements this definition of
multiplication. You may reuse your definition of addition.

11.4 An Implementation of Primitive Recursion

The primitive recursive functions can be defined in the programming language
Haskell as a recursive datatype, PR. A simple evaluator is given by the Haskell
function eval. What follows is a complete Haskell program:

data PR = Z

| S

| P Int

| C PR [PR]

| PR PR PR

eval :: PR -> [Integer] -> Integer

eval Z _ = 0

eval S [x] = x+1

eval (P n) xs = nth n xs

eval (C f gs) xs = eval f (map (\g -> eval g xs) gs)

eval (PR g h) (0:xs) = eval g xs

eval (PR g h) (x:xs) = eval h ((x-1) : eval (PR g h) ((x-1):xs) : xs)

nth _ [] = error "nth nil"

nth 0 _ = error "nth index"

nth 1 (x:_) = x

nth (n) (_:xs) = nth (n-1) xs

This is a simplified version of a file that is posted on the web site as Naturalpr.hs.
The type of primitive recursive functions here is called PR. The constructors

are Z, S, P, C, and PR. The constructor C takes two arguments, one of type PR

and the other is a list (indicated by the []) or PR.
The function eval is defined inductively on the type PR. It takes a value of

type PR and a list of Integer’s representing the tuple of arguments, and returns
an Integer.

The addition function can be defined by the Haskell value:

plus = PR (P 1) (C S [P 2])

In this case, we can evaluate the sum of 2 and 3 as follows:

*Main> eval plus [2,3]

5

35

11.5 Expressive Power

What functions can you write by primitive recursion?
In practice you can write most of the Integer functions that people use in

routine mathematics. However, you do not get all integer functions. You do not
even get all total computable integer functions.

The class of functions are sufficiently expressive that you can encode Turing
machines as numbers, using what is called a Gödel numbering. This is essentially
a representation of a programming language data type for the formal definition
of a Turing machine that allows you to recover the parts of the definition. In
particular, you can recover the set of states, the start state, and the set of in-
structions that define the Turing machine. You can also encode instantaneous
descriptions and computation histories as numbers, and you can define a func-
tion that can test if they are correct, halting computations. In particular, the
function T such that T (e, x, y) is true if y is a halting computation of machine
e on input x is a primitive recursive function.

11.6 Partial Recursive functions

To increase the expressive power to include all computable functions it is nec-
essary to overshoot the set of total functions, and enter the domain of partial
functions. That is, we will allow functions that are undefined on some values.

In this paradigm the basic way to introduce partiality is to add a search
capability that is defined by a potentially non-terminating recursion. Consider
the following program:

try_from :: (Integer -> Bool) -> Integer -> Integer

try_from test n =

if test n

then n

else try_from test (n + 1)

try :: (Integer -> Bool) -> Integer

try test = try_from test 0

This program takes a predicate called test and applies it to every natural
number starting from 0 and counting up until it finds one that has the expected
property.

For example, try even returns 0 and try odd returns 1.
The unbounded search rule, defined as a sixth rule for defining functions, is

given in the next section. It essentially encodes the search strategy of the try

function in the context of these integer functions.
See Hein 13.2.3.

VI. Unbounded Search Given a k+1-place function g, the k-place function
µg satisfies exactly (µg)(x1, . . . xk) = n if and only if g(n, x1, . . . , xn) = 0 and
for all y < n, g(y, x1, . . . , xn) is defined and g(y, x1, . . . , xn) 6= 0.

36

Problem 11.5 Modify eval to accommodate this additional definition scheme.
To conform with conventions used later in these notes, I recommend naming the
type of partial recursive functions MuR and naming the new data constructor Mu.
The name MuR can be pronounced as the “mu-recursive” (or µ-recursive) func-
tions. It is unfortunate that primitive and partial have the same abbreviation.

With unbounded search it is now possible to define all computable functions.
In particular, if you use µ to search through possible computation histories in the
T function discussed above you can search the space of all possible computations
of a Turing machine e on input x. From the resulting computation history y,
which will be returned by µ if such a history exists, you can decode the value
computed by the function. In this way it is possible to express any function
computed by a Turing machine as a partial recursive function.

For more information about these results you can read about the Kleene
T predicate and the Kleene Normal Form theorem. These topics are typically
covered in texts on recursion theory. A web search yielded several reasonable
articles.

12 Exploring Computability

Informally, the basic building blocks of computability are

1. A syntactic notion of program that can be written in a numbered list.

2. The ability to write down the trace of a computation that can be verified
by a series of simple (terminating) steps.

3. Having a large enough set of programs, in particular there needs to be a
universal program (also known as an interpreter) that can read a program
and its input and generate its output.

For Turing machines we had Turing machine descriptions, computation his-
tories, and we asserted the existance of universal Turing machines.

For the partial recursive functions we will give a few more details. We
have already shown an interpreter written in Haskell for the primitive recursive
functions. The extension of this interpreter to partial recursive functions is
given as an exercise (Problem 11.5).

12.1 Pairing Functions

Pairing functions take a pair of natural numbers and encode them as a single
natural number. The pairs can be recovered from the original number.

Cantor developed a pairing function that is one-to-one and onto. There
is a reasonable article on these pairing functions on Wikipedia (http://en.
wikipedia.org/wiki/Pairing_function).

The code fragment below implements Cantor’s pairing function:

37

pair :: Integer -> Integer -> Integer

pair k1 k2 = ((k1 + k2) * (k1 + k2 +1) ‘div‘ 2) + k2

The pairs can be deconstructed by this code fragment:

unpair :: Integer -> (Integer,Integer)

unpair z = let w = (squareRoot (8*z + 1) - 1) ‘div‘ 2

t = (w * w + w) ‘div‘ 2

y = z - t

x = w - y

in (x, y)

Some sample values:

0 1 2 3 4
0 0 2 5 9 14
1 1 4 8 13 19
2 3 7 12 18 25
3 6 11 17 24 32
4 10 16 23 31 40

Using pairing functions, it is possible to encode other datatypes. For exam-
ple, the following fragment of Haskell encodes and decodes lists of Integers:

eList :: [Integer] -> Integer

eList [] = pair 0 0

eList (x:xs) = pair 1 (pair x (eList xs))

dList :: Integer -> [Integer]

dList l = let (t,c) = unpair l

(h, tl) = unpair c

in case t of

0 -> []

1 -> h:(dList tl)

_ -> [] -- make it total; nonsense is nil

In this encoding each list element is represented by a pair. If the first element
is a 0 then it represents the empty list (nil). If the first element is a 1 then
it represents a non-empty list (cons). In that case the second element can be
decoded into the head of the list and the tail of the list (which is itself a pair).

For example:

[] (0, 0) 0
[2] (1, (2, (0, 0))) 13

[2, 3] (1, (2, (1, (3, (0, 0))))) 246, 751
[2, 3, 4] (1, (2, (1, (3, (1, (4, (0, 0))))))) 94, 523, 914, 127, 548, 123, 793, 040, 376

In a similar manner the encoding can be extended to any datatype. For
example, the primitive recursive functions can be encoded and decoded with
the following fragment:

38

ePR :: PR -> Integer

ePR Z = pair 0 0

ePR S = pair 1 0

ePR (P i) = pair 2 (toInteger i)

ePR (C f gs) = pair 3 (pair (ePR f) (eList (map ePR gs)))

ePR (PR g h) = pair 4 (pair (ePR g) (ePR h))

dPR x = let (t,b) = unpair x

(b1,b2) = unpair b -- note: Lazy

in case t of

0 -> Z

1 -> S

2 -> P (fromInteger b)

3 -> C (dPR b1) (map dPR (dList b2))

4 -> PR (dPR b1) (dPR b2)

_ -> Z

Using this encoding, called a Gödel numbering, we can see that the Gödel
number of the plus function (PR P1 (C S [P2])) is

*Goedel> ePR $ PR (P 1) (C S [P 2])

4511739842654672905730185440573223378237806974280320

*Goedel> dPR $ 4511739842654672905730185440573223378237806974280320

PR (P 1) (C S [P 2])

This example uses the $ notation from Haskell, which stands for an open paren-
thesis that extends as far to the right as possible, Thus f $ x + 1 means the
same thing as f (x + 1). Contrast this with f x + 1, which means (f (x)) + 1.
While this idiom at first seems unusual, in many cases it will remove quite a bit
of syntactic clutter from programs.

12.2 Why we need Partial Functions

How hard is it to define a function that is not in the set of Primitive Recursive
Functions?

In this section we will write a Haskell function that is total, computable, but
not primitive recursive. We will build it by using a technique called diagonal-
ization. The concept of diagonalization was introduced by Cantor to show that
the reals and the natural numbers have different cardinalities, that is, there is
not a one-to-one correspondence between them. Hein presents diagonalization
in Section 2.4.3 on page 125.

In Cantor’s construction, a countable list of decimal expansions of real num-
bers is assumed. From that list a procedure is defined to build a number that
is different from all in the list. This number is built by taking the diagonal of
the list—building a number that differs from the first in the first position, from
the second in the second position, and so on.

39

How do we diagonalize over the primitive recursive functions? We start by
building a table that lists all such functions and their values:

x dPR x 0 1 2 3 4 5 6 7 8 9 10
0 Z 0 0 0 0 0 0 0 0 0 0 0
1 S 1 2 3 4 5 6 7 8 9 10 11
2 Z 0 0 0 0 0 0 0 0 0 0 0
3 P1 0 1 2 3 4 5 6 7 8 9 10
4 S 1 2 3 4 5 6 7 8 9 10 11
5 Z 0 0 0 0 0 0 0 0 0 0 0
6 C Z [] 0 0 0 0 0 0 0 0 0 0 0
7 P1 0 1 2 3 4 5 6 7 8 9 10
8 S 1 2 3 4 5 6 7 8 9 10 11
9 Z 0 0 0 0 0 0 0 0 0 0 0

10 PR Z Z 0 0 0 0 0 0 0 0 0 0 0

We want to compute a function that differs from all functions in the list,
so we construct a function that adds one to the result found on the diagonal
above. That is, where the diagonal above has as its first 10 values:

0, 2, 0, 3, 5, 0, 0, 7, 9, 0, 0

We wish to define a function that instead returns:

1, 3, 1, 4, 6, 1, 1, 8, 10, 1, 1

Such a function can be expressed in Haskell as

diagonal x = (eval p (ncopies (arity p) x))+1

where p = dPR x

This function takes one natural number argument, x. It interprets it as a
primitive recursive function, p. It then evaluates that function (applied to its
own encoding x, repeated as many times as necessary to match the arity of the
function). It adds one to the result.

The Haskell function diagonal is a total computable function. It is defined
on all natural numbers.

The function diagonal is different from any primitive recursive function.
Why? Suppose it was primitive recursive. Then there would be some program,
p in the language of primitive recursive functions, and that function would have
a number, n, such that n = ePR p. But p(n) = z for some number z, and
diagonal n = z + 1. Thus diagonal 6= p. Having obtained a contradiction we
conclude that diagonal is not a primitive recursive function.

What facts about primitive recursive functions did we use in this argument?
Not very many. We relied on the property that primitive recursive functions
are total. We relied on the existence of the eval function. And we relied on the
existence of a function from numbers to programs. This situation is called an
effective enumeration.

40

Definition 12.1 An effective enumeration of a set of functions is a mapping
of the natural numbers onto the set of functions, φ0, φ1, . . ., together with a
computable function eval such that eval i x = φi(x).

Theorem 12.2 Any effective enumeration of a set of total functions is incom-
plete. That is, there are total computable functions that are not included in the
enumeration.

The proof is simply a generalization of the argument given above that there
is a total computable function that is not primitive recursive.

Corollary 12.3 There is no effective enumeration of the set of total computable
functions.

Thus any theory of the computable functions that includes all total com-
putable functions must also include partial functions.

Problem 12.1 How does the possibility that eval might not terminate change
the argument that effective enumerations are incomplete? (This is probably too
unstructured to assign as a problem, but is an important question to consider.)

12.3 Pairing is Primitive Recursive

To implement pairing with the Primitive Recursive functions, the basic arith-
metic and logical operations you implemented in homework need to be extended.
Some of the operations are given here:

-- Elementary arithmetic

mkconst 0 = Z

mkconst n = C S [mkconst (n-1)]

one = mkconst 1

plus = PR (P 1) (C S [P 2])

times = PR Z (C plus [P 2, P 3])

pred = PR Z (P 1)

monus’ = PR (P 1) (C pred [P 2])

monus = C monus’ [P 2, P 1]

-- Elementary logic

false = Z

true = one

and = PR false (P 3)

or = PR (P 1) true

not = PR true false

ifte = PR (P 2) (P 3)

41

-- Predicates

iszero = PR true false

nonzero = PR false true

equal = C and [C iszero [monus],

C iszero [monus’]]

lteq = C iszero [monus]

lt = C nonzero [monus’]

In this style of programming, one tool that is helpful is to search for values
that satisfy a predicate. In this development I made extensive use of a simple
operation called bounded minimization, which returns the least value less than
a bound that makes a predicate hold.

Mathematically, if P (x1, x2, . . . , xk) is a predicate (returns 0 if false, 1 if
true), then

µx < n.P (x, x2, . . . , xk)

returns the least x such that P (x, x2, . . . , xk) 6= 0, provided there is such an x less
than n. If no such element exists it returns a value x ≥ n. Note that this is very
similar to the unbounded search capability in rule VI, in Section 11.6. Adding
the bound significantly restricts its expressive power, and makes it possible to
define search within the Primitive Recursive functions.

Bounded minimization gets implemented as a k-place primitive recursive
function that takes the bound as its first argument. That function is generated
by the Haskell function bmin, which takes the predicate P and its arity as
arguments. For example, the following interaction reports the least integer less
than 2 that satisfies the true predicate and the least integer less than 2 that
satisfies the false predicate:

*PRCantor> eval (bmin true 1) [2]

0

*PRCantor> eval (bmin false 1) [2]

2

The Haskell function that generates instances of bmin is given below. First,
the “model” code of a Haskell function that behaves like the primitive recursive
function is given. Then the code that actually generates the primitive recursive
predicate is given.

-- Bounded minimization (search)

bmin_model p (0:xs) = 1

bmin_model p (x:xs) = let r = (bmin_model p (x-1:xs))

in if r < x then r

else if p (x-1:xs) then x-1 else x

bmin p n = PR one

(C ifte [C lt [P 2, P 1],

P 2,

42

C ifte [C p (P 1: take (n-1) (map (\j -> P j) [3..])),

P 1,

C S [P 1]]])

In this code, the expression [3..] indicates the infinite list of numbers starting
at 3. These numbers are turned into instances of the projection function by the
map function. Thus this expression:

map (\j -> P j) [3..])

stands for the infinite list of projection functions, [P 3, P 4, ...]. The
function take only requires the first n-1 elements of this list. Haskell uses a
technique called lazy evaluation that makes it possible to write functions that
manipulate potentially infinite objects, as long as they ultimately only demand
finitely many values.

For example, here is a hand formatted version of the output of a simple
predicate generate by bmin:

*PRCantor> bmin false 1

PR (C S [Z])

(C (PR (P 2) (P 3))

[C (C (PR Z (C S [Z]))

[PR (P 1) (C (PR Z (P 1)) [P 2])])

[P 2,P 1],

P 2,

C (PR (P 2) (P 3))

[C Z [P 1],P 1,C S [P 1]]])

Which can be simplified to:

*PRCantor> bmin false 1

PR one

(C ifte

[C lt

[P 2,P 1],

P 2,

C ifte

[C false [P 1],

P 1,

C S [P 1]]])

Once bounded minimization is available, it is possible to write naive search-
based algorithms to find values easily characterized by predicates. These algo-
rithms tend to be inefficient, but they do demonstrate that the functions can
be computed by functions in the class.

For example, we can implement division of natural number a by natural
number b as a search for the least q such that q ∗ b ≤ a and a < (q+ 1) ∗ b. This
condition is coded up as the three place predicate isdiv that expects arguments
q, a and b:

43

isdiv = C and [C lteq [C times [P 1, P 3], P 2],

C lt [P 2, C times [C S [P 1], P 3]]]

Using this predicate and bounded minimization we can implement natural num-
ber division as follows:

div = C (bmin isdiv 3) [C S [P 1], P 1, P 2]

In a similar manner, we can implement a very inefficient square root algorithm:

issqrt = C and [C lteq [C times [P 1, P 1],P 2],

C lt [P 2, C times [C S [P 1], C S [P 1]]]]

sqrt = C (bmin issqrt 2) [P 1, P 1]

With these functions defined, we can now give primitive recursive definitions
that implement Cantor’s pairing function. The function pair constructs pairs.
The function pi1 is the first (left) projection. The function pi2 is the second
(right) projection.

-- Cantor Pairing Function and Projections

pair = C plus [C div [C times [C plus [P 1, P 2],

C S [C plus [P 1, P 2]]],

mkconst 2],

P 2]

w = C div [C pred [C sqrt [C S [C times [mkconst 8, P 1]]]],

mkconst 2]

t = C div [C plus [C times [w,w],w], mkconst 2]

pi2 = C monus [P 1,t]

pi1 = C monus [w,pi2]

At this point we have demonstrated that primitive recursive functions are
sufficiently powerful to express functions that allow data structures like lists,
trees, and program abstract syntax, to be encoded in the natural numbers.

In particular, the primitive recursive pairing functions that can encode the
descriptions of Turing machines, inputs to Turing machines, instantaneous de-
scriptions, and computation histories.

We will assert without demonstration that, using similar techniques, we can
define primitive recursive functions that test properties of lists, trees, and pro-
grams. However, henceforth we will demonstrate such ideas with programming
languages, such as Haskell, Scheme, or C.

Problem 12.2 Given a 3-place primitive recursive function f , write an equiv-
alent 1-place function f ′ that takes as input a single number representing the
triple as nested pairs and behaves as f . That is, f ′(pair x1 (pair x2 x3)) =
f(x1, x2, x3).

44

Discussion The diagonalization presented here generalizes well to all effective
enumerations of total functions, but it does not reflect much of the essence of
the class of primitive recursive functions. Ackermann developed a function that
diagonalizes over the primitive recursive functions in a different way. He con-
structs a function that grows faster than any primitive recursive functions. Hein
discusses Ackermann’s function in Section 13.2.3. He presents a proof sketch. If
you wish to elaborate the proof sketch, consider calculating the number n based
on the nesting of PR operations in the primitive recursive function.

Ackermann’s diagonalization is in some ways more satisfying than the one
presented above, but is specific to the primitive recursive functions.

12.4 Certifying Computation with Traces

One of the characteristics of a computational system is that it proceeds by a
series of easily verifiable steps. For a given system, a set of these verifiable steps
is called a trace. For the finite automata we only needed to check that the state
transitions were appropriate for the input. For push down automata we had
to additionally manage the stack contents. For Turing machines we introduced
instantaneous descriptions or configurations and verified that one followed from
another according to the definition of the machine.

How can we certify a computation for the primitive recursive or partial
recursive functions? Each step is a very simple calculation. In this section we
present a simple record of that calculation as a tree. The root node of the tree
is at the bottom of the picture. The children of each node are those lines above
that node that are indented exactly 3 spaces. For example, consider the adding
2 and 3 (e.g. plus(2, 3) = PR(P 1)(C S [P 2]) (2, 3)). That calculation is
described by the trace tree in the picture below.

10 S (4) = 5

9 P 2 (1,4,3) = 4

8 C S [P 2] (1,4,3) = 5

7 S (3) = 4

6 P 2 (0,3,3) = 3

5 C S [P 2] (0,3,3) = 4

4 P 1 (3) = 3

3 PR (P 1) (C S [P 2]) (0,3) = 3

2 PR (P 1) (C S [P 2]) (1,3) = 4

1 PR (P 1) (C S [P 2]) (2,3) = 5

Each line represents an easily verified calculation step. Line 1 asserts that
the root of the computation (add(2, 3)) is equal to 5. To certify this we must
verify the assertions on lines 2 and 8, which are the immediate sub-trees of the
root (note the indentation). These two subtrees follow directly from the way a
PR node is evaluated. Study the case for primitive recursion on non-zero inputs
(the second line below) from Section 11.2

45

f(0, x1, . . . , xk) = h(x1, . . . , xk)

f(n+ 1, x1, . . . , xk) = g(n, f(n, x1, . . . , xk), x1, . . . , xk)

The first subtree PR (P 1) (C S [P 2]) (1,3) = 4 (line 2) follows from
the computation f(n, x1, . . . , xk), and the second subtree C S [P 2] (1,4,3) = 5

(line 8) follows from the computation g(n, f(n, x1, . . . , xk), x1, . . . , xk) where the
sub term f(n, x1, . . . , xk) has been replaced by its value (4) to get g(n, 4, x1, . . . , xk).

The subtree on line 2 is also a PR term so it has subtrees on lines 3 and 5.
This pattern repeats until a node without subterms (Z, S, or (P n)) is reached,
in which case we have a simple assertion (lines 4, 6, 7, 9, and 10).

What rules are we using to verify the calculations? For the atomic primitive
recursive functions Z, S and Pi, we directly verify that the result is obtained
from the arguments correctly.

For the composition form (C f [g1, . . . , gk])(x1, . . . , xn) = z, we need to
verify that the tree has the shape:

f(y1, . . . , yk) = z
gk(x1, . . . , xn) = y1
...
g1(x1, . . . , xn) = yk

C f [g1, . . . , gk])(x1, . . . , xn) = z

Where each C node has k+ 1 subtrees Note that the subtrees beginning on lines
5 and 8 conform to this pattern.

For the primitive recursion form we have two cases: one for when the first
argument is zero and one for when the first argument is nonzero. We consider
them in order.

In the zero case we have the form (PR f g)(0, x2 . . . , xk) = z. In this case
we verify we have the tree has shape

f(x2, . . . , xn) = z
(PR f g) (0, x2 . . . , xk) = z

Where the PR node has one subtree. This occurs in line 3 of the example.
For the nonzero case we have the form (PR f g)(x + 1, x2 . . . , xk) = z. In

this case we need to verify that the tree has the shape

g(x, r, x2, . . . , xn) = z
(PR f g)(x, x2 . . . , xk) = r

(PR f g)(x+ 1, x2 . . . , xk) = z

Where the PR node has exactly two subtrees. This pattern occurs in line 1 and
2 of the example.

Exercise 12.3 Test your understanding of the example by showing the explicit
correspondence between these rules and the example. Label each part of the
example with the corresponding variables in the three patterns presented above.

46

Exercise 12.4 Develop trace trees for the following computations:

1. (PR (C S [Z]) Z) [0]

2. (PR (C S [Z]) Z) [1]

3. (PR Z (C S [Z])) [0]

4. (PR Z (C S [Z])) [1]

5. (PR (P 2) (P 3)) [1,2,3]

Problem 12.5 How can we verify a step of unbounded search? Develop verifi-
cation rules for rule VI.

12.4.1 Haskell code to generate and verify traces (optional)

To demonstrate that this is all directly computable we implement a version
of trace trees in Haskell. We represent a step as a triple consisting of the
function, the arguments, and the result. We represent this by the Haskell type
(PR,[Integer],Integer). A trace tree will store such a triple at every node
in the tree. A trace tree node is good if every stored triple is consistent with
the sub-trees of that node. A trace tree root justifies the final calculation in the
trace. So, the example justifies that plus of 2 and 3 is 5.

First we give the Haskell code to define a trace tree.

data TraceTree x = Ztree x

| Stree x

| Ptree Int x

| Ctree (TraceTree x) [TraceTree x] x

| PRtree0 (TraceTree x) x

| PRtreeN (TraceTree x) (TraceTree x) x

| Stuck x

deriving (Show, Eq)

tag (Ztree x) = x

tag (Stree x) = x

tag (Ptree n x) = x

tag (Ctree x xs y) = y

tag (PRtree0 y z) = z

tag (PRtreeN x y z) = z

tag (Stuck z) = z

res x = z where (_,_,z) = tag x

Note that each node type is tagged with a polymorphic component of type x.
We can select this tag using the tag function. In our code the tag is always
a triple (PR,[Integer],Integer), so the function res selects the final result
from a node.

47

The checking function is similar in its structure to the eval function, in that
it analyzes the structure of the primitive recursive function.

trace2:: PR -> [Integer] -> TraceTree (PR,[Integer],Integer)

trace2 Z xs = Ztree (Z,xs,0)

trace2 S (x:xs) = Stree (S,(x:xs),x+1)

trace2 S [] = Stuck (S,[],0)

trace2 (P n) xs | n <= length xs = Ptree n (P n,xs,nth n xs)

trace2 (P n) xs = Stuck (P n,xs,0)

trace2 (C f gs) xs = let gtraces = map (\g -> trace2 g xs) gs

ys = map res gtraces

ftrace = trace2 f ys

in Ctree ftrace gtraces (C f gs,xs,res ftrace)

trace2 (PR g h) (0:xs) =

let trace = trace2 g xs

in PRtree0 trace (PR g h,0:xs,res trace)

trace2 (PR g h) (x:xs) =

let rectrace = trace2 (PR g h) ((x-1):xs)

r = res rectrace

htrace = trace2 h ((x-1):r:xs)

r’ = res htrace

in PRtreeN rectrace htrace (PR g h,x:xs,r’)

trace2 (PR g h) [] = Stuck (PR g h,[],0)

The trace in the example was generated by this function, although it was
pretty printed by a function (not shown) which indicates the tree structure by
indenting.

In addition to generating trace trees it is possible to check them to see if
they are good traces. The following code verifies that a trace is good. The do

construct propagates the failure behavior of Maybe using a mechanism called a
Monad.

check:: TraceTree (PR,[Integer],Integer) -> PR -> Maybe Integer

check (Ztree (Z,xs,0)) Z = Just 0

check (Stree (S,x:xs,y)) S =

if y == (x+1) then Just y else Nothing

check (Ptree n (P m,xs,i)) (P k) =

if (n==m) && (k==m) && (m <= length xs) && (nth m xs == i)

then Just i

else Nothing

check (Ctree t ts (C f gs,xs,i)) (C h ks) =

do { ys <- zipM check ts gs

; j <- check t f

; let (_,zs,k) = tag t

; if (zs == ys) && (j == i) && (k == i) && (h==f) && (gs==ks)

then (Just i)

else Nothing }

48

check (PRtree0 t (PR f g,0:xs,i)) (PR h j) =

do { z <- check t f

; if (z==i) && (f==h) && (g==j)

then Just i

else Nothing }

check (PRtreeN s t (PR f g,n:xs,i)) (PR h j) =

do { r <- check s (PR f g)

; k <- check t g

; let (_,ws,_) = tag s

(_,zs,_) = tag t

; if (f==h) && (g==j) && (k==i) && (ws==(n-1):xs) && (zs==(n-1):r:xs)

then (Just i)

else Nothing }

check x y = Nothing

Problem 12.6 Extend to the partial recursive functions. That is, build a ver-
ifier and tracing evaluator to verify and generate verifiable traces for the MuR

functions.

As you study this program look at the structure of the recursion. The check
function is defined by induction on TraceTree. It is a total function.

Exercise 12.7 Define a function verify that takes a TraceTree for a compu-
tation and returns a Boolean.

12.4.2 Trace Summary (NOT optional).

Note: This section does not follow the notation from Hein. In some cases it
follows notation from Hopcroft, Motwani, and Ullman.

Consider the following descriptions of traces for variaous systems.

• DFA. A DFA A = (Q,Σ, S, F, T) accepts a string x1x2 . . . xn if there
exists a sequence of states q1q2 . . . qnqn+1 if

1. q1 = S

2. qi+1 = T (qi, xi)

3. qn+1 ∈ F

Given such a DFA, a string, and a sequence of states, it is easy to verify
whether or not the string is accepted. (A Hein consistent definition of
acceptance appears in this document as Definition 3.2.)

• PDA. A PDA5 can be defined as a 7-tuple: A = (Q,Σ,Γ, δ, S, Z0, F). A
configuration (or Instantaneous Description (ID)) is a triple (q, w, α) such
that

5See Definition 10.1 for a Hein consistent definition of PDA. Refer to class notes for the
corresponding definition of acceptance. The definition Hook presented in lecture corresponds
more closely to that found in Sipser than the one presented here.

49

1. q is the current state

2. w is the remaining part of the input

3. α is the current content of the stack, with top of the stack on the left

Two IDs are related: (q, aw,Xβ) ` (p, w, aβ) when (p, α) ∈ δ(q, a,X)

A PDA accepts a string w = x1x2 . . . xn by final state if there exists a
sequence of related IDs id1 ` id2 ` . . . ` idn such that.

1. id1 = (S,w,Z0)

2. idn = (p,Λ, α) for some state p ∈ F , and any stack α.

Given a chain of related IDs, it is easy to verify that a string is accepted.

• Turing Machine. A Turing machine can be defined as a 7-tuple: A =
(Q,Σ,Γ, δ, q0, B, F). 6 An ID for a TM is a string of the form αqβ where

1. α ∈ Σ∗

2. β ∈ Σ∗

3. q ∈ Q
4. The string α represents the non-blank tape contents to the left of the

head.

5. The string β represents the non-blank tape contents to the right of
the head, including the currently scanned cell.

Two IDs are related

1. if δ(q, xi) = (p, Y,Right). then (x1 . . . xi−1qxi . . . xk) ` (x1 . . . xi−1 Y p xi+1 . . . xk)

2. if δ(q, xi) = (p, Y,Left). then (x1 . . . xi−1qxi . . . xk) ` (x1 . . . p xi−1 Y xi+1 . . . xk)

A turing machine accepts a string w if exist a sequence of related IDs
id1 ` id2 ` . . . ` idn such that.

1. id1 = q0 w

2. idn = α p β where p ∈ F

Given a chain of related IDs, it is easy to verify that a string is accepted.

• Primitive Recursive Functions. A primitive recusive function p ap-
plied to arguments (x1, . . . , xn) computes a value n, if there exists a trace
tree t, such that the tag of t is (p, (x1, . . . , xn), n) and check t p = Just n

6In the Hook section an isomorphic definition was used, but with Hein’s notation. The
primary differences are that instead of a transition function, Hein presents a set of transitions
instructions. Also, in addition to moving the tape head left and right, Hein specifies an
operation that does not move the tape head.

50

Conclusion: All the computational systems we have studied can be verified
by simple terminating programs, given the appropriate trace object. It may be
very expensive to find a trace, but given a trace it is easy to check that if the
trace really describes the computation. In addition the strategy we showed for
the primitive recursive functions easily extends to traces for the partial recursive
functions.

Problem 12.8 Consider the context free grammars. Outline what a trace for
a context free grammar might look like. Define a simple CFG, and provide a
trace in the form you described above for a short string.

12.5 Partial Recursive Functions are Turing Complete

We will briefly return to a point made at the end of Section 11.6. The partial
recursive functions are Turing complete.

We review the evidence supporting this claim.

1. We can represent Turing machine descriptions as numbers using primitive
recursive pairing functions.

2. We can represent Turing machine instantaneous descriptions and compu-
tation histories as numbers using pairing functions.

3. We can write a primitive recursive predicate, known as the Kleene T
predicate, that takes the description of a Turing machine, e, the input to
the Turing machine, x, and a computation history of the Turing machine,
y, and returns 1 if y is a halting computation history of machine e on
input x, and 0 otherwise.

4. We can write a primitive recursive function, U , that takes a halting com-
putation history y and returns the final output of the computation.

5. Given a Turing machine e and input x, we can use unbounded search to
define a partial recursive function of e and x that returns the least y such
that T (e, x, y) holds. That function can be composed with U to yield a
partial function θ such that θ(e, x) = z if and only if the Turing machine
e on input x computes value z.

The last three steps of this argument are asserted without proof.

12.6 Limits of Computability

The first step in exploring the limits of computability is to understand how non-
termination can be handled. We start by taking two concepts we have developed
above, evaluation and verification, and observing that even when evaluation is
partial we can make the corresponding verification total, provided we have a
certificate justifying the calculation.

In Section 12.4 we showed explicitly how to construct a verifier for the prim-
itive recursive functions. We left as an exercise the verification of the partial

51

recursive functions (Problems 12.5, 12.6). We have described in Section 12.5
how to verify computation histories for Turing machines.

In this section we assume that the partial recursive functions have been
implemented and are represented by the datatype MuR (for mu-recursive, or µ-
recursive). The MuR type has the same constructors as PR, plus the additional
constructor Mu. As before we have a function eval that takes a MuR and a
list of Integer arguments and returns an Integer. However, now eval is a
partial function. For example, the MuR program Mu S is undefined on all values.
The eval function goes into an infinite loop when given this program. (These
datatypes and functions were developed in Problem 11.5).

Furthermore, we assume that we have developed a tracing evaluator, trace,
for the MuR functions, and a trace verifier, verify, that determines if a trace is
valid. These functions were described in Problem 12.6. They are very similar
to the analogous functions on PR given above, except that, like eval, the trace
generator can run forever. Of course the verifier can only verify finite traces.
Note that the verifier is still a total function.

It is convenient to repackage verify as the following function valid, which
captures the goal that it is verifying:

valid result trace = verify trace && (last trace == result)

The first observation we make is that if the MuR function f applied to numbers
n1, . . . , nk is defined and equal to z, then eval of f(n1, . . . , nk) returns z and
trace produces a certificate c such that valid (f(n1, . . . , nk) = z) c returns
True.

The construction of the functions trace and valid can be seen as a proof
of this statement.

The next observation is that if there is a certificate that validates f(n1, . . . , nk) =
z then f(n1, . . . , nk) is indeed defined and equal to z. These observations are
combined in the theorem:

Theorem 12.4 eval f (n1, . . . , nk) = z if and only if there exists a certificate
c such that valid (f(n1, . . . , nk) = z) c.

Note that this theorem relates the partial function eval to the total function
valid.

12.6.1 Halting

In Section 12.2, we used the technique of diagonalization to construct a total
function that was not primitive recursive. In this section we will use a sim-
ilar technique to prove that there is not a total MuR function halt with the
specification that halt f (n1, . . . , nk) if and only if f(n1, . . . , nk) is defined.

Suppose there were such a function. Then we could construct the function:

diagonal x = if (halt (dMuR x) (repeat x)) then loop else 0

loop = loop -- a value that loops

52

If we apply diagonal to the code for a value that loops when given its own
description as input, such as Mu S, we should get a function that terminates and
returns 0. On the other hand, if we apply diagonal to a program that returns a
value when applied to its own description, then the diagonal function will loop.

Since by supposition halt is a partial recursive function, the function diagonal

is also partial recursive. Since it is a partial recursive function, there is formal
description of it in the type MuR. Call that description p. Furthermore, p can be
encoded by a natural number, n using the eMuR function. That is there is an n
such that n = eMuR p.

Consider diagonal n.
Elaborating the definition gives:

if (halt (dMuR n) (repeat n)) then loop else 0

Since we know n to represent p, and know p is a one place function, this can be
rewritten as:

if (halt p [n]) then loop else 0

We proceed by cases on halt p [n]:

• halt p [n] = true

In this case diagonal n simplifies to loop. But that contradicts that
p = diagonal since p halts on n while diagonal loops.

• halt p [n] = false

In this case diagonal n returns 0. This also contradicts p = diagonal

since p does not halt on n while diagonal returns the value 0.

Having obtained contradictions in both cases, we conclude that there is no
partial recursive function equivalent to halt, as we had assumed.

This proves that the halting problem is not computable:

Theorem 12.5 There is no total computable function that computes halt.

The halting problem can be formulated for all reasonable Turing complete
models of computation.

13 Consequences of the Halting Problem

So what do we know exactly about the Halting problem?
We know that if a partial recursive function p is defined on input x then

the eval function will terminate and find the answer. That means we can
algorithmically say “yes” to the question “does p halt on x?” in all cases where
the answer is “yes”.

However, we know that there is no total function that decides the halting
problem.

53

Are these statements in conflict? Not exactly.
We will classify how hard a problem is by how well a computable function

can answer a language membership question. There are three cases we look at
today: (1) we can definitively say yes or no to any question is x ∈ A with a
total computable function, (2) we can definitively say yes if x ∈ A, but in some
cases where x 6∈ A the function is undefined, and (3) none of the above: there
are both x ∈ A and y 6∈ A on which the function in question is undefined.

In the first case we will say that A is decidable. There is a total function p
that says yes or no to all questions about membership in A. (p x↔ x ∈ A)

In the second case we will say that A is recognizable (Hein calls this partially
decidable). That is, there is a partial recursive function that accepts all elements
of A. (x ∈ A→ p x)

The third case we will refer to as not recognizable.
In the context of this vocabulary, we will say that the set of pairs (p, x) such

that p halts on input x is recognizable but not decidable.
In practical terms, decidability is a strongly desirable property. If a problem

is not decidable then any total algorithmic solution will be approximate. That
is, if it always generates an answer it will get some answers wrong!

Do undecidable problems arrise in practice? The answer to this is yes, par-
ticularly in the context of properties of programs. There is a general theorem,
known as Rice’s theorem, that says that any non-trivial property of program
behaviors is undecidable. That is, if φ is a nontrivial property of programs, and
we want φ(p) to imply φ(q) whenever p and q behave the same on all inputs
(i.e. ∀x.p(x) = q(x)), then φ is undecidable.

14 Reflection on Course Objectives

Recall the course objectives. I add comments on how well they have been
addressed in this offering.

1. Find regular grammars and context-free grammars for simple languages
whose strings are described by given properties.

I believe students should have significant mastery of the ability to define
regular and context free languages from natural language descriptions.

2. Apply algorithms to: transform regular expressions to NFAs, NFAs to
DFAs, and DFAs to minimum-state DFAs; construct regular expressions
from NFAs or DFAs; and transform between regular grammars and NFAs.

Students should have significant mastery of some of these algorithms. The
notion that formal descriptions can be manipulated algorithmically to
build related formal descriptions should now be familiar.

3. Apply algorithms to transform: between PDAs that accept by final state
and those that accept by empty stack; and between context-free grammars
and PDAs that accept by empty stack.

As above.

54

4. Describe LL(k) grammars; perform factorization if possible to reduce the
size of k; and write recursive descent procedures and parse tables for simple
LL(1) grammars.

Not discussed in detail.

5. Transform grammars by removing all left recursion and by removing all
possible productions that have the empty string on the right side.

Some familiarity in homework.

6. Apply pumping lemmas to prove that some simple languages are not reg-
ular or not context-free.

Experience in homework and exams.

7. State the Church-Turing Thesis and solve simple problems with each of
the following models of computation: Turing machines (single-tape and
multi-tape); while-loop programs; partial recursive functions; Markov al-
gorithms; Post algorithms; and Post systems.

Basic ideas covered in lecture and study questions. Not all formal systems
considered.

8. Describe the concepts of unsolvable and partially solvable; state the halt-
ing problem and prove that it is unsolvable and partially solvable; and use
diagonalization to prove that the set of total computable functions cannot
be enumerated.

Last two lectures. Exposure. Not mastery.

9. Describe the hierarchy of languages and give examples of languages at
each level that do not belong in a lower level.

Integrates the whole class.

10. Describe the complexity classes P, NP, and PSPACE.

Not discussed

55

