Transforming Grammars

CF Grammar Terms

Parse trees.
— Graphical representations of derivations.
— The leaves of a parse tree for a fully filled out tree is a sentence.

Regular language v.s. Context Free Languages
— how do CFL compare to regular expressions?
— Nesting (matched ()’s) requires CFG,’s RE's are not powerful enough.

Ambiguity

— A string has two derivations

— E>E+E | E*E | id
* X+x*y

Left-recursion
— E->E+E | E*E | id
— Makes certain top-down parsers loop

Grammar Transformations

Backtracking and Factoring

Removing ambiguity.

— Simple grammars are often easy to write, but might be
ambiguous.

Removing Left Recursion

Removing A-productions

Removing Left Recursion

 Top down recursive descent parsers require non-left recursive
grammars

 Technique: Left Factoring
E->E+E | E*E|] 1d

E -> 1d

C
E> > +
*

m m [m
m rm
N N

>

General Technique to remove direct left recursion

* Every Non terminal with productions
T -> T n I T m (left recursive productions)

I a I b (non-left recursive productions)

“a” and “b” because they are
the rhs of the non-left
recurive productions.

e Make a new non-terminal T’

e Remove the old productions

 Add the following productions = on
T -> aT> | bT AN
T’ _> nT’|mT’|A /T\n
/T\ n
T n

Backtracking and Factoring

Backtracking may be necessary:
S -> ee | bAC | bAe
A-> d | CA

try on string “bcde”

S -> bAC (by S -> bAc)
-> DbcAC (by A -> cA)
-> pcdc (by A->d)
But now we are stuck, we need to backtrack to
— S -> bAC

— And then apply the production (S->bAe)

Factoring a grammar
— Factor common prefixes and make the different postfixes into a new non-

terminal
S -> ee | DbAQ
Q ->cC | e

Removing ambiguity.

e Adding levels to a grammar
E->E+E | E*E| id]| (E)

Transform to an equivalent grammar

E > E+T | T
T ->T*F|F
F >id | (E)

Levels make formal the notion of precedence. Operators
that bind “tightly” are on the lowest levels

The dangling else grammar.

e st -> if exp then st else st
| if exp then st
| id := exp

 Note that the following has two possible parses
if x=2 then if x=3 then y:=2 elsey := 4

if x=2 then (if x=3 then y:=2) elsey := 4
if x=2 then (if x=3 then y:=2 else y := 4)

Adding levels (cont

e Original grammar

st ::= 1f exp then st else st
| 1f exp then st
| 1d = exp

 Assume that every St between then and else must be matched, i.e.
it must have both a then and an else.

e New Grammar with addtional levels

st -> match | unmatch
match -> if exp then match else match
| id:=exp

unmatch -> if exp then st
| if exp then match else unmatch

Removing A-productions

It is possible to write every CFL that does not
contain A (the empty string) without any A in
any RHS

S -> aDaE
D->bD | E
E->cE| A

Rules

1. Find all non-terminal, N, such that N derives A

2. For each production, A -> w, create new
oroductions, A -> w’, where w’ is derived from w
oy removing non-terminals that derive A (found

in rule 1 above)

3. Create a new grammar from the original
productions, together with the productions
formed in step 2, removing any productions of

the form, A-> A..

S -> aDaE
D->bD | E
E->ce| A

Find all non-terminal, N, such that N E->A
derives A

S->aDa
For each production, A -> w, create new D-> A
productions, A -> w’, where w’ is derived E->c
from w by removing non-terminals that
derive A (found in rule 1 above)
Create a new grammar from the original S ->aDaE
productions, together with the D->bD | E
productions formed in step 2, removing E->cE
any productions of the form, A-> A .

S->aDa

E->c

Top to bottom example

e Start with an easy (to understand) grammar
 Transform it to one that is easier to parse
 Apply some of the transformation rules

RE -> RE bar RE
RE -> RE RE

RE -> RE *

RE -> id

RE —> ~

RE -> (RE)

A datatype suitable for representing
Regular Expresions

e Build an instance of the datatype:

data RegExp a

= Lambda -— the empty string "
| Empty -— the empty set

| One a -— a singleton set {a}
| Uniton (RegExp a) (RegExp a) —— union of two RegExp
| Cat (RegExp a) (RegExp a) —— Concatenation

I

Star (RegExp a) -- Kleene closure

Ambiguous grammar

RE -> RE bar RE
RE -> RE RE

RE -=> RE *

RE -> id

RE > 2

RE -> (RE)

eTransform grammar by layering

eTightest binding operators (*) at
the lowest layer

eLayers are Alt, then Concat, then
Closure, then Simple.

Alt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure
Concat -> Closure

Closure -> simple star
Closure -> simple

simple -> 1d | CAIt) | ~

Alt —> Alt bar Concat Left Recursive Grammar
Alt -> Concat

Concat -> Concat Closure
Concat -> Closure

Closure -> simple star
Closure -> simple

simple ->1d | AIt) | »

Alt -> Concat moreAlt
For every Non terminal with productions moreA I t -> Bar Concat mo reAI t
T ::=Tn | Tm (leftrecursive prods) I A
b -lef i d
I a | (non-leftrecursive prods) | concat -> Closure moreConcat
Make a new non-terminal T’ moreConcat -> Closure moreConcat
Remove the old productions I A _
Closure -> Simple Star
Add the following productions =
T 2= aT> | bT”) | Simple
T2 2= n T] m T | A S|mp|e -> 1d
| C Alt)
I N\

	Transforming Grammars
	CF Grammar Terms
	Grammar Transformations
	Removing Left Recursion
	General Technique to remove direct left recursion�
	Backtracking and Factoring
	Removing ambiguity.
	The dangling else grammar.
	Adding levels (cont)
	Removing L-productions
	Rules
	Slide Number 12
	Top to bottom example
	 A datatype suitable for representing�Regular Expresions
	Ambiguous grammar
	Left Recursive Grammar

