
Transforming Grammars

CF Grammar Terms
• Parse trees.

– Graphical representations of derivations.
– The leaves of a parse tree for a fully filled out tree is a sentence.

• Regular language v.s. Context Free Languages

– how do CFL compare to regular expressions?
– Nesting (matched ()’s) requires CFG,’s RE's are not powerful enough.

• Ambiguity

– A string has two derivations
– E -> E + E | E * E | id

• x + x * y

• Left-recursion
– E -> E + E | E * E | id
– Makes certain top-down parsers loop

Grammar Transformations

• Backtracking and Factoring

• Removing ambiguity.
– Simple grammars are often easy to write, but might be

ambiguous.

• Removing Left Recursion

• Removing Λ-productions

Removing Left Recursion

• Top down recursive descent parsers require non-left recursive
grammars

• Technique: Left Factoring
E -> E + E | E * E | id

E -> id E’

E’ -> + E E’

 | * E E’

 | Λ

General Technique to remove direct left recursion

• Every Non terminal with productions
T -> T n | T m (left recursive productions)

 | a | b (non-left recursive productions)

• Make a new non-terminal T’
• Remove the old productions
• Add the following productions

 T -> a T’ | b T’
T’ -> n T’ | m T’ | Λ

T

T n

T n

T n

a

(a | b) (n | m) *

“a” and “b” because they are
the rhs of the non-left
recurive productions.

Backtracking and Factoring

• Backtracking may be necessary:
S -> ee | bAc | bAe
A -> d | cA

• try on string “bcde”
 S -> bAc (by S -> bAc)

 -> bcAc (by A -> cA)

 -> bcdc (by A -> d)

• But now we are stuck, we need to backtrack to
– S -> bAc
– And then apply the production (S -> bAe)

• Factoring a grammar

– Factor common prefixes and make the different postfixes into a new non-
terminal

S -> ee | bAQ
Q -> c | e
A -> d | cA

Removing ambiguity.
• Adding levels to a grammar
E -> E + E | E * E | id | (E)

Transform to an equivalent grammar

E -> E + T | T
T -> T * F | F
F -> id | (E)

Levels make formal the notion of precedence. Operators

that bind “tightly” are on the lowest levels

The dangling else grammar.

• st -> if exp then st else st
 | if exp then st
 | id := exp

• Note that the following has two possible parses
if x=2 then if x=3 then y:=2 else y := 4

if x=2 then (if x=3 then y:=2) else y := 4
if x=2 then (if x=3 then y:=2 else y := 4)

Adding levels (cont)

• Original grammar
 st ::= if exp then st else st
 | if exp then st
 | id := exp
• Assume that every st between then and else must be matched, i.e.

it must have both a then and an else.
• New Grammar with addtional levels

st -> match | unmatch
match -> if exp then match else match
 | id := exp
unmatch -> if exp then st
 | if exp then match else unmatch

Removing Λ-productions

• It is possible to write every CFL that does not
contain Λ (the empty string) without any Λ in
any RHS

• S -> aDaE
• D -> bD | E
• E -> cE | Λ

Rules

1. Find all non-terminal, N, such that N derives Λ

2. For each production, A -> w, create new
productions, A -> w’, where w’ is derived from w
by removing non-terminals that derive Λ (found
in rule 1 above)

3. Create a new grammar from the original
productions, together with the productions
formed in step 2, removing any productions of
the form, A -> Λ .

1. Find all non-terminal, N, such that N
derives Λ

2. For each production, A -> w, create new
productions, A -> w’, where w’ is derived
from w by removing non-terminals that
derive Λ (found in rule 1 above)

3. Create a new grammar from the original
productions, together with the
productions formed in step 2, removing
any productions of the form, A -> Λ .

S -> aDaE
D -> bD | E
E -> cE | Λ

E -> Λ

S -> aDa
D -> Λ
E -> c

S -> aDaE
D -> bD | E
E -> cE

S -> aDa
E -> c

Top to bottom example

• Start with an easy (to understand) grammar
• Transform it to one that is easier to parse
• Apply some of the transformation rules

RE -> RE bar RE
RE -> RE RE
RE -> RE *
RE -> id
RE -> ^
RE -> (RE)

 A datatype suitable for representing
Regular Expresions

• Build an instance of the datatype:

data RegExp a

 = Lambda -- the empty string ""

 | Empty -- the empty set

 | One a -- a singleton set {a}

 | Union (RegExp a) (RegExp a) -- union of two RegExp

 | Cat (RegExp a) (RegExp a) -- Concatenation

 | Star (RegExp a) -- Kleene closure

Ambiguous grammar

RE -> RE bar RE
RE -> RE RE
RE -> RE *
RE -> id
RE -> ^
RE -> (RE)

Alt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure

Concat -> Closure

Closure -> simple star

Closure -> simple

simple -> id | (Alt) | ^

•Transform grammar by layering

•Tightest binding operators (*) at
the lowest layer

•Layers are Alt, then Concat, then
Closure, then Simple.

Left Recursive Grammar Alt -> Alt bar Concat

Alt -> Concat

Concat -> Concat Closure

Concat -> Closure

Closure -> simple star

Closure -> simple

simple -> id | (Alt) | ^

Alt -> Concat moreAlt
moreAlt -> Bar Concat moreAlt
 | Λ
Concat -> Closure moreConcat
moreConcat -> Closure moreConcat
 | Λ
Closure -> Simple Star
 | Simple
Simple -> Id
 | (Alt)
 | ^

 For every Non terminal with productions
T ::= T n | T m (left recursive prods)
 | a | b (non-left recursive prods)

Make a new non-terminal T’

 Remove the old productions

Add the following productions

 T ::= a T’ | b T’
 T’ ::= n T’ | m T’ | Λ

	Transforming Grammars
	CF Grammar Terms
	Grammar Transformations
	Removing Left Recursion
	General Technique to remove direct left recursion�
	Backtracking and Factoring
	Removing ambiguity.
	The dangling else grammar.
	Adding levels (cont)
	Removing L-productions
	Rules
	Slide Number 12
	Top to bottom example
	 A datatype suitable for representing�Regular Expresions
	Ambiguous grammar
	Left Recursive Grammar

