
• Grammar - quaduple 
– A set of tokens (terminals): T 
– A set of non-terminals: N 
– A set of productions { lhs ->  rhs , ... } 

• lhs in N 
• rhs is a sequence of N U T 

– A Start symbol: S (in N) 
 

• Shorthands 
– Provide only the productions 

• All lhs symbols comprise N 
• All other sysmbols comprise T 
• lhs of first production is S 

Context Free Grammar – Quick Review 



Using Grammars to derive Strings 

• Rewriting rules 
– Pick a non-terminal to replace. Which order? 

• left-to-right 
• right-to-left 

• Derives relation:       αAγ ⇒ αβχ   
– When      A -> β      is a production 

 
• Derivations (a list if productions used to derive a string from a grammar). 

 

• A sentence of G:  L(G)   
– Start with S 
–  S ⇒∗  w       where   w   is only terminal symbols 
– all strings of terminals derivable from S in 1 or more steps 

 
 

 



CF Grammar  Terms 
• Parse trees. 

–  Graphical representations of derivations.  
– The leaves of a parse tree for a fully filled out tree is a sentence. 

 
• Regular  language v.s. Context Free Languages 

– how do CFL compare to regular expressions? 
– Nesting (matched ()’s) requires CFG,’s RE's are not powerful enough. 

 
• Ambiguity 

– A string has two derivations 
– E ->  E + E      |      E * E      |      id 

•  x + x * y 
 

• Left-recursion 
– E ->  E + E     |     E * E     |    id 
– Makes certain top-down parsers loop 



Parsing 

• Act of constructing derivations (or parse trees) 
from an input string that is derivable from a 
grammar. 
 

• Two general algorithms for parsing 
– Top down   -  Start with the start symbol and expand 

Non-terminals by looking at the input 
• Use a production on a left-to-right manner 

– Bottom up  -  replace sentential forms with a non-
terminal 

• Use a production in a right-to-left manner 



Top Down Parsing 

• Begin with the start symbol and try and derive the parse 
tree from the root. 
 

• Consider the grammar 
1. Exp -> Id  |   Exp + Exp   |    Exp * Exp  |   ( Exp ) 
2. Id  -> x | y 

 
Some strings derivable from the grammar 
  x 
x+x 
 x+x+x, 
 x * y 
 x + y * z    ... 



Example Parse (top down) 
– stack        input 

 
     Exp               x + y * z 
 
        Exp               x + y * z 
      /    |   \ 
 Exp   +  Exp 
  
      Exp              y * z 
     /    |  \ 
 Exp  +  Exp 
  | 
id(x) 
 



Top Down Parse (cont) 

      Exp                 y * z 
   /   |   \ 
 Exp  +    Exp 
  |           / | \ 
id(x)    Exp *  Exp 
  
       Exp                     z 
    /      |    \ 
 Exp   +   Exp 
  |            /    |   \ 
id(x)     Exp *  Exp 
             | 
            id(y) 



Top Down Parse (cont.) 

       Exp                      
     /    |    \ 
 Exp  +    Exp 
  |             /   |  \ 
id(x)    Exp *  Exp 
             |          | 
            id(y)     id(z) 
   
 



Problems with Top Down Parsing 
• Backtracking may be necessary: 

– S ::=  ee  |   bAc   |   bAe 
– A  ::=  d  |  cA 
try on string   “bcde” 

 
• Infinite loops possible from (indirect) left recursive 

grammars. 
–  E ::=  E + id  |  id 

 
• Ambiguity is a problem when a unique parse is not 

possible. 
 
• These often require extensive grammar restructuring 

(grammar debugging). 



Bottom up Parsing 
• Bottom up parsing tries to transform the input string into 

the start symbol. 
• Moves through a sequence of sentential forms (sequence 

of Non-terminal or terminals). Tries to identify some 
substring of the sentential form that is the rhs of some 
production. 

• E ->  E + E      |      E * E      |      x 
• x + x * x 
• E + x * x 
• E + E * x 
• E * x 
• E * E 
• E 
 

The substring (shown in color and italics) 
for each step)  may contain both terminal 
and non-terminal symbols. This string is 
the rhs of some production, and is often 

called a handle. 



Bottom Up Parsing 
Implemented by Shift-Reduce parsing 

 
• data structures: input-string and stack. 
 
• look at symbols on top of stack, and the input-string and decide: 
 

– shift (move first input to stack)  
 
– reduce (replace top n symbols on stack by a non-terminal) 
 
– accept (declare victory)  
 
– error (be gracious in defeat) 



Example Bottom up Parse 
Consider the grammar: (note: left recursion is NOT a problem, 

but the grammar is still layered to prevent ambiguity) 
 
 
 
 
 

1. E ::= E + T   
2. E ::= T 
3. T ::= T * F   
4. T ::= F 
5. F ::= ( E )   
6. F ::= id 
 

   

stack        Input         Action 
 
                   x + y          shift 
   x               + y            reduce 6 
   F               + y            reduce 4 
   T               + y            reduce 2 
   E               + y            shift 
   E +             y              shift 
   E + y                          reduce 6 
   E + F                          reduce 4 
   E + T                          reduce 1 
   E                                accept 

The concatenation of the stack and the input is a sentential form. The input 
is all terminal symbols, the stack is a combination of terminal and non-
terminal symbols 



LR(k) 

• Grammars which can decide whether to shift 
or reduce by looking at only k symbols of the 
input are called LR(k).  
– Note the symbols on the stack don’t count when 

calculating k 
 

• L is for a Left-to-Right scan of the input 
 

• R is for the Reverse of a Rightmost derivation 



Problems (ambiguous  grammars) 

1) shift reduce conflicts:      stack        Input             Action 
                                                   x + y        + z                ? 
 
                                               stack                 Input        Action 
                                               if x t if y t s2      e s3         ? 
 
2) reduce reduce conflicts: 
   suppose both procedure  call and array reference have similar syntax: 

– x(2)  := 6 
– f(x) 

stack            Input      Action 
id ( id            ) id         ? 
 
Should id  reduce to a parameter or an expression. Depends on whether the bottom most 

id is an array or a procedure. 



Parsing Algorithms 

• Top Down 
– Recursive descent parsers 
– LL(1) or predictive parsers 

• Bottom up  
– Precedence Parsers 
– LR(k) parsers 



Top Down Recursive Descent Parsers 
• One function (procedure) per non-terminal. 

 
• Functions call each other in a mutually recursive way. 

 
• Each function “consumes” the appropriate input. 

 
• If the input has been completely consumed when the function 

corresponding to the start symbol is finished, the input is parsed. 
 

• They can return a bool (the input matches that non-terminal) or 
more often they return a data-structure (the input builds this parse 
tree) 

 
• Need to control the lexical analyzer  (requiring it to “back-up” on 

occasion) 
 



Example Recursive Descent Parser 
E   ->   T + E  |  T 
T   ->   F * T  |  F 
F   ->  x  |  (  E  ) 
 
expr =  
  do { term 
     ; iff (match '+') expr } 
 
term =  
  do { factor 
     ; iff (match '*') term } 
   
factor =  
   pCase  
   [ 'x' :=> return () 
   , '(' :=> do { expr; match ')'; return ()}  
   ] 
 
 

 



Predictive Parsers 
• Use a stack to avoid recursion. Encoding parsing 

rules  in a table. 
 

E 

E’ 

T 

T’ 

F 

id + * ( ) $ 

T E’ T E’ 

+ T E’ ε ε 

F T’ F T’ 

ε *  F  T’ ε ε 

id ( E ) 



Table Driven Algorithm  
push start symbol 

Repeat 

   begin 

    let X top of stack, A next input 

        if terminal(X) 

           then if X=A 

                      then pop X; remove A 

                      else error() 

           else (* nonterminal(X) *) 

  begin 

    if M[X,A] = Y1 Y2 ... Yk 

       then pop X; 

              push Yk YK-1 ... Y1 

       else error() 

end 

until stack is empty, input = $ 



Example Parse 

Stack                 Input 

E                      x + y $  

E’ T                   x + y  $ 

E’ T’ F                x + y $ 

E’ T’ id               x + y $ 

E’ T’                  + y $  

E’                     + y $  

E’ T +                 + y $ 

E’ T                   y $ 

E’ T’ F                y $ 

E’ T’ id               y $ 

E’ T’                  $ 

E’                     $ 

                       $ 

E 

E’ 

T 

T’ 

F 

id + * ( ) $ 

T E’ T E’ 

+ T E’ ε ε 

F T’ F T’ 

ε *  F  T’ ε ε 

id ( E ) 



Bottom up table driven parsers 

• Operator precedence parsers 
• LR parsers 



Example operator precedence parser 

+ 
* ( 

) 

id $ + 

* ( 

) 

id 
$ 

< : < : 
< : 

< : 
< : < : 

< : < : < : < : 

< : < : < : < : 

: > : > : > 
: > : > : > 

: > : > : > : > 
: > : > : > : > 

= 

input :   x * x + y 
stack                Input             Action 
$ E * E              + y  $             reduce! 

topmost  
terminal 

next input 

accept 



Precedence parsers 
• Precedence parsers have limitations 
 

• No production can have two consecutive non-terminals 
 

• Parse only a small subset of the Context Free Grammars 
 

• Need a more robust version of shift- reduce parsing. 
 

• LR - parsers 
– State based  - finite  state  automatons (w / stack) 
– Accept the widest range of grammars 
– Easily constructed  (by a machine) 
– Can be modified to accept ambiguous  grammars by using precedence and associativity information. 



LR Parsers 
• Table Driven Parsers 
• Table is indexed by state and symbols  (both term and non-term) 
• Table has two components. 

– ACTION   part 
– GOTO  part 

state 
terminals non-terminals 

0 
1 

2 

id    +      *      (       )      $ E    T    F 

shift (state = 5) 

reduce(prod = 12) 
goto(state = 2) 

ACTION GOTO 



LR Table encodes FSA 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

( 

T 

E 

) 

F 

* id 

( 

* 

+ ( 
F 

id 

id 

F 

F 

id 

E 

( 

T 

+ T 

E -> E + T   |  T 

T -> T * F   |  F 

F -> ( E )   |  id 

transition on terminal is a 
shift in action table, on  
nonterminal is a goto entry 



Table vs FSA 
• The Table encodes the FSA 
 
• The action part encodes 

– Transitions  on  terminal  symbols (shift) 
– Finding the end of a production  (reduce) 

 
• The goto part encodes 

– Tracing  backwards the symbols on the RHS 
– Transition  on non-terminal, the LHS 

 
• Tables can be quite compact 



LR Table 
state 

terminals non-terminals 

0 
1 

2 
3 

4 
5 

6 
7 

8 

9 

10 

11 

id + * ( ) $ E T F 

s5 s4 1 2 3 

s6 acc 

r2 s7 r2 r2 
r4 r4 r4 r4 

s5 s4 8 2 3 
r6 r6 r6 r6 

s5 s4 9 3 

s5 s4 10 

s6 s11 

r1 s7 r1 r1 

r3 r3 r3 r3 

r5 r5 r5 r5 



Reduce Action 

• If the top of the stack is the rhs for some production n 
• And the current action is “reduce n” 
• We pop the rhs, then look at the state on the top of the stack, and index 

the goto-table with this state and the LHS non-terminal. 
• Then push the lhs onto the stack in the new s found in the goto-table. 

 
(?,0)(id,5)                * id + id $ 

 
Where:                   Action(5,*) = reduce 6 
Production 6 is:    F ::= id 
And:                       GOTO(0,F) = 3 
 
(?,0)(F,3)                 * id + id $ 
 



Example Parse  Stack                                           Input 
(?,0)                   id * id + id $ 
(?,0)(id,5)             * id + id $ 
(?,0)(F,3)              * id + id $ 
(?,0)(T,2)              * id + id $ 
(?,0)(T,2)(*,7)         id + id $ 
(?,0)(T,2)(*,7)(id,5)   + id $ 
(?,0)(T,2)(*,7)(F,10)   + id $ 
(?,0)(T,2)              + id $ 
(?,0)(E,1)              + id $ 
(?,0)(E,1)(+,6)         id $ 
(?,0)(E,1)(+,6)(id,5)   $ 
(?,0)(E,1)(+,6)(F,3)    $ 
(?,0)(E,1)(+,6)(T,9)    $ 
(?,0)(E,1)              $ 

1) E -> E + T        
2) E -> T 
3) T -> T * F         
4) T -> F 
5) F -> ( E )         
6) F -> id 



Review 

• Bottom up parsing transforms the input into the 
start symbol. 

• Bottom up parsing looks for the rhs of some 
production in the partially transformed 
intermediate result 

• Bottom up parsing is OK with left recursive 
grammars 

• Ambiguity can be used to your advantage in 
bottom up partsing. 

• The LR(k) languages = LR(1) languages = CFL 



More detail 

• The slides that follow give more detail on 
several of the parsing algorithms 

• These slides are for your own edification. 



Using ambiguity to your advantage 

• Shift-Reduce and Reduce-Reduce errors are caused by ambiguous 
grammars. 

 
• We can use resolution mechanisms to our advantage. Use an 

ambiguous grammar (smaller more concise, more natural parse 
trees) but resolve ambiguity using rules. 

 
• Operator Precedence 

– Every operator is given a precedence 
– Precedence of the operator closest to the top of the stack and the 

precedence of operator next on the input decide shift or reduce. 
– Sometimes the precedence is the same. Need more information: 

Associativity information. 



Operations on Grammars 

• The Nullable, First, and Follow functions  
 

– Nullable: Can a symbol derive the empty string. False for 
every terminal symbol. 
 

– First:  all the terminals that a non-terminal could possibly 
derive as its first symbol. 

•  term or nonterm  -> set( term ) 
• sequence(term + nonterm) -> set( term) 

 
– Follow: all the terminals that could immediately follow the 

string derived from a non-terminal. 
• non-term -> set( term ) 



Example First and Follow Sets 

E  ->  T E' $ 
E' ->  + T E'  
E’ ->  Λ 
T  ->  F T' 
T' ->  * F T'   
T’ ->  Λ 
F  ->  ( E )  
F  ->  id 
 
First E  = { "(", "id"}      Follow E  =  {")","$"} 
First F  = { "(", "id"}      Follow F  =  {"+","*",”)”,"$"} 
First T  = { "(", "id"}      Follow T  =  {{"+",")","$"} 
First E' = { "+", ε}          Follow E' =  {")","$"} 
First T' = { "*", ε}           Follow T' =  {"+",")","$"} 
 

• First of a terminal is itself. 
• First can be extended to sequence of symbols. 



Nullable 

• if Λ is in First(symbol) then that symbol is 
nullable. 

• Sometime rather than let Λ be a symbol we 
derive an additional function nullable. 
 

• Nullable (E’) = true 
• Nullable(T’) = true 
• Nullable for all other symbols is false 

E  ->  T E' $ 
E' ->  + T E'  
E’ ->  Λ 
T  ->  F T' 
T' ->  * F T'   
T’ ->  Λ 
F  ->  ( E )  
F  ->  id 



Computing First 
• Use the following rules until no more terminals 

can be added to any FIRST set. 
 

1) if X is a term. FIRST(X) = {X} 
2) if X ->  Λ is  a production then add Λ to FIRST(X), 

(Or set nullable of X to true). 
3) if X is a non-term and 

– X ->  Y1  Y2  ... Yk 
– add a to FIRST(X) 

• if  a in FIRST(Yi) and 
• for all j<i  Λ in FIRST(Yj)  

 
• E.g..  if Y1 can derive Λ then  if a is in FIRST(Y2) it 

is surely in FIRST(X) as well. 



Example First Computation 

• Terminals 
– First($) = {$},   First(*) = {*},  First(+) = {+},   ... 

• Empty Productions 
– add Λ to First(E’), add Λ to First(T’) 

• Other NonTerminals 
– Computing from the lowest layer (F) up 

• First(F) = {id , ( } 
• First(T’) = { Λ, * } 
• First(T) = First(F) = {id, ( } 
• First(E’) = { Λ, + } 
• First(E) = First(T) = {id, ( } 

E  ->  T E' $ 
E' ->  + T E'  
E’ ->  Λ 
T  ->  F T' 
T' ->  * F T'   
T’ ->  Λ 
F  ->  ( E )  
F  ->  id 



Computing Follow 
• Use the following rules until nothing can be added to 

any follow set. 
 
1) Place $ (the end of input marker) in FOLLOW(S) where 

S is the start symbol. 
 
2) If  A ->   a B b 
    then everything in FIRST(b) except Λ is in FOLLOW(B) 
 
3) If there is a production A ->  a B 
    or A ->  a B b   where FIRST(b) 
    contains Λ  (i.e. b can derive the empty string) then 

everything in FOLLOW(A) is in FOLLOW(B) 



Ex. Follow Computation 
• Rule 1, Start symbol 

–  Add $ to Follow(E) 
• Rule 2, Productions with embedded nonterms 

–  Add First( ) ) = { ) }  to follow(E) 
– Add First($)  = { $ }  to Follow(E’) 
– Add First(E’) = {+, Λ } to Follow(T) 
– Add First(T’) = {*, Λ} to Follow(F) 

• Rule 3, Nonterm in last position 
– Add follow(E’) to follow(E’)     (doesn’t do much) 
– Add follow (T) to follow(T’) 
– Add follow(T) to follow(F)  since T’ --> Λ 
– Add follow(T’) to follow(F) since T’ --> Λ 

E  ->  T E' $ 
E' ->  + T E'  
E’ ->  Λ 
T  ->  F T' 
T' ->  * F T'   
T’ ->  Λ 
F  ->  ( E )  
F  ->  id 



1. For each production A -> alpha do 2 & 3 
2. For each a in First alpha do add A -> alpha to  M[A,a] 
3. if ε is in First alpha, add A -> alpha to M[A,b] for each terminal b in Follow 

A. If ε is in First alpha  and $ is in Follow A add A -> alpha to M[A,$]. 
 

First E  = {"(","id"}      Follow E  =  {")","$"} 
First F  = {"(","id"}      Follow F  =  {"+","*",”)”,"$"} 
First T  = {"(","id"}      Follow T  =  {{"+",")","$"} 
First E' = {"+",ε}          Follow E' =  {")","$"} 
First T' = {"*",ε}           Follow T' =  {"+",")","$"} 

Table from First and Follow 

M[A,t] terminals 
+     *      )      (     id     $ 

n 
o 
n 
t 
e 
r 
m 
s 

1 
2 3 

4 4 
6 5 6 

7 8 

E 
E’ 
T 
T’ 
F 

1 
3 

6 

1. E  ->  T E' $ 
2. E' ->  + T E'  
3. E’ ->  Λ 
4. T  ->  F T' 
5. T' ->  * F T'   
6. T’ ->  Λ 
7. F  ->  ( E )  
8. F  ->  id 
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