
• Grammar - quaduple
– A set of tokens (terminals): T
– A set of non-terminals: N
– A set of productions { lhs -> rhs , ... }

• lhs in N
• rhs is a sequence of N U T

– A Start symbol: S (in N)

• Shorthands
– Provide only the productions

• All lhs symbols comprise N
• All other sysmbols comprise T
• lhs of first production is S

Context Free Grammar – Quick Review

Using Grammars to derive Strings

• Rewriting rules
– Pick a non-terminal to replace. Which order?

• left-to-right
• right-to-left

• Derives relation: αAγ ⇒ αβχ
– When A -> β is a production

• Derivations (a list if productions used to derive a string from a grammar).

• A sentence of G: L(G)
– Start with S
– S ⇒∗ w where w is only terminal symbols
– all strings of terminals derivable from S in 1 or more steps

CF Grammar Terms
• Parse trees.

– Graphical representations of derivations.
– The leaves of a parse tree for a fully filled out tree is a sentence.

• Regular language v.s. Context Free Languages

– how do CFL compare to regular expressions?
– Nesting (matched ()’s) requires CFG,’s RE's are not powerful enough.

• Ambiguity

– A string has two derivations
– E -> E + E | E * E | id

• x + x * y

• Left-recursion
– E -> E + E | E * E | id
– Makes certain top-down parsers loop

Parsing

• Act of constructing derivations (or parse trees)
from an input string that is derivable from a
grammar.

• Two general algorithms for parsing
– Top down - Start with the start symbol and expand

Non-terminals by looking at the input
• Use a production on a left-to-right manner

– Bottom up - replace sentential forms with a non-
terminal

• Use a production in a right-to-left manner

Top Down Parsing

• Begin with the start symbol and try and derive the parse
tree from the root.

• Consider the grammar
1. Exp -> Id | Exp + Exp | Exp * Exp | (Exp)
2. Id -> x | y

Some strings derivable from the grammar
 x
x+x
 x+x+x,
 x * y
 x + y * z ...

Example Parse (top down)
– stack input

 Exp x + y * z

 Exp x + y * z
 / | \
 Exp + Exp

 Exp y * z
 / | \
 Exp + Exp
 |
id(x)

Top Down Parse (cont)

 Exp y * z
 / | \
 Exp + Exp
 | / | \
id(x) Exp * Exp

 Exp z
 / | \
 Exp + Exp
 | / | \
id(x) Exp * Exp
 |
 id(y)

Top Down Parse (cont.)

 Exp
 / | \
 Exp + Exp
 | / | \
id(x) Exp * Exp
 | |
 id(y) id(z)

Problems with Top Down Parsing
• Backtracking may be necessary:

– S ::= ee | bAc | bAe
– A ::= d | cA
try on string “bcde”

• Infinite loops possible from (indirect) left recursive

grammars.
– E ::= E + id | id

• Ambiguity is a problem when a unique parse is not

possible.

• These often require extensive grammar restructuring

(grammar debugging).

Bottom up Parsing
• Bottom up parsing tries to transform the input string into

the start symbol.
• Moves through a sequence of sentential forms (sequence

of Non-terminal or terminals). Tries to identify some
substring of the sentential form that is the rhs of some
production.

• E -> E + E | E * E | x
• x + x * x
• E + x * x
• E + E * x
• E * x
• E * E
• E

The substring (shown in color and italics)
for each step) may contain both terminal
and non-terminal symbols. This string is
the rhs of some production, and is often

called a handle.

Bottom Up Parsing
Implemented by Shift-Reduce parsing

• data structures: input-string and stack.

• look at symbols on top of stack, and the input-string and decide:

– shift (move first input to stack)

– reduce (replace top n symbols on stack by a non-terminal)

– accept (declare victory)

– error (be gracious in defeat)

Example Bottom up Parse
Consider the grammar: (note: left recursion is NOT a problem,

but the grammar is still layered to prevent ambiguity)

1. E ::= E + T
2. E ::= T
3. T ::= T * F
4. T ::= F
5. F ::= (E)
6. F ::= id

stack Input Action

 x + y shift
 x + y reduce 6
 F + y reduce 4
 T + y reduce 2
 E + y shift
 E + y shift
 E + y reduce 6
 E + F reduce 4
 E + T reduce 1
 E accept

The concatenation of the stack and the input is a sentential form. The input
is all terminal symbols, the stack is a combination of terminal and non-
terminal symbols

LR(k)

• Grammars which can decide whether to shift
or reduce by looking at only k symbols of the
input are called LR(k).
– Note the symbols on the stack don’t count when

calculating k

• L is for a Left-to-Right scan of the input

• R is for the Reverse of a Rightmost derivation

Problems (ambiguous grammars)

1) shift reduce conflicts: stack Input Action
 x + y + z ?

 stack Input Action
 if x t if y t s2 e s3 ?

2) reduce reduce conflicts:
 suppose both procedure call and array reference have similar syntax:

– x(2) := 6
– f(x)

stack Input Action
id (id) id ?

Should id reduce to a parameter or an expression. Depends on whether the bottom most

id is an array or a procedure.

Parsing Algorithms

• Top Down
– Recursive descent parsers
– LL(1) or predictive parsers

• Bottom up
– Precedence Parsers
– LR(k) parsers

Top Down Recursive Descent Parsers
• One function (procedure) per non-terminal.

• Functions call each other in a mutually recursive way.

• Each function “consumes” the appropriate input.

• If the input has been completely consumed when the function

corresponding to the start symbol is finished, the input is parsed.

• They can return a bool (the input matches that non-terminal) or
more often they return a data-structure (the input builds this parse
tree)

• Need to control the lexical analyzer (requiring it to “back-up” on

occasion)

Example Recursive Descent Parser
E -> T + E | T
T -> F * T | F
F -> x | (E)

expr =
 do { term
 ; iff (match '+') expr }

term =
 do { factor
 ; iff (match '*') term }

factor =
 pCase
 ['x' :=> return ()
 , '(' :=> do { expr; match ')'; return ()}
]

Predictive Parsers
• Use a stack to avoid recursion. Encoding parsing

rules in a table.

E

E’

T

T’

F

id + * () $

T E’ T E’

+ T E’ ε ε

F T’ F T’

ε * F T’ ε ε

id (E)

Table Driven Algorithm
push start symbol

Repeat

 begin

 let X top of stack, A next input

 if terminal(X)

 then if X=A

 then pop X; remove A

 else error()

 else (* nonterminal(X) *)

 begin

 if M[X,A] = Y1 Y2 ... Yk

 then pop X;

 push Yk YK-1 ... Y1

 else error()

end

until stack is empty, input = $

Example Parse

Stack Input

E x + y $

E’ T x + y $

E’ T’ F x + y $

E’ T’ id x + y $

E’ T’ + y $

E’ + y $

E’ T + + y $

E’ T y $

E’ T’ F y $

E’ T’ id y $

E’ T’ $

E’ $

 $

E

E’

T

T’

F

id + * () $

T E’ T E’

+ T E’ ε ε

F T’ F T’

ε * F T’ ε ε

id (E)

Bottom up table driven parsers

• Operator precedence parsers
• LR parsers

Example operator precedence parser

+
* (

)

id $ +

* (

)

id
$

< : < :
< :

< :
< : < :

< : < : < : < :

< : < : < : < :

: > : > : >
: > : > : >

: > : > : > : >
: > : > : > : >

=

input : x * x + y
stack Input Action
$ E * E + y $ reduce!

topmost
terminal

next input

accept

Precedence parsers
• Precedence parsers have limitations

• No production can have two consecutive non-terminals

• Parse only a small subset of the Context Free Grammars

• Need a more robust version of shift- reduce parsing.

• LR - parsers
– State based - finite state automatons (w / stack)
– Accept the widest range of grammars
– Easily constructed (by a machine)
– Can be modified to accept ambiguous grammars by using precedence and associativity information.

LR Parsers
• Table Driven Parsers
• Table is indexed by state and symbols (both term and non-term)
• Table has two components.

– ACTION part
– GOTO part

state
terminals non-terminals

0
1

2

id + * () $ E T F

shift (state = 5)

reduce(prod = 12)
goto(state = 2)

ACTION GOTO

LR Table encodes FSA

0

1

2

3

4

5

6

7

8

9

10

11

(

T

E

)

F

* id

(

*

+ (
F

id

id

F

F

id

E

(

T

+ T

E -> E + T | T

T -> T * F | F

F -> (E) | id

transition on terminal is a
shift in action table, on
nonterminal is a goto entry

Table vs FSA
• The Table encodes the FSA

• The action part encodes

– Transitions on terminal symbols (shift)
– Finding the end of a production (reduce)

• The goto part encodes

– Tracing backwards the symbols on the RHS
– Transition on non-terminal, the LHS

• Tables can be quite compact

LR Table
state

terminals non-terminals

0
1

2
3

4
5

6
7

8

9

10

11

id + * () $ E T F

s5 s4 1 2 3

s6 acc

r2 s7 r2 r2
r4 r4 r4 r4

s5 s4 8 2 3
r6 r6 r6 r6

s5 s4 9 3

s5 s4 10

s6 s11

r1 s7 r1 r1

r3 r3 r3 r3

r5 r5 r5 r5

Reduce Action

• If the top of the stack is the rhs for some production n
• And the current action is “reduce n”
• We pop the rhs, then look at the state on the top of the stack, and index

the goto-table with this state and the LHS non-terminal.
• Then push the lhs onto the stack in the new s found in the goto-table.

(?,0)(id,5) * id + id $

Where: Action(5,*) = reduce 6
Production 6 is: F ::= id
And: GOTO(0,F) = 3

(?,0)(F,3) * id + id $

Example Parse Stack Input
(?,0) id * id + id $
(?,0)(id,5) * id + id $
(?,0)(F,3) * id + id $
(?,0)(T,2) * id + id $
(?,0)(T,2)(*,7) id + id $
(?,0)(T,2)(*,7)(id,5) + id $
(?,0)(T,2)(*,7)(F,10) + id $
(?,0)(T,2) + id $
(?,0)(E,1) + id $
(?,0)(E,1)(+,6) id $
(?,0)(E,1)(+,6)(id,5) $
(?,0)(E,1)(+,6)(F,3) $
(?,0)(E,1)(+,6)(T,9) $
(?,0)(E,1) $

1) E -> E + T
2) E -> T
3) T -> T * F
4) T -> F
5) F -> (E)
6) F -> id

Review

• Bottom up parsing transforms the input into the
start symbol.

• Bottom up parsing looks for the rhs of some
production in the partially transformed
intermediate result

• Bottom up parsing is OK with left recursive
grammars

• Ambiguity can be used to your advantage in
bottom up partsing.

• The LR(k) languages = LR(1) languages = CFL

More detail

• The slides that follow give more detail on
several of the parsing algorithms

• These slides are for your own edification.

Using ambiguity to your advantage

• Shift-Reduce and Reduce-Reduce errors are caused by ambiguous
grammars.

• We can use resolution mechanisms to our advantage. Use an

ambiguous grammar (smaller more concise, more natural parse
trees) but resolve ambiguity using rules.

• Operator Precedence

– Every operator is given a precedence
– Precedence of the operator closest to the top of the stack and the

precedence of operator next on the input decide shift or reduce.
– Sometimes the precedence is the same. Need more information:

Associativity information.

Operations on Grammars

• The Nullable, First, and Follow functions

– Nullable: Can a symbol derive the empty string. False for
every terminal symbol.

– First: all the terminals that a non-terminal could possibly
derive as its first symbol.

• term or nonterm -> set(term)
• sequence(term + nonterm) -> set(term)

– Follow: all the terminals that could immediately follow the

string derived from a non-terminal.
• non-term -> set(term)

Example First and Follow Sets

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

First E = { "(", "id"} Follow E = {")","$"}
First F = { "(", "id"} Follow F = {"+","*",”)”,"$"}
First T = { "(", "id"} Follow T = {{"+",")","$"}
First E' = { "+", ε} Follow E' = {")","$"}
First T' = { "*", ε} Follow T' = {"+",")","$"}

• First of a terminal is itself.
• First can be extended to sequence of symbols.

Nullable

• if Λ is in First(symbol) then that symbol is
nullable.

• Sometime rather than let Λ be a symbol we
derive an additional function nullable.

• Nullable (E’) = true
• Nullable(T’) = true
• Nullable for all other symbols is false

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

Computing First
• Use the following rules until no more terminals

can be added to any FIRST set.

1) if X is a term. FIRST(X) = {X}
2) if X -> Λ is a production then add Λ to FIRST(X),

(Or set nullable of X to true).
3) if X is a non-term and

– X -> Y1 Y2 ... Yk
– add a to FIRST(X)

• if a in FIRST(Yi) and
• for all j<i Λ in FIRST(Yj)

• E.g.. if Y1 can derive Λ then if a is in FIRST(Y2) it

is surely in FIRST(X) as well.

Example First Computation

• Terminals
– First($) = {$}, First(*) = {*}, First(+) = {+}, ...

• Empty Productions
– add Λ to First(E’), add Λ to First(T’)

• Other NonTerminals
– Computing from the lowest layer (F) up

• First(F) = {id , (}
• First(T’) = { Λ, * }
• First(T) = First(F) = {id, (}
• First(E’) = { Λ, + }
• First(E) = First(T) = {id, (}

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

Computing Follow
• Use the following rules until nothing can be added to

any follow set.

1) Place $ (the end of input marker) in FOLLOW(S) where

S is the start symbol.

2) If A -> a B b
 then everything in FIRST(b) except Λ is in FOLLOW(B)

3) If there is a production A -> a B
 or A -> a B b where FIRST(b)
 contains Λ (i.e. b can derive the empty string) then

everything in FOLLOW(A) is in FOLLOW(B)

Ex. Follow Computation
• Rule 1, Start symbol

– Add $ to Follow(E)
• Rule 2, Productions with embedded nonterms

– Add First()) = {) } to follow(E)
– Add First($) = { $ } to Follow(E’)
– Add First(E’) = {+, Λ } to Follow(T)
– Add First(T’) = {*, Λ} to Follow(F)

• Rule 3, Nonterm in last position
– Add follow(E’) to follow(E’) (doesn’t do much)
– Add follow (T) to follow(T’)
– Add follow(T) to follow(F) since T’ --> Λ
– Add follow(T’) to follow(F) since T’ --> Λ

E -> T E' $
E' -> + T E'
E’ -> Λ
T -> F T'
T' -> * F T'
T’ -> Λ
F -> (E)
F -> id

1. For each production A -> alpha do 2 & 3
2. For each a in First alpha do add A -> alpha to M[A,a]
3. if ε is in First alpha, add A -> alpha to M[A,b] for each terminal b in Follow

A. If ε is in First alpha and $ is in Follow A add A -> alpha to M[A,$].

First E = {"(","id"} Follow E = {")","$"}
First F = {"(","id"} Follow F = {"+","*",”)”,"$"}
First T = {"(","id"} Follow T = {{"+",")","$"}
First E' = {"+",ε} Follow E' = {")","$"}
First T' = {"*",ε} Follow T' = {"+",")","$"}

Table from First and Follow

M[A,t] terminals
+ *) (id $

n
o
n
t
e
r
m
s

1
2 3

4 4
6 5 6

7 8

E
E’
T
T’
F

1
3

6

1. E -> T E' $
2. E' -> + T E'
3. E’ -> Λ
4. T -> F T'
5. T' -> * F T'
6. T’ -> Λ
7. F -> (E)
8. F -> id

	Slide Number 1
	Using Grammars to derive Strings
	CF Grammar Terms
	Parsing
	Top Down Parsing
	Example Parse (top down)
	Top Down Parse (cont)
	Top Down Parse (cont.)
	Problems with Top Down Parsing
	Bottom up Parsing
	Bottom Up Parsing
	Example Bottom up Parse
	LR(k)
	Problems (ambiguous grammars)
	Parsing Algorithms
	Top Down Recursive Descent Parsers
	Example Recursive Descent Parser
	Predictive Parsers
	Table Driven Algorithm
	Example Parse
	Bottom up table driven parsers
	Example operator precedence parser
	Precedence parsers
	LR Parsers
	LR Table encodes FSA
	Table vs FSA
	LR Table
	Reduce Action
	Example Parse
	Review
	More detail
	Using ambiguity to your advantage
	Operations on Grammars
	Example First and Follow Sets
	Nullable
	Computing First
	Example First Computation
	Computing Follow
	Ex. Follow Computation
	Table from First and Follow

