
Closure Properties of CFL's

The class of context-free languages is
closed under these three operations:
Union, Concatenation, Kleene Star

Assumptions:
 Let G1=(V1,T1,P1,S1) and G2=(V2,T2,P2,S2)
be two CF grammars. Assume the sets of

variables, V1 and V2 are disjoint.

Union

A grammar for the union L(G1) ∪ L(G2) is

G=({S} ∪ V1 ∪ V2, T1 ∪ T2,P,S)

where P consists of productions in P1 and P2

together with S → S1 | S2

Concatenation

A grammar for the concatenation L(G1)L(G2)
is

G=({S} ∪ V1 ∪ V2, T1 ∪ T2,P,S)

where P consists of productions in
P1 and P2 together with S → S1S2.

Kleene Star

A grammar for L(G1)* is

G=({S} ∪ V1, T1,P,S)

where P consists of productions in P1

together with S → Λ | SS1

qed

Negative result for
Complement, Intersection

The class of context-free languages is not closed
under these two operations: Complement,
Intersection

Proof. The language
 L1= {aibicj | i,j ≥ 0} = { ai bi | i ≥ 0} • c*
being the concatenation of two CFL's is CFL itself.
Similarly, L2 = { aj bi ci | i,j ≥ 0 } is a CFL.
However, L1 ∩ L2 = {ai bi ci | i ≥ 0} is not a CFL, as

we saw last time.

Since the intersection can be expressed in terms of union and

complementation A ∩ B = Comp(Comp(A) ∪ Comp(B)) , it
follows that the class of CFL's is not closed under
complementation.

Mixtures of CFL and RE

Theorem. Intersection of any context-free
language with any regular language is context-
free.

Proof Idea. Product construction. Take a PDA for

the first language and a DFA for the second.
Construct a PDA for the intersection by taking for
its states the set of all pairs of states of the first
two automata. Etc.

qed

Note that there is no sensible definition of the

product of two PDA's: we cannot combine two
stacks into one.

Chomsky Normal Form

There are many CFG's for any given CFL.
When reasoning about CFL's, it often
helps to assume that a grammar for it has
some particularly simple form.

Here are some ideas how CFG's can be

simplified.

Useless Symbols

A useful symbol (terminal or variable) X must be

1. generating: X ⇒∗ w for some w ∈ T* (I.e. w is all

terminal symbols)

2. reachable from S: S ⇒∗ αXβ for some
 α,β ∈ (V ∪ T)*

An algorithm for elimination of useless symbols first

eliminates non-generating ones, then eliminates
those not reachable from S.

 The order is important, because, for example,
when S ⇒∗ αXβ and α contains a non-
generating symbol, then X is reachable, but will
become unreachable after elimination of non-
generators.

Algorithm: Part 1

We describe the algorithm on an example
grammar:

S → AB | C
A → 0B | C
B → 1 | A0
C → AC | C1

1. Elimination of non-generators
0 and 1 are in. (because 0 and 1 are terminal)
B → 1, says B is in.
A → 0B, says A is in.
S → AB, says S is in.
Nothing more can be added.

Thus, C can be eliminated, along with any
productions containing it. The result is this
grammar:

S → AB
A → 0B
B → 1 | A0

Algorithm: Part 2

2. Elimination of non-reachables
S is in. (since it is the start symbol)

A and B are in.
0 and 1 are in.
Nothing more can be added.
There is nothing left to eliminate.

In this case, the end result is the same

grammar we used as input to this part of
algorithm.

S → AB
A → 0B
B → 1 | A0

Λ-Productions

A variable A is nullable if A ⇒∗ Λ. We can modify a

given grammar G and obtain a grammar G' in
which there are no nullable variables and which
satisfies L(G') = L(G) - {Λ}.

Find nullable symbols iteratively, using these facts:
1. If A → Λ is a production, then A is nullable.
2. If A → B1B2 … Bk is a production and B1,B2, … ,Bk

are all nullable, then A is nullable.

Once nullable symbols are known, we get G' as
follows:

1. For every production A → α, add new

productions A → α’ , where α’ is obtained by
deleting some (or all) nullable symbols from α.

2. Remove all productions A → Λ

Example. If G contains a production A → BC and

both B and C are nullable, then we add
 A → B | C
 to G'.

Unit Productions

These are of the form A → B, where A,B are variables.
Assuming the grammar has no Λ−productions, we can

eliminate unit productions as follows.

1. Find all pairs of variables such that A ⇒∗ B. (This

happens iff B can be obtained from A by a chain of
unit productions.)

2. Add new production A → α whenever A ⇒∗ B ⇒ α.
3. Remove all unit productions.

Chomsky Normal Form defined

A grammar is in Chomsky normal form
(CNF) if it has no useless symbols and
all its productions have one of these two
forms:

1. A → BC, where B,C are variables
2. A → a, where a is a terminal

Theorem. For every CFG G, there exists a CFG G'
in CNF such that L(G')=L(G) - {ε}

The first three steps of getting G' are elimination of

Λ-productions, elimination of unit productions,
and elimination of useless symbols (in that
order). There remain two steps:

1. Arrange that all productions are of the form A

→ α, where α is a terminal, or contains only
variables.

2. Break up every production A → α with | α |>2
into productions whose rhs has length two.

For the first part, introduce a new variable C for each
terminal c that occurs in the rhs of some
production, add the production C → c (unless
such a production already exists), and replace c
with C in all other productions.

For example, the production A → 0B1 would be
replaced with A0 → 0, A1 → 1, A → A0BA1.

An example explains the second part. The production

A → BCDE is replaced by three others,
1. A → BA1,
2. A1 → CA2,
3. A2 → DE,

using two new variables A1, A2.

Example

To bring the grammar: S → SS | (S) | Λ
 into CNF, we first eliminate the only Λ-production

and get
S → SS | (S) | ()

There are no unit productions and no useless
symbols. We need to introduce new variables for
both terminals, so we get the grammar

S → SS | LSR | LR
L → (
R →)

Finally, we need to take care of the (only) long
production S → LSR, and the result is

S → SS | LA | LR
L → (
R →)
A → SR

	Closure Properties of CFL's
	Union
	Concatenation
	Kleene Star
	Negative result for�Complement, Intersection
	Mixtures of CFL and RE
	Chomsky Normal Form
	Useless Symbols
	Algorithm: Part 1
	Algorithm: Part 2
	L-Productions
	Slide Number 12
	Unit Productions
	Chomsky Normal Form defined
	Slide Number 15
	Slide Number 16
	Example

