
Closure Properties of CFL's 

The class of context-free languages is 
closed under these three operations: 
Union, Concatenation, Kleene Star 

 
Assumptions:  
 Let G1=(V1,T1,P1,S1) and G2=(V2,T2,P2,S2) 
be two CF grammars. Assume the sets of 

variables, V1 and V2 are disjoint. 
 



Union 

 
A grammar for the union L(G1) ∪ L(G2) is  
 
G=({S} ∪ V1 ∪ V2, T1 ∪ T2,P,S) 
 
where P consists of productions in P1 and P2 

together with S → S1 | S2 
 



Concatenation 

A grammar for the concatenation  L(G1)L(G2) 
is  

 
G=({S} ∪ V1 ∪ V2, T1 ∪ T2,P,S) 
 
where P consists of productions in 
P1 and P2 together with S → S1S2. 



Kleene Star 

A grammar for L(G1)* is  
 
G=({S} ∪ V1, T1,P,S) 
 
where  P consists of productions in P1 

together with S → Λ | SS1   
 
qed 



Negative result for 
Complement, Intersection 

The class of context-free languages is not closed 
under these two operations: Complement, 
Intersection 

 
Proof. The language  
     L1= {aibicj | i,j ≥ 0} = { ai bi | i ≥ 0} • c* 
being the concatenation of two CFL's is CFL itself. 
Similarly,  L2 = { aj bi ci | i,j ≥ 0 } is a CFL.  
However, L1 ∩ L2 = {ai bi ci | i ≥ 0} is not a CFL, as 

we saw last time. 
 
Since the intersection can be expressed in terms of union and 

complementation A ∩ B = Comp(Comp(A) ∪ Comp(B)) , it 
follows that the class of CFL's is not closed under 
complementation.  



Mixtures of CFL and RE 

Theorem. Intersection of any context-free 
language with any regular language is context-
free.  

 
Proof Idea. Product construction. Take a PDA for 

the first language and a DFA for the second. 
Construct a PDA for the intersection by taking for 
its states the set of all pairs of states of the first 
two automata. Etc.  

qed  
 
Note that there is no sensible definition of the 

product of two PDA's: we cannot combine two 
stacks into one. 



Chomsky Normal Form 

There are many CFG's for any given CFL. 
When reasoning about CFL's, it often 
helps to assume that a grammar for it has 
some particularly simple form.   

 
Here are some ideas how CFG's can be 

simplified. 
 



Useless Symbols 

A useful symbol (terminal or variable) X must be  
 
1. generating:   X ⇒∗ w for some w ∈ T* (I.e. w is all 

terminal symbols) 

2. reachable from S:   S ⇒∗ αXβ for some   
     α,β ∈ (V ∪ T)* 

 
An algorithm for elimination of useless symbols first 

eliminates non-generating ones, then eliminates 
those not reachable from S. 

 The order is important, because, for example,  
when  S ⇒∗ αXβ and α contains a non-
generating symbol, then X is reachable, but will 
become unreachable after elimination of non-
generators. 



Algorithm: Part 1 

We describe the algorithm on an example 
grammar:  

S → AB | C 
A → 0B | C  
B → 1 | A0 
C → AC | C1 

1. Elimination of non-generators 
0 and 1 are in.            (because 0 and 1 are terminal) 
B → 1, says B is in. 
A → 0B,  says A is in. 
S → AB, says S is in.  
Nothing more can be added. 

Thus, C can be eliminated, along with any 
productions containing it. The result is this 
grammar: 

S → AB 
A → 0B 
B → 1 | A0 



Algorithm: Part 2 

2. Elimination of non-reachables 
S is in.                  (since it is the start symbol) 

A and B are in. 
0 and 1 are in.  
Nothing more can be added. 
There is nothing left to eliminate. 

 
In this case, the end result is the same 

grammar we used as input to this part of 
algorithm. 

 
 

S → AB 
A → 0B 
B → 1 | A0 



Λ-Productions 

  
A variable A is nullable if A ⇒∗ Λ. We can modify a 

given grammar G and obtain a grammar G' in 
which there are no nullable variables and which 
satisfies L(G') = L(G) - {Λ}. 

 
Find nullable symbols iteratively, using these facts: 
1. If A → Λ is a production, then A is nullable. 
2. If A → B1B2 … Bk is a production and B1,B2, … ,Bk 

are all nullable, then A is nullable. 
 
 



Once nullable symbols are known, we get G' as 
follows: 

 
1. For every production A → α, add new 

productions A → α’ , where α’ is obtained by 
deleting some (or all) nullable symbols from α. 

2. Remove all productions A → Λ  
 
Example. If G contains a production A → BC and 

both B and C are nullable, then we add  
       A → B | C  
     to G'.  
 



Unit Productions 

These are of the form A → B, where A,B are variables.  
Assuming the grammar has no Λ−productions, we can 

eliminate unit productions as follows. 
 
1. Find all pairs of variables such that A ⇒∗ B. (This 

happens iff B can be obtained from A by a chain of 
unit productions.) 

2. Add new production A → α  whenever A ⇒∗ B ⇒ α. 
3. Remove all unit productions. 
 



Chomsky Normal Form defined 

A grammar is in Chomsky normal form 
(CNF) if it has no useless symbols and 
all its productions have one of these two 
forms: 

 
1. A → BC, where B,C are variables 
2. A → a, where a is a terminal 
 
 
 



Theorem. For every CFG G, there exists a CFG G' 
in CNF such that L(G')=L(G) - {ε} 

 
The first three steps of getting G' are elimination of 

Λ-productions, elimination of unit productions, 
and elimination of useless symbols (in that 
order). There remain two steps: 

 
1. Arrange that all productions are of the form A 

→ α, where α is a terminal, or contains only 
variables.  

2. Break up every production A → α  with | α |>2 
into productions whose rhs has length two. 

  
 



For the first part, introduce a new variable C for each 
terminal c that occurs in the rhs of some 
production, add the production C → c (unless 
such a production already exists), and replace c 
with C in all other productions.  

 
For example, the production A → 0B1 would be 
replaced with A0 → 0, A1 → 1, A → A0BA1. 
 
An example explains the second part. The production 

A → BCDE is replaced by three others,  
1. A → BA1,  
2. A1 → CA2,  
3. A2 → DE,  

using two new variables A1, A2.  
 



Example 

To bring the grammar:   S → SS | (S) | Λ 
 into CNF, we first eliminate the only Λ-production 

and get  
S → SS | (S) | () 
 

There are no unit productions and no useless 
symbols.  We need to introduce new variables for 
both terminals, so we get the grammar 

S → SS | LSR | LR  
L → (  
R → ) 

Finally, we need to take care of the (only) long 
production S → LSR, and the result is 

S → SS | LA | LR  
L → (  
R → )  
A → SR 
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