
Formal Languages

Context free languages provide a
convenient notation for recursive
description of languages.

The original goal of formalizing the
structure of natural languages is still
elusive, but CFGs are now the universally
accepted formalism for definition of (the
syntax of) programming languages.

Writing parsers has become an almost fully
automated process thanks to this theory.

A Simple Grammar for English
Example taken from Floyd & Beigel.

<Sentence> → <Subject> <Predicate>

<Subject> → <Pronoun1> | <Pronoun2>

<Pronoun1> → I | we | you | he | she | it | they

<Noun Phrase> → <Simple Noun Phrase> | <Article> <Noun Phrase>

<Article> → a | an | the

<Predicate> → <Noun> | <Adjective> <Simple Noun Phrase>

<Simple Noun Phrase> → <Verb> | <Verb> <Object>

<Object> → <Pronoun2> | <Noun Phrase>

<Pronoun2> → me | us | you | him | her | it | them

<Noun> → . . .

<Verb> → . . .

Example
Derive the sentence “She drives a shiny black car” from these

rules.
sentence

subject predicate

pronoun1

She

verb object

drives

Noun phrase

adjective Simple Noun phrase

adjective Simple noun phrase

Simple Noun phrase article

a shiny black car

Noun

<sentence> ⇒
<subject> <predicate> ⇒
<pronoun> <predicate> ⇒
She <predicate> ⇒
She <verb> <object> ⇒
She drives <object> ⇒
She drives <simple noun phrase> ⇒
She drives <article> <noun phrase> ⇒
She drives a <noun phrase> ⇒
She drives a <adjective> <noun phrase> ⇒
She drives a shiny <noun phrase> ⇒
She drives a shiny <adjective> <simple noun phrase> ⇒
She drives a shiny black <simple noun phrase> ⇒
She drives a shiny black <noun> ⇒
She drives a shiny black car

A Grammar for Expressions

<Expression> → <Term> | <Expression> + <Term>

<Term> → <Factor> | <Term> * <Factor>

<Factor> → <Identifer> | (<Expression>)

<Identifier> → x | y | z | …

In class exercise: Derive

• x + (y * 3)

• x + z * w + q

Definition of Context-Free-Grammars

A CFG is a quadruple G= (V,T,P,S), where
– V is a finite set of variables (nonterminals,

syntactic categories)
– T is a finite set of terminals
– P is a finite set of productions -- rules of the

form X→a, where X∈V and a∈(V ∪ T)*
– S, the start symbol, is an element of V

Vertical bar (|), as used in the examples on the previous slide,

is used to denote a set of several productions (with the
same lhs).

Example

V = {<Expression>, <Term>, <Factor>, <Identifier>}
T = {+, *, (,), x, y, z, …}
P = {

<Expression> → <Term>
<Expression> → <Expression> + <Term>
<Term> → <Factor>
<Term> → <Term> * <Factor>
<Factor> → <Identifer>
<Factor> → (<Expression>)
<Identifier> → x
<Identifier> → y
<Identifier> → z
<Identifier> → …

 }
S = <Expression>

<Expression> → <Term> | <Expression> + <Term>

<Term> → <Factor> | <Term> * <Factor>

<Factor> → <Identifer> | (<Expression>)

<Identifier> → x | y | z | …

Notational Conventions

a,b,c, … (lower case, beginning of alphabet)
are concrete terminals;

u,v,w,x,y,z (lower case, end of alphabet) are

for strings of terminals

α,β,γ, … (Greek letters) are for strings over

(T ∪ V) (sentential forms)

A,B,C, … (capitals, beginning of alphabet) are

for variables (for non-terminals).

X,Y,Z are for variables standing for terminals.

Short-hand

Note. We often abbreviate a context free grammar,
such as:

G2 = (V={S},
 T={(,)},
 P={ S → ε, S → SS, S → (S) },
 S=S}
By giving just its productions
S → ε | SS |(S)

And by using the following conventions.

1) The start symbol is the lhs of the first production.
2) Multiple production for the same lhs non-terminal can be

grouped together by using vertical bar (|)
3) Non-terminals are capitalized.
4) Terminal-symbols are lower case or non-alphabetic.

Derivations

The single-step derivation relation ⇒ on (V∪ T)* is
defined by:

α ⇒ β iff β is obtained from α by replacing an
occurrence of the lhs of a production with its rhs.
That is, α'Aα'' ⇒ α'γα'' is true iff A → γ is a
production.

We write α ⇒∗ β when β can be obtained from α
through a sequence of several (possibly zero)
derivation steps.

The language of the CFG , G, is the set
 L(G) = {w∈T* | S ⇒∗ w} (where S is the start symbol of G)

Context-free languages are languages of the form L(G)

Example 1

The familiar non-regular language
 L = { akbk | k ≥ 0 }
is context-free.

The grammar G1 for it is given by T={a,b}, V={S},
and productions:
1. S → Λ
2. S → a S b

Here is a derivation showing a3b3∈ L(G):
S ⇒2 aSb ⇒2 aaSbb ⇒2 aaaSbbb ⇒1 aaabbb

(Note: we sometimes label the arrow with a subscript which tells the

production used to enable the transformation)

Example 1 continued

Note, however, that the fact L=L(G1) is not totally
obvious. We need to prove set inclusion both
ways.

To prove L ⊆ L(G1) we must show that there exists

a derivation for every string akbk; this is done by
induction on k.

For the converse, L(G1) ⊆ L, we need to show that

if S ⇒∗ w and w∈T*, then w∈ L. This is done by
induction on the length of derivation of w.

Example 2

The language of balanced parentheses is
context-free. It is generated by the
following grammar:

 G2 = (V={S},
 T={(,)},
 P={ S → Λ | SS |(S)},
 S=S}

Example 3

Consider the grammar:
S → AS | Λ
A → 0A1 | A1 | 01

The derivation:
S⇒ AS ⇒ A1S ⇒ 011S ⇒ 011AS ⇒

0110A1S ⇒ 0110011S ⇒ 0110011

shows that 0110011 ∈ L(G3).

Example 3 notes

The language L(G3) consists of strings
w∈{0,1}* such that:

P(w): Either w=ε, or w begins with 0, and
every block of 0's in w is followed by at
least as many 1's

Again, the proof that G3 generates all and

only strings that satisfy P(w) is not
obvious. It requires a two-part inductive
proof.

Leftmost and Rightmost Derivations

The same string w usually has many possible
derivations S ≡ a0⇒a1⇒a2⇒ … ⇒ an ≡ w

We call a derivation leftmost if in every step
ai⇒ai+1, it is the first (leftmost) variable in ai$
that is being replaced with the rhs of a
production. Similarly, in a rightmost derivation, it
is always the last variable that gets replaced.

The above derivation of the string 0110011 in the
grammar G3 is leftmost. Here is a rightmost
derivation of the same string:

S ⇒ AS ⇒ AAS ⇒ AA ⇒ A0A1 ⇒ A0011 ⇒
A10011 ⇒ 0110011

S → AS | ε
A → 0A1 | A1 | 01

Facts

Every Regular Language is also a Context
Free Language

How might we prove this?

Choose one of the many specifications for
regular languages

Show that every instance of that kind of
specification has a total mapping into a
Context Free Grammar

What is an appropriate choice?

In Class Exercise

Map the Regular Expressions into a Context
Free language.

data RegExp a

 = Lambda -- the empty string ""

 | Empty -- the empty set

 | One a -- a singleton set {a}

 | Union (RegExp a) (RegExp a) -- union of two RegExp

 | Cat (RegExp a) (RegExp a) -- Concatenation

 | Star (RegExp a) -- Kleene closure

Find CFG for these languages

{an b an | n Є Nat}

{ w | w Є {a,b}*, and w is a palindrome of even length}

{an bk | n,k Є Nat, n ≤ k}

{an bk | n,k Є Nat, n ≥ k}

{ w | w Є {a,b}*, w has equal number of a’s and b’s }

	Formal Languages
	A Simple Grammar for English
	Example
	Slide Number 4
	A Grammar for Expressions
	Definition of Context-Free-Grammars
	Example
	Notational Conventions
	Short-hand
	Derivations
	Example 1
	Example 1 continued
	Example 2
	Example 3
	Example 3 notes
	Leftmost and Rightmost Derivations
	Facts
	In Class Exercise
	Find CFG for these languages

