
Formal Languages 

Context free languages provide a 
convenient notation for recursive 
description of languages.  

The original goal of formalizing the 
structure of natural languages is still 
elusive, but CFGs are now the universally 
accepted formalism for definition of (the 
syntax of) programming languages.  

Writing parsers has become an almost fully 
automated process thanks to this theory.  



A Simple Grammar for English  
Example taken from Floyd & Beigel.  

<Sentence> → <Subject> <Predicate> 

<Subject> → <Pronoun1> | <Pronoun2> 

<Pronoun1> → I | we | you | he | she | it | they 

<Noun Phrase> → <Simple Noun Phrase> | <Article> <Noun Phrase> 

<Article> → a | an | the 

<Predicate> → <Noun> | <Adjective> <Simple Noun Phrase> 

<Simple Noun Phrase> → <Verb> | <Verb> <Object> 

<Object> → <Pronoun2> | <Noun Phrase> 

<Pronoun2> → me | us | you | him | her | it | them 

<Noun> → . . .  

<Verb> → . . . 



Example 
Derive the sentence “She drives a shiny black car”  from these 

rules.  
sentence 

subject predicate 

pronoun1 

She 

verb object 

drives 

Noun phrase 

adjective Simple Noun phrase 

adjective Simple noun phrase 

Simple Noun phrase article 

a shiny black car 

Noun 



<sentence> ⇒ 
<subject> <predicate> ⇒ 
<pronoun> <predicate> ⇒ 
She <predicate> ⇒ 
She <verb> <object> ⇒ 
She drives <object> ⇒ 
She drives <simple noun phrase> ⇒ 
She drives <article>  <noun phrase> ⇒ 
She drives a <noun phrase> ⇒ 
She drives a <adjective> <noun phrase> ⇒ 
She drives a shiny <noun phrase> ⇒ 
She drives a shiny <adjective> <simple noun phrase> ⇒ 
She drives a shiny black <simple noun phrase> ⇒ 
She drives a shiny black <noun> ⇒ 
She drives a shiny black car  
 
 



A Grammar for Expressions  

<Expression> → <Term> | <Expression> + <Term> 

<Term> → <Factor> | <Term> * <Factor> 

<Factor> → <Identifer> | ( <Expression> ) 

<Identifier> → x | y | z | … 

In class exercise: Derive 

• x + ( y * 3) 

• x + z * w + q 



Definition of Context-Free-Grammars  

A CFG is a quadruple G= (V,T,P,S), where 
– V is a finite set of variables (nonterminals, 

syntactic categories) 
– T is a finite set of terminals 
– P is a finite set of productions -- rules of the 

form X→a,  where   X∈V  and   a∈(V ∪ T)* 
– S, the start symbol, is an element of V 

 
  
Vertical bar (|), as used in the examples on the previous slide, 

is used to denote a set of  several productions (with the 
same lhs).  

 



Example 

V = {<Expression>, <Term>, <Factor>, <Identifier>} 
T = {+, *, (, ), x, y, z, …} 
P = { 

<Expression> → <Term>  
<Expression> → <Expression> + <Term> 
<Term>  → <Factor>  
<Term>  → <Term> * <Factor> 
<Factor>  → <Identifer>  
<Factor>  → ( <Expression> ) 
<Identifier>  → x  
<Identifier>  → y  
<Identifier>  → z  
<Identifier>  →  … 

 } 
S = <Expression> 

<Expression> → <Term> | <Expression> + <Term> 

<Term> → <Factor> | <Term> * <Factor> 

<Factor> → <Identifer> | ( <Expression> ) 

<Identifier> → x | y | z | … 



Notational Conventions 

a,b,c, …  (lower case, beginning of alphabet) 
are concrete terminals;  

 
u,v,w,x,y,z (lower case, end of alphabet) are 

for strings of terminals 
 
α,β,γ, …    (Greek letters) are for strings over 

(T ∪ V) (sentential forms) 
 
A,B,C, … (capitals, beginning of alphabet) are 

for variables (for non-terminals). 
 
X,Y,Z are for variables standing for terminals. 
 



Short-hand 

Note. We often abbreviate a context free grammar, 
such as: 

G2 = ( V={S}, 
      T={(,)},  
      P={ S → ε, S → SS, S → (S) }, 
      S=S} 
By giving just its productions 
S → ε | SS |(S) 
 
And by using the following conventions.  

1) The start symbol is the lhs of the first production.  
2) Multiple production for the same lhs non-terminal can be 

grouped together by using vertical bar ( | )  
3) Non-terminals are capitalized.  
4) Terminal-symbols are lower case or non-alphabetic. 



Derivations 

The single-step derivation relation ⇒ on (V∪ T)* is 
defined by: 

α ⇒ β iff  β  is obtained from α by replacing an 
occurrence of the lhs of a production with its rhs. 
That is, α'Aα'' ⇒ α'γα''  is true iff  A → γ  is a 
production. 

We write  α ⇒∗ β when β can be obtained from α 
through a sequence of several (possibly zero) 
derivation steps.  

 

The language of the CFG , G, is the set 
 L(G) = {w∈T* | S ⇒∗ w}   (where S is the start symbol of G) 

  

Context-free languages are languages of the form L(G)  



Example 1 

The familiar non-regular language  
       L = { akbk | k ≥ 0 } 
is context-free.  

 

The grammar G1 for it is given by T={a,b}, V={S}, 
and productions:    
1. S → Λ  
2. S → a S b 

  

Here is a derivation showing a3b3∈ L(G): 
S ⇒2 aSb ⇒2 aaSbb ⇒2 aaaSbbb ⇒1 aaabbb 
 
(Note: we sometimes label the arrow with a subscript which tells the 

production used to enable the transformation) 



Example 1 continued 

Note, however, that the fact L=L(G1) is not totally 
obvious. We need to prove set inclusion both 
ways. 

 
To prove L ⊆ L(G1) we must show that there exists 

a derivation for every string akbk; this is done by 
induction on k.  

 
For the converse, L(G1) ⊆ L, we need to show that 

if S ⇒∗ w and w∈T*, then w∈ L. This is done by 
induction on the length of derivation of w.  

 
 



Example 2 

The language of balanced parentheses is 
context-free. It is generated by the 
following grammar:  

    G2 = ( V={S}, 
          T={(,)},  
          P={ S → Λ | SS |(S)}, 
          S=S} 
 

  

 



Example 3 

Consider the grammar: 
S →  AS | Λ 
A → 0A1  | A1  | 01 
 
The derivation: 
S⇒ AS ⇒ A1S ⇒ 011S ⇒ 011AS ⇒ 

0110A1S ⇒ 0110011S ⇒ 0110011 
 
shows that 0110011 ∈ L(G3).  
 



Example 3 notes 

The language L(G3) consists of strings  
w∈{0,1}*   such that:  

P(w):  Either w=ε, or w begins with 0, and 
every block of 0's in w is followed by at 
least as many 1's 

    
Again, the proof that G3 generates all and 

only strings that satisfy P(w) is not 
obvious. It requires a two-part inductive 
proof. 

 



Leftmost and Rightmost Derivations  

The same string w usually has many possible 
derivations S ≡ a0⇒a1⇒a2⇒ … ⇒ an ≡ w 

 

We call a derivation leftmost if in every step 
ai⇒ai+1, it is the first (leftmost) variable in ai$ 
that is being replaced with the rhs of a 
production. Similarly, in a rightmost derivation, it 
is always the last variable that gets replaced.  

  

The above derivation of the string 0110011 in the 
grammar G3 is leftmost. Here is a rightmost 
derivation of the same string: 

 

S ⇒ AS ⇒  AAS ⇒ AA ⇒ A0A1 ⇒ A0011 ⇒ 
A10011 ⇒ 0110011 

S →  AS | ε 
A → 0A1  | A1  | 01 



Facts 

Every Regular Language is also a Context 
Free Language 

 
How might we prove this? 

Choose one of the many specifications for 
regular languages 

Show that every instance of that kind of 
specification has a total mapping into a 
Context Free Grammar 

 

What is an appropriate choice? 



In Class Exercise 

Map the Regular Expressions into a Context 
Free language. 

 
data RegExp a 

  = Lambda                         -- the empty string "" 

  | Empty                          -- the empty set 

  | One a                          -- a singleton set {a} 

  | Union (RegExp a) (RegExp a)    -- union of two RegExp 

  | Cat (RegExp a) (RegExp a)      -- Concatenation 

  | Star (RegExp a)                -- Kleene closure 

 



Find CFG for these languages 

{an b an | n Є Nat} 
 
{ w | w Є {a,b}*, and w is a palindrome of even length} 
 
{an bk | n,k Є Nat, n ≤ k} 
 
{an bk | n,k Є Nat, n ≥ k} 
 
{ w | w Є {a,b}*, w has equal number of a’s and b’s } 
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