
Are DFAs and NFAs Equivalent 

It turns out DFAs and NFAs accept exactly 
the same languages. 

 
To show this we must prove every DFA can 

be converted into an NFA which accepts 
the same language, and vice-versa 



Power of a class of machines 

We can simulate DFA's by C programs: For every 
DFA A over (say) {0,1},  there exists a C 
program which takes binary strings w as inputs 
and returns a boolean value True iff  w∈L(A).  

 
Thus, C programs are at least as powerful as DFAs 

(big surprise).  
 
We will see later that the converse is not true: 

there exist C programs whose languages of 
accepted strings are not the languages of any 
DFA. 

 



Comparing DFA and NFA 

Here we will compare the powers of DFAs and 
NFAs. Since every DFA is at the same time an 
NFA, the latter are at least as powerful. 
Surprisingly, they are not more powerful.  

 

Theorem. For every NFA N, there exists a DFA D 
such that L(D)=L(N). 

Thus, a language L is accepted by some NFA if and 
only if it is accepted by some DFA. 

Given N, we can effectively construct the 
corresponding D.  

 



Example 

Consider the NFA that accepts binary strings ending 
with 011. 

 
 
 
 
 
The key idea for building an equivalent DFA is to 

consider the set of all states this NFA can reach 
after reading any particular string. We'll examine 
all strings starting with the shortest. 

Q0 Q1 Q3 

0,1 

0 1 Q2 
1 



Automata and Formal Languages 

Tim Sheard 5 Lecture 4 

Q0 Q1 Q3 

0,1 

0 1 Q2 
1 

{q0} 

{q0} 

{q0,q1} 

{q0,q2} {q0,q1} 

{q0,q1} 

{q0,q3} 

{q0} 

{q0,q1} 

0 0 

0 

0 

1 1 

1 

1 

When processing if we 
see a set exactly 
the same as a set 
constructed earlier 
we mark it in red. 



Automata and Formal Languages 

Tim Sheard 6 Lecture 4 

0 01 

02 

03 

0 
0 

0 

0 

1 
1 

1 

1 

By “bending” the arrows 
to the red sets back to 
the first known set 
with those elements 
we construct a DFA. 

 

Each state of the DFA 
corresponds to a set 
of states of the NFA 

{q0} 

{q0} 

{q0,q1} 

{q0,q2} {q0,q1} 

{q0,q1} 

{q0,q3} 

{q0} 

{q0,q1} 

0 0 

0 

1 1 

1 

1 

0 



General Construction 

Given an NFA:   
N =(Q,Σ,s,F,∆) 

The associated DFA  is  
D =(P(Q),Σ,{s}, F’, δ), 

Where  
 

In the DFA constructed each state is labeled with a set of 
states from the NFA. Thus the start state is just the 
singleton set {s} 

 
F' is the set of {subsets of Q} that contain an element 

of F. Thus F’⊆ P(Q) 
 

δ is defined by  δ(S,a) =  ∪{q∈ S} ∆(q,a) 



Example 

Let's compute two transitions of D, where N is as in 
the previous example. 

 
δ({q0,q2},1) = ∆(q0,1)∪ ∆(q2,1)   
            = {q0}∪{q3} 
            = {q0,q3} 
 
δ({q0,q1,q3},0) 
  = ∆(q0,0)∪ ∆(q1,0)∪ ∆(q3,0)  
  = {q0,q1}∪∅∪∅ 
  = {q0,q1} 

Q0 Q1 Q3 

0,1 

0 1 Q2 
1 



Exponential Blowup 

Note that if the NFA N has n states, then the 
corresponding DFA D has 2n states.  

 
Many of those states can usually be discarded;  
 
we must keep only those states that are reachable 

from the initial state.  
 
There are cases, however, when there is no state 

to discard;  
  
 



Note, 
Original NFA has 4 states 
The computed DFA has 16 states 
Only some of the 16 are reachable 
from the start state {Q0} 
 


	Are DFAs and NFAs Equivalent
	Power of a class of machines
	Comparing DFA and NFA
	Example
	Slide Number 5
	Slide Number 6
	General Construction
	Example
	Exponential Blowup
	Slide Number 10

