Acceptance by DFA

Defining DFAs

 For each description let’s draw a DFA that
recognizes the language it describes

e {aa,ab,ac}
 {A, a, abb, abbbb, ... ,ab?", ... }
e {a™bc" | m,n € N}

Formal definition

e Recalla DFA is a quintuple A=(Q,~,s,F,T),
where

—Q 1s a set of states

— 2 1S the alphabet of 1nput symbols

— s 1S an element of Q --- the initial state
— F 1s a subset of Q ---the set of final states

—T: Q x X——> Q 1s the transition
function

* |Inthe example below,

Q={dy-d;-95} >
x={0,1},

S=q,,

F={a,},

e anT

T is given by 6 equalities

T(9,,0)=0;,
T(9,-1)=0,,
T(9,,1)=0,

Example

l 1

(Hein 11.2.6)

thing -- its transition table:

Transition Table

e All the information presenting a TFA can be given by a single

0 1

Qo Q, Qo
Q, o} Q
*Q, Q; Q

respectively.

e The initial and final states are denoted by — and *

Extension of T to Strings

Given a state g anT a string W, there is a unique path labeled w
that starts at g (why?). The endpoint of that path is denoted

T(q,wW)

Formally, the function T : Q xX"—>Q
is defined recursively:

-T1(q,¢)=q
-T(g,ua)= T(I(g,u),a)

Note that T(qg,a)= T(qg,a) forevery acy;

so I ToesextendT.

Example trace

e Diagrams (when available) make it very easy
to compute T(q,W) --- just trace the path
labeled w starting at Q.

e E.g.trace 101 on the Diagram below starting

RS

 Implementation and precise arguments
need the formal definition.

I(qO ,101) :T(I(qO ,10),1)

=T(T(T(9,,1),0),1)
~T(T(T(d>1),0),1)
=T(T(0,,0),1)
=T(d,,1) 0 1
~H1 >0y | A1 |
d. | G2 | U
0, | 02 | 9

Language of accepted strings

ADFA =(0Q,2,s,F,T), acceptsastring w iff T(s,w)e F

The language of the automaton A is
L(A)={w | A accepts w}.
More formally
L(A)={w | T(Start(A),w) € Final(A)}

Example:

Find a DFA whose language is the set of all strings over {a,b,c}
that contain aaa as a substring.

DFA’s as Haskell Programs

data DFA q s = DFA { states :: [q],
symbols :-: [s],
delta :: g -> s -> (Q,
start :: q,
final :: [q]}

Haskell is a functional language that makes it easy to describe
formal (or mathematical) objects.

Transition function

trans :: (q ->s ->q) ->q -> [s] -> ¢
trans T q[] = ¢
trans T q (s:ss) = trans T (T g s) ss

accept :: (Eg g) => TFA g s -> [s] -> Bool
accept

M@(TFA{Telta = T,start = qO,final = f}) w
= elem (trans T g0 w) F

ma = DFA { states

}

An Example

symbols

delta

start
final

[0.1,2],
= [0,1],
\p a ->
(2*p+a) mod 3,
0,
[2]

Another definition of acceptance

ADFA A=(Q,X2,s,F,T), accepts a string
X1X5- -X, (an element of X¥)iff
— There exists a sequence of states

d.9,- -9,d,+; Such tha — —
1. ql = S charac'tersintheinputstring]

2. Gia = T(i.%5)
3. Q.,; is an element of F

How does this relate to our previous definition?

LCAY={w | T(s,w) € F }

	Acceptance by DFA
	Defining DFAs
	Formal definition
	Example
	Transition Table (Hein 11.2.6)
	Extension of T to Strings
	Example trace
	Slide Number 8
	Language of accepted strings
	DFA’s as Haskell Programs
	Transition function
	An Example
	Another definition of acceptance

