
Acceptance by DFA

Defining DFAs

• For each description let’s draw a DFA that
recognizes the language it describes

• { aa,ab,ac}
• {Λ, a, abb, abbbb, … ,ab2n, … }
• {ambcn | m,n ∈ N }

Formal definition

• Recall a DFA is a quintuple A=(Q,Σ,s,F,Τ),
where

– Q is a set of states
– Σ is the alphabet of input symbols
– s is an element of Q --- the initial state
– F is a subset of Q ---the set of final states
– Τ: Q × Σ → Q is the transition
function

Example

• In the example below,
Q={q0,q1,q2},
Σ={0,1},
s=q0,
F={q2},

• anT

T is given by 6 equalities

Τ(q0,0)=q1,
Τ(q0,1)=q0,
Τ(q2,1)=q2
…

q0 q1 q2

1 1

0 0 0,1

Transition Table
(Hein 11.2.6)

• All the information presenting a TFA can be given by a single
thing -- its transition table:

• The initial and final states are denoted by → and *
respectively.

0 1

Q0 Q1 Q0

Q1 Q2 Q1

*Q2 Q2 Q2

Extension of Τ to Strings

• Given a state q anT a string w, there is a unique path labeled w
that starts at q (why?). The endpoint of that path is denoted
T(q,w)

• Formally, the function T : Q × Σ* → Q
• is defined recursively:

– T(q,ε)=q
– T(q,ua)= T(T(q,u),a)

• Note that T(q,a)= T(q,a) for every a∈Σ;

• so T Toes extend T.

Example trace

• Diagrams (when available) make it very easy
to compute T(q,w) --- just trace the path
labeled w starting at q.

• E.g. trace 101 on the Diagram below starting
at q0

q0
qq1

1
q2

1 1

0 0 0,1

• Implementation and precise arguments
need the formal definition.

 T(q0,101)=Τ(T(q0,10),1)
 =Τ(Τ(T(q0,1),0),1)
 =Τ(Τ(Τ(q0,1),0),1)
 =Τ(Τ(q0,0),1)
 =Τ(q1,1)
 =q1

0 1

→q0 q1 q0

q1 q2 q1

*q2 q2 q2

Language of accepted strings

A DFA =(Q,Σ,s,F,Τ), accepts a string w iff T(s,w)∈ F

The language of the automaton A is
 L(A)={w | A accepts w}.
More formally

L(A)={w | T(Start(A),w) ∈ Final(A)}

Example:
Find a DFA whose language is the set of all strings over {a,b,c}

that contain aaa as a substring.

DFA’s as Haskell Programs
data DFA q s = DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q]}

Haskell is a functional language that makes it easy to describe
formal (or mathematical) objects.

Transition function
trans :: (q -> s -> q) -> q -> [s] -> q
trans T q [] = q
trans T q (s:ss) = trans T (T q s) ss

accept :: (Eq q) => TFA q s -> [s] -> Bool
accept
 m@(TFA{Telta = T,start = q0,final = f}) w
= elem (trans T q0 w) f

An Example

ma = DFA { states = [0,1,2],
 symbols = [0,1],
 delta = \p a ->
 (2*p+a) `mod` 3,
 start = 0,
 final = [2]
 }

Another definition of acceptance

A DFA A =(Q,Σ,s,F,Τ), accepts a string
x1x2..xn (an element of Σ∗) iff
– There exists a sequence of states

q1q2..qnqn+1 such that
1. q1 = s

2. qi+1 = Τ(qi,xi)
3. Qn+1 is an element of F

How does this relate to our previous definition?
L(A)={w | T(s,w) ∈ F }

Note, one more state than
characters in the input string

	Acceptance by DFA
	Defining DFAs
	Formal definition
	Example
	Transition Table (Hein 11.2.6)
	Extension of T to Strings
	Example trace
	Slide Number 8
	Language of accepted strings
	DFA’s as Haskell Programs
	Transition function
	An Example
	Another definition of acceptance

