
Acceptance by DFA 



Defining DFAs 

• For each description let’s draw a DFA that 
recognizes the language it describes 
 

• { aa,ab,ac} 
• {Λ,  a,  abb, abbbb, … ,ab2n, … } 
• {ambcn | m,n ∈ N } 



Formal definition 

• Recall a  DFA is a quintuple A=(Q,Σ,s,F,Τ), 
where  
 
– Q is a set of states 
– Σ is the alphabet of input symbols 
– s is an element of Q --- the initial state 
– F is a subset of Q ---the set of final states 
– Τ: Q × Σ → Q is the transition 
function 

 



Example 

• In the example below,  
Q={q0,q1,q2},  
Σ={0,1},  
s=q0,  
F={q2},  
 
• anT 

 
 

T is given by 6 equalities 
 

Τ(q0,0)=q1, 
Τ(q0,1)=q0, 
Τ(q2,1)=q2 
… 

 

q0 q1 q2 

1 1 

0 0 0,1 



Transition Table 
(Hein 11.2.6) 

• All the information presenting a TFA can be given by a single 
thing -- its transition table: 
 
 
 
 
 
 
 

• The initial and final states are denoted by → and * 
respectively. 

0 1 

Q0 Q1 Q0 

Q1 Q2 Q1 

*Q2 Q2 Q2 



Extension of Τ to Strings  

• Given a state q anT a string w, there is a unique path labeled w 
that starts at q (why?). The endpoint of that path is denoted 
T(q,w) 
 

• Formally, the function T : Q  × Σ* → Q 
• is defined recursively: 
 
– T(q,ε)=q 
– T(q,ua)= T(T(q,u),a) 
 

• Note that T(q,a)= T(q,a) for every a∈Σ;  

• so T Toes extend T.  
 



Example trace 

• Diagrams (when available) make it very easy 
to compute T(q,w) --- just trace the path 
labeled w starting at q.  
 

• E.g. trace 101 on the Diagram below starting 
at q0 

 
 

q0 
qq1 

1 
q2 

1 1 

0 0 0,1 



• Implementation and precise arguments 
need the formal definition. 

  
 T(q0,101)=Τ(T(q0,10),1) 
          =Τ(Τ(T(q0,1),0),1) 
          =Τ(Τ(Τ(q0,1),0),1) 
          =Τ(Τ(q0,0),1) 
          =Τ(q1,1) 
          =q1 

 

0 1 

→q0 q1 q0 

q1 q2 q1 

*q2 q2 q2 



Language of accepted strings 

A DFA  =(Q,Σ,s,F,Τ), accepts a string w iff T(s,w)∈ F 
  

The language of the automaton A is  
    L(A)={w | A accepts w}. 
More formally  

L(A)={w | T(Start(A),w) ∈ Final(A)} 
 
Example:  
Find a DFA whose language is the set of all strings over {a,b,c} 

that contain aaa as a substring.   
 



DFA’s as Haskell Programs 
data DFA q s = DFA { states :: [q], 
                     symbols :: [s], 
                     delta :: q -> s -> q, 
                     start :: q, 
                     final :: [q]} 
 

Haskell is a functional language that makes it easy to describe 
formal (or mathematical) objects. 



Transition function 
trans :: (q -> s -> q) -> q -> [s] -> q 
trans T q [] = q 
trans T q (s:ss) = trans T (T q s) ss 
 
accept :: (Eq q) => TFA q s -> [s] -> Bool 
accept  
  m@(TFA{Telta = T,start = q0,final = f}) w 
= elem (trans T q0 w) f 

 
 



An Example 

ma = DFA { states = [0,1,2], 
           symbols = [0,1], 
           delta = \p a ->  
                    (2*p+a) `mod` 3, 
           start = 0, 
           final = [2] 
         } 



Another definition of acceptance 

A DFA  A =(Q,Σ,s,F,Τ), accepts a string 
x1x2..xn (an element of Σ∗) iff 
–  There exists a sequence of states 

q1q2..qnqn+1 such that 
1. q1 = s 

2. qi+1 = Τ(qi,xi) 
3. Qn+1 is an element of F 

 

How does this relate to our previous definition? 
L(A)={w | T(s,w) ∈ F } 
 

 

Note, one more state than 
characters in the input string 
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