Acceptance by DFA

Defining DFAs

• For each description let's draw a DFA that recognizes the language it describes

- { aa,ab,ac}
- { Λ , a, abb, abbbb, ..., ab^{2n} , ... }
- $\{a^{m}bc^{n} | m, n \in N \}$

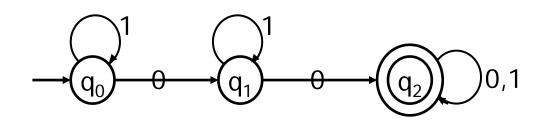
Formal definition

• Recall a **D**FA is a quintuple $\mathbf{A} = (\mathbf{Q}, \Sigma, \mathbf{s}, \mathbf{F}, T)$, where

- -Q is a set of states
- $-\Sigma$ is the alphabet of input symbols
- -s is an element of Q --- the initial state
- -F is a subset of Q ---the set of final states
- -T: $\mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function

Example

• In the example below , $\mathbf{Q} = \{q_0, q_1, q_2\},\$ $\mathbf{\Sigma} = \{0, 1\},\$ $\mathbf{S} = q_0,\$ $\mathbf{F} = \{q_2\},\$



anT

T is given by 6 equalities

$$T(q_0, 0) = q_1, T(q_0, 1) = q_0, T(q_2, 1) = q_2, ...$$

Transition Table

(Hein 11.2.6)

• All the information presenting a TFA can be given by a single thing -- its *transition table*:

	0	1
\rightarrow O_0	Q ₁	O ₀
Q ₁	Q ₂	0 ₁
*Q ₂	Q ₂	Q ₂

The initial and final states are denoted by → and * respectively.

Extension of T to Strings

- Given a state q anT a string w, there is a unique path labeled w that starts at q (why?). The endpoint of that path is denoted <u>T(q,w)</u>
- Formally, the function $\underline{T} : Q \times \Sigma^* \rightarrow Q$
- is defined recursively:

$$-\underline{T}(q,\varepsilon)=q$$

$$-\underline{T}(q,ua)=T(\underline{T}(q,u),a)$$

- Note that $\underline{\mathbf{T}}(q,a) = \mathbf{T}(q,a)$ for every $a \in \Sigma$;
- so \mathbf{T} Toes extend \mathbf{T} .

Example trace

 Diagrams (when available) make it very easy to compute <u>T(q,w)</u> --- just trace the path labeled w starting at q.

• E.g. trace 101 on the Diagram below starting at $q_0 = \begin{pmatrix} 1 \\ q_0 \end{pmatrix} \begin{pmatrix} 1 \\ q_1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \begin{pmatrix} q_2 \end{pmatrix} \begin{pmatrix} q_1 \\ q_$ • Implementation and precise arguments need the formal definition.

```
\underline{T}(q_0, 101) = T(\underline{T}(q_0, 10), 1)
                    = T(T(\underline{T}(q_0, 1), 0), 1)
                    = T(T(T(q_0, 1), 0), 1)
                    =T(T(q_0, 0), 1)
                    =T(q_1,1)
                                                      \mathbf{O}
                                                               1
                    =\mathbf{q}_1
                                            \rightarrow q_0
                                                      q_1
                                                              q_0
                                              q_1
                                                      q_2
                                                              q_1
```

*q₂

 q_2

 q_2

Language of accepted strings

 $A DFA = (\mathbf{Q}, \Sigma, \mathbf{s}, \mathbf{F}, T), \ accepts \ a \ string \ \mathbf{w} \ iff \ \underline{T}(\mathbf{s}, w) \in \mathbf{F}$

The language of the automaton A is

$$L(A) = \{w \mid A \text{ accepts } w\}.$$

More formally
 $L(A) = \{w \mid \underline{T}(Start(A), w) \in Final(A)\}$

Example:

Find a DFA whose language is the set of all strings over {a,b,c} that contain aaa as a substring.

DFA's as Haskell Programs

Haskell is a functional language that makes it easy to describe formal (or mathematical) objects.

Transition function

trans :: (q -> s -> q) -> q -> [s] -> q
trans T q [] = q
trans T q (s:ss) = trans T (T q s) ss
accept :: (Eq q) => TFA q s -> [s] -> Bool
accept
 m@(TFA{Telta = T,start = q0,final = f}) w
 = elem (trans T q0 w) f

An Example

 $ma = DFA \{ states = [0,1,2], \}$ symbols = [0,1], delta = p a ->(2*p+a) `mod` 3, start = 0, final = [2]}

Another definition of acceptance

A DFA $A = (Q, \Sigma, s, F, T)$, accepts a string $\mathbf{x_1 x_2 \cdot x_n}$ (an element of Σ^*) iff - There exists a sequence of states $q_1 q_2 \cdot q_n q_{n+1}$ such that 1. $q_1 = s$ 2. $q_{i+1} = T(q_i, x_i)$ 3. Q_{n+1} is an element of F

How does this relate to our previous definition? $L(A) = \{ w \mid \underline{T}(\mathbf{s}, w) \in \mathbf{F} \}$