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Computation 

• Computation uses a well defined series of 
actions to compute a new result from some 
input. 

• We perform computation all the time 
 
 

 

    
  348 
+ 213 
------- 
     

   1 
  348 
+ 213 
------- 
    1 

  0 1 
  348 
+ 213 
------- 
   61 

  0 1 
  348 
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------- 
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Properties 

• As computer scientists we know Computation 
– Can be carried out by machines 
– Can be broken into sub-pieces 
– Can be paused 
– Can be resumed 
– Can be expressed using many equivalent systems 

 

• The study of computation includes computability  
– what can be computed by different kinds of systems 

 

 



Binary adders 

       B                          A                      Carry In 

       Carry Out                   A + B  mod 2 



Ripple Carry Adder 

1         1         0         1            1 

1         0         1          0         1    1         0         1          0         1 0 



Languages and Computation 

• There are many ways to compute the sum of 
two binary numbers. 

• One historically interesting way is to use the 
notion of a language as a view of 
computation. 
 



Language = A set of strings 

• A language over an alphabet Σ is any subset of Σ*. That is, any set 
of strings over Σ.  
 

• A language can be finite or infinite. 
  
• Some languages over {0,1}: 

–  {Λ,01,0011,000111, … } 
 

–  The set of all binary representations of prime numbers: 
{10,11,101,111,1011, … } 

 
• Some languages over ASCII: 

– The set of all English words 
– The set of all C programs 

 
 



Language Representation 

• Languages can be described in many ways 
– For a finite language we can write down all 

elements in the set of strings  {“1”, “5” , “8”} 
– We can describe a property that is true of all the 

elements in the set of strings  { x |  |x|=1 } 
– Design a machine that answers yes or no for every 

possible string. 
– We can write a generator that enumerates all the 

strings (it might run forever) 



Base 10 
• 0 
• 1 
• 2 
• 3 
• 4 
• 5 
• 6 
• 7 
• 8 

Base 3 
• 0 
• 1 
• 2 
• 10 
• 11 
• 12 
• 20 
• 21 
• 22 

The language 
 
{ 0, 2, 11, 20, 22, …} 
 
There is an infinite 
number of them, we can 
write them all down. 
We’ll need to use 
another mechanism 

A language for even numbers written in base 3 



A machine that answers yes or no for 
every even number written in base 3. 

{ 0, 2, 11, 20, 22, …} 
 



DFA Formal Definition 

• A DFA is a quintuple A=(Q,Σ,s,F,δ), 
where  
 
– Q is a set of states 
– Σ is the alphabet of input symbols (A in Hein) 
– s is an element of Q --- the initial state 
– F is a subset of Q ---the set of final states 
– δ: Q × Σ → Q is the transition function 

 



Example 
• Q = {Yes,No} 
•  Σ =  {0,1,2} 
• S = Yes     (the initial state)  
• F = {Yes}     (final states are labeled in blue) 
• δ: Q × Σ → Q  

        delta Yes 0 = Yes 
        delta Yes 2 = Yes 
        delta Yes 1 = No 
        delta No 0 = No 
        delta No 1 = Yes 
        delta No 2 = No 



Properties 

• DFAs are easy to present pictorially:  

Q0 Q1 Q2 

1 1 

0 0 0,1 

They are directed graphs whose nodes are states  and whose arcs 
are labeled by one or more symbols from some alphabet Σ. 

Here Σ is {0,1}. 



• One state is initial (denoted by a short incoming arrow), and 
several are final/accepting (denoted by a double circle in the 
text, but by being labeled blue in some of my notes).  For 
every symbol  a∈Σ there is an arc labeled a emanating from 
every state.  

•   
 
 
 
 

• Automata are string processing devices. The arc from q1 to q2 
labeled 0 shows that when the automaton is in the state q1 
and receives the input symbol 0, its next state will be q2. 
 

q0 q1 q2 

1 1 

0 0 0,1 



• Every path in the graph spells out a string 
over S.  Moreover, for every string w ∈Σ∗  
there is a unique path in the graph labelled 
w. (Every string can be processed.) The set of 
all strings whose corresponding paths end in 
a final state is the language of the 
automaton. 
 
 
 
 

• In this example, the language of the 
automaton consists of strings over {0,1} 
containing at least two occurrences of 0.  In 
the base 3 example, the language is the even 
base three numbers 

Q0 Q1 Q2 

1 1 

0 0 0,1 



What can DFA’s compute 

• DFAs can express a wide variety of 
computations 
1. Parity properties (even, odd, mod n) for 

languages expressed in base m 
2. Addition (we’ll see this in a few slides) 
3. Many pattern matching problems (grep) 

• But, not everything.  
– E.g. Can’t compute  { x | x is a palindrome } 



Are they good for things other than computation? 

• We can use DFAs to compute if a string is a 
member of some languages.  

• But a DFA is mathematical structure (A 
=(Q,Σ,s,F,δ)) 

• It is itself an object of study 
• We can analyze it and determine 
some of its properties 



Prove 
• Q = {Yes,No} 
•  Σ =  {0,1,2} 
• S = Yes     (the initial state)  
• F = {Yes}     (final states are labeled in blue) 
• δ: Q × Σ → Q  

        delta Yes 0 = Yes 
        delta Yes 2 = Yes 
        delta Yes 1 = No 
        delta No 0 = No 
        delta No 1 = Yes 
        delta No 2 = No 
 

parity(Yes) = 0 
parity(No) = 1 

 
 
Let s∈Q,   d∈Σ 
Delta(s,d) = parity-1 ((3 * (parity s) + d) `mod` 2) 

 
 



Six cases 

1. delta Yes 0 = Yes      parity-1 ((3 * (parity Yes) + 0) `mod` 2) 
2. delta Yes 2 = Yes      parity-1 ((3 * (parity Yes) + 2) `mod` 2) 

3. delta Yes 1 = No      parity-1 ((3 * (parity Yes) + 1) `mod` 2) 

4. delta No 0 = No       parity-1 ((3 * (parity No) + 0) `mod` 2) 

5. delta No 1 = Yes       parity-1 ((3 * (parity No) + 1) `mod` 2) 

6. delta No 2 = No        parity-1 ((3 * (parity No) + 2) `mod` 2) 

 
parity(Yes) = 0 
parity(No) = 1 

 



Addition as a language 

• Let A,B,C be elements of {0,1}n  I.e. binary 
numbers of some fixed length n 

• Consider the language   L = { ABC | A+B=C } 
• E.g. Let n=4 bits wide 

– 0000 0000 0000     is in L 
– 0010 0001 0011     is in L 
– 1111 0001 0000     is not in L 



How can we encode this as a DFA? 

• Change of representation 
• Let a string of 3 binary numbers, such as   

“0010  0001  0011”  be encoded as a string of 
3-tuples such as  “(0,0,0) (0,0,0) (1,01) (0,1,1)” 

• Why can we do this? Nothing says the 
alphabet can’t be a set of triples! 

• Now lets reverse the order of the triples in the 
string “(0,1,1)  (1,01)  (0,0,0) (0,0,0)” 
– Least significant bit first. 



Encode as follows 



Mealy Machine 

• A  Mealy is a 6-tuple A=(Q,Σ,O,s,δ, 
emit), where  
 
– Q is a set of states 
– Σ is the alphabet of input symbols (A in 
Hein) 

– O is the alphabet of the output 
– s is an element of Q --- the initial state 
– δ: Q × Σ → Q is the transition function 
– emit : Q × Σ → O is the emission function 
 

 



The Big Picture 

• Computer Science is about computation 
• A computational system describes a certain 

kind of computation in a precise and formal 
way (DFA, Mealy machines). 
– What can it compute? 
– How much does it cost? 
– How is it related to other systems? 
– Can more than one system describe exactly the 

same computations? 
 



History 

• The first computational systems were all based 
on languages. 

• This led to a view of computation that was 
language related.  
– E.g. which strings are in the language. 
– Is one language a subset (or superset) of another. 
– Can we decide?  
– If we can decide, what is the worst case cost? 
– Are there languages for which the membership 

predicate cannot be computed? 



A Tour of this class 
• Languages as computation 

– A hierarchy of languages 
• Regular languages 
• Context Free languages 
• Turing machines 

– A Plethora of  systems 
• Regular expressions, DFAs, NFAs, context free grammars, push 

down automata, Mealy machines, Turing machines, Post systems, 
and more. 

• Computability 
– What can be computed 
– Self applicability (Lisp self interpretor) 
– The Halting Problem 



Take aways 
• A computational system is like a programming 

language. 
– A program describes a computation. 
– Different languages have different properties. 
– A language can be analyzed 

• A formal computational system is just data (DFA is a 5-tuple) 
• The structure can be used to prove things about the system 

– What properties hold of all programs? 
– What can never happen? 

– A program can be analyzed 
• A program is just data 
• What does this program do? 
• Does it do the same as another? 
• What is its cost?  
• Is it hard understand?  



Why is this important? 
• Languages are every where 
• Many technologies are based upon languages 

– Parsing, grep, transition systems. 
• The historical record has a beauty that is worth 

studying in its own right. 
• Reasoning about computation is the basis for modern 

computing. 
– What do programs do?  What can we say about what they 

don’t do? What do they cost? What systems makes writing 
certain class of programs easier? 

• Computational Systems and Programs are just data. 
• Knowing what is possible, and what isn’t. 
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