Lecture 1
 Computation and Languages

CS311
Fall 2012

Computation

- Computation uses a well defined series of actions to compute a new result from some input.
- We perform computation all the time

	1
348	348
+213	+213
$-\ldots-\ldots$	1

01
348
+213
$-\ldots-\ldots$
61

$$
\begin{array}{r}
01 \\
348 \\
+\quad 213 \\
\hline---- \\
561
\end{array}
$$

Properties

- As computer scientists we know Computation
- Can be carried out by machines
- Can be broken into sub-pieces
- Can be paused
- Can be resumed
- Can be expressed using many equivalent systems
- The study of computation includes computability
- what can be computed by different kinds of systems

Binary adders

Ripple Carry Adder

Languages and Computation

- There are many ways to compute the sum of two binary numbers.
- One historically interesting way is to use the notion of a language as a view of computation.

Language = A set of strings

- A language over an alphabet Σ is any subset of Σ^{*}. That is, any set of strings over Σ.
- A language can be finite or infinite.
- Some languages over $\{0,1\}$:
- \{ $\Lambda, 01,0011,000111, \ldots\}$
- The set of all binary representations of prime numbers: $\{10,11,101,111,1011, \ldots\}$
- Some languages over ASCII:
- The set of all English words
- The set of all C programs

Language Representation

- Languages can be described in many ways
- For a finite language we can write down all elements in the set of strings \{" 1 ", " 5 " , " 8 " $\}$
- We can describe a property that is true of all the elements in the set of strings $\{x||x|=1\}$
- Design a machine that answers yes or no for every possible string.
- We can write a generator that enumerates all the strings (it might run forever)

A language for even numbers written in base 3

Base 10	Base 3	
- 0	- 0	The language
- 1	- 1	
- 2	- 2	$\{0,2,11,20,22, \ldots\}$
- 3	- 10	
- 4	- 11	There is an infinite
- 5	- 12	number of them, we can
- 6	- 20	write them all down.
- 7	- 21	We'll need to use - 8 - 22

A machine that answers yes or no for every even number written in base 3.

$\{0,2,11,20,22, \ldots\}$

DFA Formal Definition

- A DFA is a quintuple $\mathbf{A}=(\mathbf{Q}, \Sigma, \mathbf{S}, \mathbf{F}, \delta)$, where
- Q is a set of states
$-\Sigma$ is the alphabet of input symbols (A in Hein)
-s is an element of \mathbf{Q}--- the initial state
- \mathbf{F} is a subset of \mathbf{Q}---the set of final states
$-\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function

Example

- $\mathrm{Q}=\{\mathrm{Yes}, \mathrm{No}\}$
- $\Sigma=\{0,1,2\}$
- $S=$ Yes (the initial state)
- $\mathrm{F}=\{\mathrm{Yes}\} \quad$ (final states are labeled in blue)
- $\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$
delta Yes $0=$ Yes
delta Yes 2 = Yes
delta Yes $1=$ No
delta No $0=$ No
delta No 1 = Yes
delta No $2=$ No

Properties

- DFAs are easy to present pictorially:

They are directed graphs whose nodes are states and whose arcs are labeled by one or more symbols from some alphabet Σ. Here Σ is $\{0,1\}$.

- One state is initial (denoted by a short incoming arrow), and several are final/accepting (denoted by a double circle in the text, but by being labeled blue in some of my notes). For every symbol $a \in \Sigma$ there is an arc labeled a emanating from every state.
\bullet

- Automata are string processing devices. The arc from q_{1} to q_{2} labeled 0 shows that when the automaton is in the state q_{1} and receives the input symbol 0 , its next state will be q_{2}.
- Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^{*}$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the language of the automaton.

- In this example, the language of the automaton consists of strings over $\{0,1\}$ containing at least two occurrences of 0 . In the base 3 example, the language is the even base three numbers

What can DFA's compute

- DFAs can express a wide variety of computations

1. Parity properties (even, odd, $\bmod n$) for languages expressed in base m
2. Addition (we'll see this in a few slides)
3. Many pattern matching problems (grep)

- But, not everything.
- E.g. Can't compute $\{x \mid x$ is a palindrome $\}$

Are they good for things other than computation?

- We can use DFAs to compute if a string is a member of some languages.
- But a DFA is mathematical structure (A $=(\mathbf{Q}, \Sigma, \mathbf{S}, \mathbf{F}, \delta))$
- It is itself an object of study
- We can analyze it and determine some of its properties

Prove

- $\mathrm{Q}=\{\mathrm{Yes}, \mathrm{No}\}$
- $\quad \Sigma=\{0,1,2\}$
- $S=$ Yes (the initial state)
- $\mathrm{F}=\{\mathrm{Yes}\} \quad$ (final states are labeled in blue)
- $\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ delta Yes $0=$ Yes
delta Yes $2=$ Yes
delta Yes $1=$ No
delta No $0=$ No
delta No $1=$ Yes
delta No $2=$ No

> parity $(\mathrm{Yes})=0$
> $\operatorname{parity}(\mathrm{No})=1$

Let $s \in Q, \quad d \in \Sigma$
Delta(s,d) $=$ parity $^{-1}\left(\left(3^{*}(\right.\right.$ parity $\left.s)+d\right)$ `mod` 2$)$

Six cases

1. delta Yes $0=$ Yes parity ${ }^{1}\left((3 \text { * (parity Yes) }+0)^{\prime}{ }^{\prime} \bmod ^{\prime} 2\right)$
2. delta Yes $2=$ Yes $\operatorname{parity}^{-1}\left(3^{*}(\right.$ parity Yes $\left.\left.)+2\right){ }^{\prime} \bmod ^{2} 2\right)$
3. delta Yes $1=$ No parity $^{-1}\left(\left(3^{*}(\text { parity Yes })+1\right)^{\prime} \bmod ^{2} 2\right)$
4. delta No $0=$ No $\left.\quad \operatorname{parity}^{-1}\left(3^{*}(\text { parity } N o)+0\right)^{\prime} \bmod ^{2} 2\right)$
5. delta No $1=$ Yes parity $^{-1}\left(\left(3^{*}(\text { parity } N o)+1\right)^{`} \bmod ^{\prime} 2\right)$
6. delta No $2=$ No parity $^{-1}\left(\left(3^{*}(\right.\right.$ parity $\left.\left.N o)+2\right) \cdot \bmod ^{2} 2\right)$
parity $($ Yes $)=0$ parity(No) $=1$

Addition as a language

- Let A, B, C be elements of $\{0,1\}^{n}$ l.e. binary numbers of some fixed length n
- Consider the language $L=\{A B C \mid A+B=C\}$
- E.g. Let $\mathrm{n}=4$ bits wide
-000000000000 is in L
-001000010011 is in L
-111100010000 is not in L

How can we encode this as a DFA?

- Change of representation
- Let a string of 3 binary numbers, such as "0010 0001 0011" be encoded as a string of 3 -tuples such as " $(0,0,0)(0,0,0)(1,01)(0,1,1)$ "
- Why can we do this? Nothing says the alphabet can't be a set of triples!
- Now lets reverse the order of the triples in the string " $(0,1,1)(1,01)(0,0,0)(0,0,0)$ "
- Least significant bit first.

Encode as follows

Mealy Machine

- A Mealy is a 6 -tuple $\mathbf{A}=(\mathbf{Q}, \Sigma, \mathbf{0}, \mathbf{s}, \delta$, emit), where
- Q is a set of states
$-\Sigma$ is the alphabet of input symbols (A in Hein)
- \mathbf{O} is the alphabet of the output
- s is an element of \mathbf{Q}--- the initial state
$-\delta: \mathbf{Q} \times \Sigma \longrightarrow \mathbf{Q}$ is the transition function
- emit: $\mathbf{Q} \times \Sigma \longrightarrow \mathbf{O}$ is the emission function

The Big Picture

- Computer Science is about computation
- A computational system describes a certain kind of computation in a precise and formal way (DFA, Mealy machines).
- What can it compute?
- How much does it cost?
- How is it related to other systems?
- Can more than one system describe exactly the same computations?

History

- The first computational systems were all based on languages.
- This led to a view of computation that was language related.
- E.g. which strings are in the language.
- Is one language a subset (or superset) of another.
- Can we decide?
- If we can decide, what is the worst case cost?
- Are there languages for which the membership predicate cannot be computed?

A Tour of this class

- Languages as computation
- A hierarchy of languages
- Regular languages
- Context Free languages
- Turing machines
- A Plethora of systems
- Regular expressions, DFAs, NFAs, context free grammars, push down automata, Mealy machines, Turing machines, Post systems, and more.
- Computability
- What can be computed
- Self applicability (Lisp self interpretor)
- The Halting Problem

Take aways

- A computational system is like a programming language.
- A program describes a computation.
- Different languages have different properties.
- A language can be analyzed
- A formal computational system is just data (DFA is a 5-tuple)
- The structure can be used to prove things about the system
- What properties hold of all programs?
- What can never happen?
- A program can be analyzed
- A program is just data
- What does this program do?
- Does it do the same as another?
- What is its cost?
- Is it hard understand?

Why is this important?

- Languages are every where
- Many technologies are based upon languages
- Parsing, grep, transition systems.
- The historical record has a beauty that is worth studying in its own right.
- Reasoning about computation is the basis for modern computing.
- What do programs do? What can we say about what they don't do? What do they cost? What systems makes writing certain class of programs easier?
- Computational Systems and Programs are just data.
- Knowing what is possible, and what isn't.

