
Lecture 1
Computation and Languages

CS311
Fall 2012

Computation

• Computation uses a well defined series of
actions to compute a new result from some
input.

• We perform computation all the time

 348
+ 213

 1
 348
+ 213

 1

 0 1
 348
+ 213

 61

 0 1
 348
+ 213

 561

Properties

• As computer scientists we know Computation
– Can be carried out by machines
– Can be broken into sub-pieces
– Can be paused
– Can be resumed
– Can be expressed using many equivalent systems

• The study of computation includes computability
– what can be computed by different kinds of systems

Binary adders

 B A Carry In

 Carry Out A + B mod 2

Ripple Carry Adder

1 1 0 1 1

1 0 1 0 1 1 0 1 0 1 0

Languages and Computation

• There are many ways to compute the sum of
two binary numbers.

• One historically interesting way is to use the
notion of a language as a view of
computation.

Language = A set of strings

• A language over an alphabet Σ is any subset of Σ*. That is, any set
of strings over Σ.

• A language can be finite or infinite.

• Some languages over {0,1}:

– {Λ,01,0011,000111, … }

– The set of all binary representations of prime numbers:
{10,11,101,111,1011, … }

• Some languages over ASCII:

– The set of all English words
– The set of all C programs

Language Representation

• Languages can be described in many ways
– For a finite language we can write down all

elements in the set of strings {“1”, “5” , “8”}
– We can describe a property that is true of all the

elements in the set of strings { x | |x|=1 }
– Design a machine that answers yes or no for every

possible string.
– We can write a generator that enumerates all the

strings (it might run forever)

Base 10
• 0
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8

Base 3
• 0
• 1
• 2
• 10
• 11
• 12
• 20
• 21
• 22

The language

{ 0, 2, 11, 20, 22, …}

There is an infinite
number of them, we can
write them all down.
We’ll need to use
another mechanism

A language for even numbers written in base 3

A machine that answers yes or no for
every even number written in base 3.

{ 0, 2, 11, 20, 22, …}

DFA Formal Definition

• A DFA is a quintuple A=(Q,Σ,s,F,δ),
where

– Q is a set of states
– Σ is the alphabet of input symbols (A in Hein)
– s is an element of Q --- the initial state
– F is a subset of Q ---the set of final states
– δ: Q × Σ → Q is the transition function

Example
• Q = {Yes,No}
• Σ = {0,1,2}
• S = Yes (the initial state)
• F = {Yes} (final states are labeled in blue)
• δ: Q × Σ → Q

 delta Yes 0 = Yes
 delta Yes 2 = Yes
 delta Yes 1 = No
 delta No 0 = No
 delta No 1 = Yes
 delta No 2 = No

Properties

• DFAs are easy to present pictorially:

Q0 Q1 Q2

1 1

0 0 0,1

They are directed graphs whose nodes are states and whose arcs
are labeled by one or more symbols from some alphabet Σ.

Here Σ is {0,1}.

• One state is initial (denoted by a short incoming arrow), and
several are final/accepting (denoted by a double circle in the
text, but by being labeled blue in some of my notes). For
every symbol a∈Σ there is an arc labeled a emanating from
every state.

•

• Automata are string processing devices. The arc from q1 to q2
labeled 0 shows that when the automaton is in the state q1
and receives the input symbol 0, its next state will be q2.

q0 q1 q2

1 1

0 0 0,1

• Every path in the graph spells out a string
over S. Moreover, for every string w ∈Σ∗
there is a unique path in the graph labelled
w. (Every string can be processed.) The set of
all strings whose corresponding paths end in
a final state is the language of the
automaton.

• In this example, the language of the
automaton consists of strings over {0,1}
containing at least two occurrences of 0. In
the base 3 example, the language is the even
base three numbers

Q0 Q1 Q2

1 1

0 0 0,1

What can DFA’s compute

• DFAs can express a wide variety of
computations
1. Parity properties (even, odd, mod n) for

languages expressed in base m
2. Addition (we’ll see this in a few slides)
3. Many pattern matching problems (grep)

• But, not everything.
– E.g. Can’t compute { x | x is a palindrome }

Are they good for things other than computation?

• We can use DFAs to compute if a string is a
member of some languages.

• But a DFA is mathematical structure (A
=(Q,Σ,s,F,δ))

• It is itself an object of study
• We can analyze it and determine
some of its properties

Prove
• Q = {Yes,No}
• Σ = {0,1,2}
• S = Yes (the initial state)
• F = {Yes} (final states are labeled in blue)
• δ: Q × Σ → Q

 delta Yes 0 = Yes
 delta Yes 2 = Yes
 delta Yes 1 = No
 delta No 0 = No
 delta No 1 = Yes
 delta No 2 = No

parity(Yes) = 0
parity(No) = 1

Let s∈Q, d∈Σ
Delta(s,d) = parity-1 ((3 * (parity s) + d) `mod` 2)

Six cases

1. delta Yes 0 = Yes parity-1 ((3 * (parity Yes) + 0) `mod` 2)
2. delta Yes 2 = Yes parity-1 ((3 * (parity Yes) + 2) `mod` 2)

3. delta Yes 1 = No parity-1 ((3 * (parity Yes) + 1) `mod` 2)

4. delta No 0 = No parity-1 ((3 * (parity No) + 0) `mod` 2)

5. delta No 1 = Yes parity-1 ((3 * (parity No) + 1) `mod` 2)

6. delta No 2 = No parity-1 ((3 * (parity No) + 2) `mod` 2)

parity(Yes) = 0
parity(No) = 1

Addition as a language

• Let A,B,C be elements of {0,1}n I.e. binary
numbers of some fixed length n

• Consider the language L = { ABC | A+B=C }
• E.g. Let n=4 bits wide

– 0000 0000 0000 is in L
– 0010 0001 0011 is in L
– 1111 0001 0000 is not in L

How can we encode this as a DFA?

• Change of representation
• Let a string of 3 binary numbers, such as

“0010 0001 0011” be encoded as a string of
3-tuples such as “(0,0,0) (0,0,0) (1,01) (0,1,1)”

• Why can we do this? Nothing says the
alphabet can’t be a set of triples!

• Now lets reverse the order of the triples in the
string “(0,1,1) (1,01) (0,0,0) (0,0,0)”
– Least significant bit first.

Encode as follows

Mealy Machine

• A Mealy is a 6-tuple A=(Q,Σ,O,s,δ,
emit), where

– Q is a set of states
– Σ is the alphabet of input symbols (A in
Hein)

– O is the alphabet of the output
– s is an element of Q --- the initial state
– δ: Q × Σ → Q is the transition function
– emit : Q × Σ → O is the emission function

The Big Picture

• Computer Science is about computation
• A computational system describes a certain

kind of computation in a precise and formal
way (DFA, Mealy machines).
– What can it compute?
– How much does it cost?
– How is it related to other systems?
– Can more than one system describe exactly the

same computations?

History

• The first computational systems were all based
on languages.

• This led to a view of computation that was
language related.
– E.g. which strings are in the language.
– Is one language a subset (or superset) of another.
– Can we decide?
– If we can decide, what is the worst case cost?
– Are there languages for which the membership

predicate cannot be computed?

A Tour of this class
• Languages as computation

– A hierarchy of languages
• Regular languages
• Context Free languages
• Turing machines

– A Plethora of systems
• Regular expressions, DFAs, NFAs, context free grammars, push

down automata, Mealy machines, Turing machines, Post systems,
and more.

• Computability
– What can be computed
– Self applicability (Lisp self interpretor)
– The Halting Problem

Take aways
• A computational system is like a programming

language.
– A program describes a computation.
– Different languages have different properties.
– A language can be analyzed

• A formal computational system is just data (DFA is a 5-tuple)
• The structure can be used to prove things about the system

– What properties hold of all programs?
– What can never happen?

– A program can be analyzed
• A program is just data
• What does this program do?
• Does it do the same as another?
• What is its cost?
• Is it hard understand?

Why is this important?
• Languages are every where
• Many technologies are based upon languages

– Parsing, grep, transition systems.
• The historical record has a beauty that is worth

studying in its own right.
• Reasoning about computation is the basis for modern

computing.
– What do programs do? What can we say about what they

don’t do? What do they cost? What systems makes writing
certain class of programs easier?

• Computational Systems and Programs are just data.
• Knowing what is possible, and what isn’t.

	Lecture 1�Computation and Languages
	Computation
	Properties
	Binary adders
	Ripple Carry Adder
	Languages and Computation
	Language = A set of strings
	Language Representation
	A language for even numbers written in base 3
	A machine that answers yes or no for every even number written in base 3.
	DFA Formal Definition
	Example
	Properties
	Slide Number 14
	Slide Number 15
	What can DFA’s compute
	Are they good for things other than computation?
	Prove
	Six cases
	Addition as a language
	How can we encode this as a DFA?
	Encode as follows
	Mealy Machine
	The Big Picture
	History
	A Tour of this class
	Take aways
	Why is this important?

