NFA Closure Properties

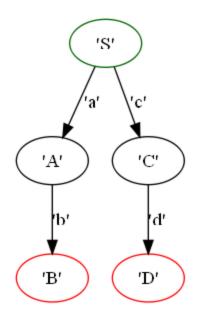
NFAs also have closure properties

- We have given constructions for showing that DFAs are closed under
 - 1. Complement
 - 2. Intersection
 - 3. Difference
 - 4. Union
- We will now establish that NFAs are closed under
 - 1. Reversal
 - 2. Kleene star
 - 3. Concatenation

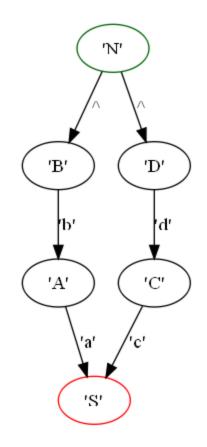
Reversal of $\Lambda\text{-}\mathsf{NFAs}$

- Closure under reversal is easy using Λ-NFAs. If you take such an automaton for L, you need to make the following changes to transform it into an automaton for L^{Rev}:
 - 1. Reverse all arcs
 - 2. The old start state becomes the only new final state.
 - 3. Add a new start state, and an Λ -arc from it to all old final states.

Example



- 1. Reverse all arcs
- 2. The old start state becomes the only new final state.
- 3. Add a new start state, and an Λ -arc from it to all old final states.



Concatentation

• $L \bullet R = \{x \bullet y \mid x \text{ in } L \text{ and } y \text{ in } R\}$

- To form a new $\Lambda\text{-NFA}$ that recognizes the concatenation of two other $\Lambda\text{-NFAs}$ with the same alphabet do the following
 - Union the states (you might have to rename them)
 - Add an Λ transition from each final state of the first to the start state of the second.

Formally

- Let
 - $-L = (Q_L, A, s_L, F_L, T_L)$ $-R = (Q_R, A, s_R, F_R, T_R)$
- $L \bullet R = = (Q_{L\cup}Q_R, A, s_L, F_R, T)$ Where T s $\Lambda \mid s \in F_L = S_R$ T s c $\mid s \in Q_L = T_L s c$
 - $T \ s \ c \ | \ s \in Q_R = T_R \ s \ c$

