NFA defined

NFA

- A Non-deterministic Finite-state Automata (NFA) is a language recognizing system similar to a DFA.
- It supports a level of non-determinism. I.e. At some points in time it is possible for the machine to take on many next-states.
- Non-determinism makes it easier to express certain kinds of languages.

Nondeterministic Finite Automata (NFA)

- When an NFA receives an input symbol a, it can make a transition to zero, one, two, or even more states.
 - each state can have multiple edges labeled with the same symbol.
- An NFA accepts a string w iff there exists a path labeled w from the initial state to one of the final states.
 - In fact, because of the non-determinism, there may be many states labeled with w

Example N1

 The language of the following NFA consists of all strings over {0,1} whose 3rd symbol from the right is 0.

Note Q₀ has multiple transitions on 0

Example N2

• The NFA N₂ accepts strings beginning with 0.

- Note Q_0 has no transition on 1
 - It is acceptable for the transition function to be undefined on some input elements for some states.

NFA Processing

- Suppose N_1 receives the input string 0011. There are three possible execution sequences:
- $q_0 \longrightarrow q_0 \longrightarrow q_0 \longrightarrow q_0 \longrightarrow q_0$ • $q_0 \longrightarrow q_0 \longrightarrow q_1 \longrightarrow q_2 \longrightarrow q_3$ • $q_0 \longrightarrow q_1 \longrightarrow q_2 \longrightarrow q_3$ • $q_0 \longrightarrow q_1 \longrightarrow q_2 \longrightarrow q_3$
 - Only the second finishes in an accept state. The third even gets stuck (cannot even read the fourth symbol).
 - As long is there is at least one path to an accepting state , then the string is accepted.

Implementation

 Implementation of NFAs has to be deterministic, using some form of backtracking to go through all possible executions.

• Any thoughts on how this might be accomplished?

Formal Definiton

• An NFA is a quintuple $A=(Q,\Sigma,s,F,T)$, where the first four components are as in a DFA, and the transition function takes values in P(Q) (the power set of Q) instead of Q. Thus

- T: $Q \times \Sigma \longrightarrow P(Q)$ note that T returns a set of states

- A NFA A = (Q, Σ, s, F, T), accepts a string x₁x₂..x_n (an element of Σ*) iff there exists a sequence of states q₁q₂..q_nq_{n+1} such that
 - $q_1 = s$

•
$$\mathbf{q}_{i+1} \in T(\mathbf{q}_i, \mathbf{x}_i)$$

• $Q_{n+1} \cap \mathbf{F} \neq \emptyset$

Compare with

A DFA A = (Q, Σ, s, F, T), accepts a string $x_1x_2..x_n$ (an element of Σ^*) iff There exists a sequence of states $q_1q_2..q_nq_{n+1}$ such that 1. $q_1 = s$ 2. $q_{i+1} = T(q_i, x_i)$ 3. Q_{n+1} is an element of **F**

The extension of the transition function

- Let an NFA $A=(Q, \Sigma, s, F, \delta)$
- The extension $\underline{\delta} : \mathbb{Q} \times \Sigma^* \longrightarrow \mathbb{P}(\mathbb{Q})$ extends δ so that it is defined over a string of input symbols, rather than a single symbol. It is defined by

$$-\underline{\delta}(q,\varepsilon) = \{q\} \\ -\underline{\delta}(q,ua) = \bigcup_{p \in \underline{\delta}(q,u)} \delta(p,a),$$

Compute this by taking the union of the sets $\delta(p,a)$, where p varies over all states in the set $\underline{\delta}(q,u)$

- First compute $\underline{\delta}(q, u)$, this is a set, call it S.
- for each element, p in S, compute $\delta(\texttt{p},\texttt{a})$,
- Union all these sets together.

Another NFA Acceptance Definition

 An NFA accepts a string w iff δ(s,w) contains a final state. The language of an NFA N is the set L(N) of accepted strings:

• L(N) = {w |
$$\underline{\delta}(s,w) \cap F \neq \emptyset$$
}

• Compare this with the 2 definitions of DFA acceptance in last weeks lecture.

A DFA
$$A = (Q, \Sigma, s, F, T)$$
, accepts a string $x_1 x_2 \dots x_n$
(an element of Σ^*) iff there exists a
sequence of states $q_1 q_2 \dots q_n q_{n+1}$ such that
1. $q_1 = s$
2. $q_{i+1} = T(q_i, x_i)$
3. Q_{n+1} is an element of F

$$L(A) = \{ w \mid \underline{T}(s, w) \in F \}$$

compute $\underline{\delta}(q_0, 000)$

- $\underline{\delta}(q_0, 000) = \bigcup_{x \in \underline{\delta}(q_0, 00)} \delta(x, 0)$
- $\underline{\delta}(q_0,00) = \bigcup_{y \in \underline{\delta}(q_0,0)} \delta(y,0)$
- $\underline{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$
- $\underline{\delta}(q_0,00) = \bigcup_{y \in \{q0,q1\}} \delta(y,0)$
- $\underline{\delta}(q_0, 00) = \{q_0, q_1\} \cup \{q_2\} = \{q_0, q_1, q_2\}$
- $\underline{\delta}(q_0,000) = \bigcup_{\mathbf{x} \in \{q0,q1,q2\}} \delta(\mathbf{x},0)$
- $\underline{\delta}(q_0,000) = \{q_0,q_1\} \cup \{q_2\} \cup \{q_3\}$
- $\underline{\delta}(q_0,000) = \{q_0,q_1,q_2,q_3\}$

Intuition

• At any point in the walk over a string, such as "000" the machine can be in a set of states.

• To take the next step, on a character 'c', we create a new set of states. Those reachable from the old set on a single 'c'

	0	1
{Q0}	{Q0,Q1}	{Q0}
{Q0,Q1}	{Q0,Q1,Q2}	{Q0,Q2}
{Q0,Q2}	{Q0,Q1,Q3}	{Q0,Q3}
{Q0,Q1,Q3}	{Q0,Q1,Q2}	{Q0,Q2}
{Q0,Q3}	{Q0,Q1}	{Q0}
{Q0,Q1,Q2}	{Q0,Q1,Q2,Q3}	{Q0,Q2,Q3}
{Q0,Q1,Q2,Q3} {Q0,Q2,Q3}	{Q0,Q1,Q2,Q3} {Q0,Q1,Q3}	{Q0,Q2,Q3} {Q0,Q3}